
Principles of Programming Languages (CS329) Final exam
Computer Science and Engineering 2004-11-25
Indian Institute of Technology Bombay 09:30–13:00

NAME ROLL

This quiz has 5 printed page/s. Write your answer clearly within the spaces provided and on any last
blank page. Start with rough work elsewhere, but do not attach rough work. Use the marks alongside
each question for time management. Illogical or incoherent answers are worse than wrong
answers or even no answer, and may fetch negative credit. You may not use any electronic
computing device during the exam. You may use textbooks, class notes written by you, material
downloaded prior to the exam from the course Web page, course news group, or the Internet, or
notes made available by me for xeroxing. If you use class notes from other student/s, you must obtain
them prior to the exam and write down his/her/their name/s and roll number/s here.

1. In class we saw that although ((λ a (a a)) (λ a (a a))) is not in normal form, the ex-
pression remains unchanged upon applying a β-reduction, so there is no terminating reduction
sequence. Write down a λ-expression where applying any ‘reductions’ makes the expression more
complex, longer, or both.

2

((λ a ((a a) f)) (λ a ((a a) f))) should do it.

2. Here are lambda expressions defining INC (increments a given Church numeral), ADD (adds two
Church numerals), MUL (multiplies two Church numerals) and EXP (raises 2 to the power given
by the input Church numeral).

INC ≡ (λ a (λ f (λ x ((a f) (f x)))))

ADD ≡ (λ a (λ b ((b INC) a)))

MUL ≡ (λ a (λ b ((b (ADD a)) 0̄)))

EXP ≡ (λ c ((c (MUL 2̄)) 1̄))

If EXP is given input n̄, what is the number of β-reduction steps needed (in normal-order reduc-
tion) until the result 2n is returned, as an asymptotic function of n?

3

The computation is dominated by the final multiplication of 2n−1 by 2̄, which can be verified to
take O(22n) reductions.

3. Neither static nor dynamic scoping models the dangerous variable capture possibilities opened
up by macro substitution (as in the C preprocessor). In this question we will study a somewhat
similar form of variable capture, in a variant of FL called FLL (the extra L is for “lazy” binding).
In FLL, an identifier is looked up in an environment to return a Macro, which is itself a mapping
from an environment to a value. At every point of use of an identifier, the use-point environment
is passed to the Macro bound to the identifier to get a value. More formally,

Env = Id→ Macro
Macro = Env→ Value

Proc = Macro→ Value

1

E : Expr→ Env→ Value = Expr→ Macro

E [[(Ep Ea)]] = λu
(
(E [[Ep]] u) E [[Ea]]

)
E [[I]] = λu

(
(u I) u

)
.

Give the value of the following expressions under FLL and static-scoped FL, with suitable
explanations. (These expressions are all evaluated “at top level” without any other variable
bindings available; i.e. they are not subexpressions of larger expressions.)

(a) ((let ((x 3)) (lambda (y) y))
x)

2
FL: x is undefined. FLL: 3.

(b) ((let ((x 3)) (lambda (y) y))
a)

2

FL: a is undefined. FLL: a is undefined.

(c) ((let ((x 3)) (lambda (y) y))
y)

2
FL: y is undefined. FLL: Infinite computation.

4. If Scheme were dynamically scoped, could you still implement E for a statically-scoped language
like FL using Scheme? If yes, give an outline of your strategy; if no, give a formal proof that
it is impossible. (The converse question has already been settled in class: we can obviously
implement a dynamically-scoped language given Scheme.)

2

(Outline:) First write out E for a statically-scoped target language using the dynamically-scoped
source implementation language. Identify all function bodies that use variables not in the explicit
parameter list. Eliminate these free variable occurrences by either replacing with the known
value from the declaration environment, or by passing them as additional parameters (painful,
but doable).

5. We have seen that currying multi-argument procedures is not valid with dynamic scoping. In
this question, assume we are given FLD, a dynamically scoped dialect of Scheme with multi-
argument procedures provided as a special form. FLD does not have rec or letrec, and you
are not allowed to implement Y on your own.

(a) Complete the following implementation of the factorial function and its invocation on the
number 5.

((lambda (fact) (fact 5))
(lambda (n)))

2

There is nothing special to do!

2

((lambda (fact) (fact 5))
(lambda (n) (if (= n 0) 1 (* n (fact (- n 1))))))

(b) Explain how and why your code works. (Hint: the solution is extremely simple; the expla-
nation takes more care.)

2
Unlike in static scoping, in dynamic scoping there is no need to resolve the name fact in the
function (lambda (n)... at the point of declaration because the declare-point environment
is discarded anyway. The call-point environment will have a binding for fact which will
do the trick.

(c) Can you find any similarity between what’s going on here and the use of method dispatchers
and this in FLOP? (You will get credit for this part only if you answered the earlier parts
correctly.)

1
(Some students just wrote “yes” or “no”, I find that cheeky enough to deserve negative
score; it’s like saying “yes” when someone asks you “do you have the time?”) The dynamic
(call-point) environment is like the object (“this”) in FLOP, and fact is like the method
name. In FLOP, method names mentioned in bodies of other methods do not need to be
resolved statically, but remain as “strings” until invocation. That’s why mutually recursive
methods in FLOP are no big deal.

