
Principles of Programming Languages (CS329) Quiz 3
Computer Science and Engineering 2003-11-14 11:30–12:45
Indian Institute of Technology Bombay

NAME ROLL

This quiz has 2 page/s. Write your answer clearly in the spaces provided and on any last blank page.
Do not attach rough work. Use the marks alongside each question for time management. Provide 1–2
sentences of informal justification to qualify for partial credit in case your final answer is wrong. You
can use the FWH book and your own class notes only.

1. In the following code, an exception is looked up dynamically, and causes the termination of the
innermost affected try block. What is the final value of the expression?

(try
(let f = (proc x (+ 1000 (throw err x)))

(try
(call f 2)
catch (err (z) (/ 500 z))));let

catch (err (y) (/ 200 y))); try

2

The answer is 250 (500/2). 1 mark for avoiding the 1000 (easy) and 1 mark for avoiding the
wrong answer 100 (200/2).

2. What is the type of the following expression?

(lambda (g f) (lambda (x) (g (f x))))

Use the minimum possible number of free type variables. The type of a multi-parameter lambda
(lambda (x y)...) is written as Tx × Ty → . . .

2

The answer is (Tr → Ts) × (x → Tr) → x → Ts, with f = x → Tr and g = Tr → Ts. 1
mark for a reasonable expression and 1 mark for minimum number of type variables with proper
constraints between them.

3. We wish to design a language with exceptions latent or sleeping in variables. E.g., in this
expression

let a = (exception 4)
try

let b = 2
(+ a b)

catch (x) (1+ x)

a packages an exception which set off whenever it is accessed, i.e., in (+ a b), and returns
(1+ 4) which is 5. There is only one kind of exception, so handlers need not mention names.
But handlers are looked up dynamically as in FLaX. Our current language does not have any
mutable store.

1

(a) Modify the signature of E , which used to be

E : Expr → SEnv → Cont → ExpVal

by inserting an additional parameter to keep track of the current closest dynamic catcher.
You should not need a general dynamic environment DEnv because there is only one kind
of handler. For your reference, additional signatures for standard semantics without stores
are given below:

Cont = ExpVal → ExpVal
Proc = ExpVal → Cont → ExpVal.

1

h ∈ Handler = Cont
E : Expr → SEnv → Cont→ Handler → ExpVal

Reordering of parameters of E is ok. Setting Handler = Proc is not ok if the call time
continuation argument to handler Procs are set wrongly (i.e., from inside try code). No
partial credit.

(b) Write down new evaluation functions for these constructs: I, (exception E), and

(try Et catch (Ia) Eh).

3

Define a new semantic domain Exception ⊂ ExpVal with a constructor MakeException
and a type test IsException.

E [[(exception E)]] = λu λk λh
(
E [[E]] u λe (k (MakeException e)) h

)
E [[I]] = λu λk λh let e = (u I)

(
IF (IsException e) (h e) (k e)

)
.

E [[(try Et catch (Ia) Eh)]] = λu λk λh

E [[Et]] u k λx

(
E [[Eh]]

Ia → x

u
k h

)
1 mark for each denotation; no partial credit. No marks for writing denotations of other
syntactic forms, even if we have asked for them. We will be lenient about the last h (can
be replaced by some junk). Variants of packaging exceptions will be accepted.

Total: 8

2

