
Hash Functions and Hash Tables

A hash function h maps keys of a given type to integers in a
fixed interval [0, . . . ,N − 1]. We call h(x) hash value of x .

Examples:
I h(x) = x mod N

is a hash function for integer keys

I h((x , y)) = (5 · x + 7 · y) mod N
is a hash function for pairs of integers

h(x) = x mod 5
key element

0
1 6 tea
2 2 coffee
3
4 14 chocolate

A hash table consists of:
I hash function h

I an array (called table) of size N

The idea is to store item (k, e) at index h(k).



Hash Tables: Example 1

Example: phone book with table size N = 5
I hash function h(w) = (length of the word w) mod 5

0

1

2

3

4

(Alice, 020598555)

(Sue, 060011223)

(John, 020123456)

Alice

John

Sue

I Ideal case: one access for find(k) (that is, O(1)).
I Problem: collisions

I Where to store Joe (collides with Sue)?

I This is an example of a bad hash function:
I Lots of collisions even if we make the table size N larger.



Hash Tables: Example 2

A dictionary based on a hash table for:
I items (social security number, name)

I 700 persons in the database

We choose a hash table of size N = 1000 with:
I hash function h(x) = last three digits of x

0

1

2

3
...

997

998

999

(025-611-001, Mr. X)

(987-067-002, Brad Pit)

(431-763-997, Alan Turing)

(007-007-999, James Bond)



Collisions

Collisions
occur when different elements are mapped to the same cell:

I Keys k1, k2 with h(k1) = h(k2) are said to collide.

0

1

2

3
...

(025-611-001, Mr. X)

(987-067-002, Brad Pit) (123-456-002, Dipsy)
?

Different possibilities of handing collisions:
I chaining,

I linear probing,

I double hashing, . . .



Collisions continued

Usual setting:
I The set of keys is much larger than the available memory.

I Hence collisions are unavoidable.

How probable are collisions:
I We have a party with p persons. What is the probability that

at least 2 persons have birthday the same day (N = 365).

I Probability for no collision:

q(p,N) =
N
N
· N − 1

N
· · · N − p + 1

N

=
(N − 1) · (N − 2) · · · (N − p + 1)

Np−1

I Already for p ≥ 23 the probability for collisions is > 0.5.



Hashing: Efficiency Factors

The efficiency of hashing depends on various factors:
I hash function

I type of the keys: integers, strings,. . .

I distribution of the actually used keys

I occupancy of the hash table (how full is the hash table)

I method of collision handling

The load factor α of a hash table is the ratio n/N, that is, the
number of elements in the table divided by size of the table.

High load factor α ≥ 0.85 has negative effect on efficiency:
I lots of collisions

I low efficiency due to collision overhead



What is a good Hash Function?

Hash fuctions should have the following properties:
I Fast computation of the hash value (O(1)).
I Hash values should be distributed (nearly) uniformly:

I Every has value (cell in the hash table) has equal probabilty.

I This should hold even if keys are non-uniformly distributed.

The goal of a hash function is:
I ‘disperse’ the keys in an apparently random way

Example (Hash Function for Strings in Python)
We dispay python hash values modulo 997:

h(‘a ′) = 535 h(‘b ′) = 80 h(‘c ′) = 618 h(‘d ′) = 163
h(‘ab ′) = 354 h(‘ba ′) = 979 . . .

At least at first glance they look random.



Hash Code Map and Compression Map

Hash function is usually specified as composition of:
I hash code map: h1 : keys→ integers

I compression map: h2 : integers→ [0, . . . ,N − 1]

The hash code map is appied before the compression map:
I h(x) = h2(h1(x)) is the composed hash function

The compression map usually is of the form h2(x) = x mod N:

I The actual work is done by the hash code map.

I What are good N to choose? . . . see following slides



Compression Map: Example

We revisit the example (social security number, name):
I hash function h(x) = x as number mod 1000

Assume the last digit is always 0 or 1 indicating male/femal.

0
1
2
3
4
5
6
7
8
9

10
11
12 ...

(025-611-000, Mr. X)
(987-067-001, Ms. X)

(431-763-010, Alan Turing)
(007-011-011, Madonna)

Then 80% of the cells in the table stay unused! Bad hash!



Compression Map: Division Remainder

A better hash function for ‘social security number’:
I hash function h(x) = x as number mod 997

I e.g. h(025 − 611 − 000) = 025611000 mod 997 = 409

Why 997? Because 997 is a prime number!
I Let the hash function be of the form h(x) = x mod N.