6. Debuggers and profilers attach code dynamically to a program to monitor the Store and collect
execution statistics. Suppose we want to keep track of the total number of returns from procedure
calls up to any point of time in the execution of a program. The code required for this can be
modeled as a function CountReturns from Store to Store, whose only action is to increment an
integer in a fixed cell after every return is completed. Recall the standard denotational semantics
for a procedure call:

E [[(Ep Ea)]] = λu λk λs0

(
E [[Ep]] u λp λs1

(
E [[Ea]] u λa λs2 (p a k s2) s1

)
s0

)

Modify the inner underlined portion suitably so that the profiling code is invoked properly. Write
down only your replacement expression for the underlined part and explain your solution. (You
do not need to implement CountReturns; use it as a black box.)

4

Change the continuation k to insert the Store update ahead of it’s effect:

(p a λ v λ s3 (k v CountReturns(s3)) s2)

Modifying s2 itself will update the counter before the call, and several other solutions do not
take care that an exception thrown from inside p should prevent bumping up the counter.

7. Consider exception handling under dynamic lookup of handler names as we have discussed in
class. To make things simple for this question, assume the language has no Store.

E [[(try Et catch Ih Ia Eb)]] = λu λw λk

E [[Et]] u
Ih → λea

(
E [[Eb]]

Ia → ea

u
w k

)
w

k

If an exception with the same name Ih is thrown from inside the handler body Eb, given the
evaluation rule above, some “outer” Ih handler must catch it. Suppose we want to change the

3

rules so that, if an exception with the name Ih is thrown from inside Eb, then Eb is invoked
recursively (unless Eb installs an inner Ih handler, of course). In case of a recursive Eb invocation,
control must commence in the “outer” Eb.

Replace the dynamic environment in the rhs above (inside the big box) to implement this be-
havior. (Hint: you can use a construct in FL that can be desugared into a lambda expression.)

5

rec w′ Ih → λea

(
E [[Eb]]

Ia → ea

u
w′ k

)
w

8. Here is some (very simple) Prolog code to generate subsets of elements from a given list.

comb1(0,_,[]).
comb1(N,[X|T],[X|Comb]) :- N>0, N1 is N-1, comb1(N1,T,Comb).
comb1(N,[_|T],Comb) :- N>0, comb1(N,T,Comb).

Convince yourself that Prolog’s search mechanism will generate all combinations as desired. (In
particular, that termination is guaranteed even though the third rule does not reduce N.)

(a) Conventionally, which are the input parameters and which is the output parameter? What
is the significance of each variable? (Continue reading this question to see how you should
answer this part.)

3

The first parameter is the size of the subset desired. The second parameter is the input
list. The third parameter is the output subset list.

(b) What will happen if you enter the goal

comb1(2,X,[5,7]).

and keep looking for solutions until failure?

4

Will never fail; will keep returning longer and longer solutions of the form:

1 ?- comb1(2,X,[5,7]).
X = [5, 7|_G360] ;
X = [5, _G359, 7|_G363] ;
X = [5, _G359, _G362, 7|_G366] ;
X = [5, _G359, _G362, _G365, 7|_G369] ;
X = [5, _G359, _G362, _G365, _G368, 7|_G372]
etc.

Next, write another implementation comb2 that does not need arithmetic (“N-1”) by completing
the code below. Each ... is a blank for you to fill. The first argument to comb2 is the input list.
The second argument must be a list of desired size, containing only free variables; these will be
progressively bound to different subsets of the given size.

4

comb2(_,[]).
comb2([X|...],[...|Comb]):-comb2(T,...).
comb2([_|T],[X|...]):-comb2(...,[X|...]).

6

comb2(_,[]).
comb2([X|T],[X|Comb]):-comb2(T,Comb).
comb2([_|T],[X|Comb]):-comb2(T,[X|Comb]).

9. Here is an informal example of a recursive type: a TreeNode is either an Integer, or it is a
RecordOf two fields called left and right, both of type TreeNode. More formally, we can write
the type “equation”

TreeNode = (UnionOf Integer (RecordOf (left TreeNode) (right TreeNode))),

and the “solution” to this type equation gives the type TreeNode. At a high level this is like
rec; to reflect this similarity, we can coin a type expression of the form

(rectype TreeNode (UnionOf Integer
(RecordOf (left TreeNode)

(right TreeNode))))

Under this setting, it is reasonable to claim that

(rectype S (Func S Integer)) and (rectype T (Func (Func T Integer) Integer))

are structurally equivalent. (Here (Func T1 T2) means a function that accepts an argument of
type T1 and returns a value of type T2.) Propose and justify an algorithm to test the structural
equivalence of two recursive types (rectype R Tr) and (rectype S Ts).

4

See page 2 of http://www.cs.cornell.edu/courses/cs611/2001fa/scribe/lecture33.pdf
for an outline of the answer.

10. What is the value of the following expression in Scheme? Give at most 2 lines of justification.

(let ((r 1) (top (call-with-current-continuation (lambda (c) c))))
((top (lambda (x) (1+ x))) r))

2

Runtime error, with a message to the effect “cannot add 1 to a continuation or procedure”.

Total: 46

5