I Assume the keys are distributed in equidistance ∆ < N:

ki = z + i · ∆

We get a collision if:

ki mod N = kj mod N⇐⇒ z + i · ∆ mod N = z + j · ∆ mod N⇐⇒ i = j + m · N (for some m ∈ Z)

Thus a prime maximizes the distance of keys with collisions!



Hash Code Maps

What if the keys are not integers?
I Integer cast: interpret the bits of the key as integer.

a
0001

b
0010

c
0011 000100100011 = 291

What if keys are longer than 32/64 bit Integers?
I Component sum:

I partition the bits of the key into parts of fixed length

I combine the components to one integer using sum
(other combinations are possible, e.g. bitwise xor, . . . )

1001010 | 0010111 | 0110000
1001010 + 0010111 + 0110000 = 74 + 23 + 48 = 145



Hash Code Maps, continued

Other possible hash code maps:
I Polynomial accumulation:

I partition the bits of the key into parts of fixed length

a0a1a2 . . . an

I take as hash value the value of the polynom:

a0 + a1 · z + a2 · z2 . . . an · zn

I especially suitable for strings (e.g. z = 33 has at most 6
collisions for 50.000 english words)

I Mid-square method:
I pick m bits from the middle of x2

I Random method:
I take x as seed for random number generator



Collision Handling: Chaining

Chaining: each cell of the hash table points to a linked list of
elements that are mapped to this cell.

I colliding items are stored outside of the table

I simple but requires additional memory outside of the table

Example: keys = birthdays, elements = names
I hash function: h(x) = (month of birth) mod 5

0

1

2

3

4

(01.01., Sue) ∅

(12.03., John) (16.08., Madonna) ∅

Worst-case: everything in one cell, that is, linear list.



Collision Handling: Linear Probing

Open addressing:
I the colliding items are placed in a different cell of the table

Linear probing:
I colliding items stored in the next (circularly) available cell

I testing if cells are free is called ‘probing’

Example: h(x) = x mod 13
I we insert: 18, 41, 22, 44, 59, 32, 31, 73

0 1 2 3 4 5 6 7 8 9 10 11 12
1841 2244 59 32 31 73

Colliding items might lump together causing new collisions.



Linear Probing: Search

Searching for a key k (findElement(k)) works as follows:
I Start at cell h(k), and probe consecutive locations until:

I an item with key k is found, or

I an empty cell is found, or

I all N cells have been probed unsuccessfully.

findElement(k):
i = h(k)
p = 0
while p < N do

c = A[i]
if c == ∅ then return No_Such_Key
if c.key == k then return c.element
i = (i + 1) mod N
p = p + 1

return No_Such_Key



Linear Probing: Deleting

Deletion remove(k) is expensive:
I Removing 15, all consecutive elements have to be moved:

0 1 2 3 4 5 6 7 8 9 10 11 12
15 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7

To avoid the moving we introduce a special element Available:
I Instead of deleting, we replace items by Available (A).

0 1 2 3 4 5 6 7 8 9 10 11 12
15 2 3 4 5 6 7A

I From time to time we need to ‘clean up’:
I remove all Available and reorder items



Linear Probing: Inserting

Inserting insertItem(k, o):
I Start at cell h(k), probe consecutive elements until:

I empty or Available cell is found, then store item here, or

I all N cells have been probed (table full, throw exception)

0 1 2 3 4 5 6 7 8 9 10 11 12
16 17 4 5 6 7A A

Example: insert(3) in the above table yields (h(x) = x mod 13)

0 1 2 3 4 5 6 7 8 9 10 11 12
16 17 4 3 6 7A

Important: for findElement cells with Available are treated as
filled, that is, the search continues.



Linear Probing: Possible Extensions

Disadvantages of linear probing:
I Colliding items lump together, causing:

I longer sequences of probes

I reduced performance

Possible improvements/ modifications:
I instead of probing successive elements,

compute the i-th probing index hi depending on i and k:

hi(k) = h(k) + f (i , k)

Examples:
I Fixed increment c: hi(k) = h(k) + c · i .
I Changing directions: hi(k) = h(k) + c · i · (−1)i .

I Double hashing: hi(k) = h(k) + i · h ′(k).



Double Hashing

Double hashing uses a secondary hash function d(k):
I Handles collisions by placing items in the first available cell

h(k) + j · d(k)

for j = 0,1, . . . ,N − 1.

I The function d(k) always be > 0 and < N.

I The size of the table N should be a prime.



Double Hashing: Example

We use double hashing with:
I N = 13

I h(k) = k mod 13

I d(k) = 7 − (k mod 7)

k h(k) d(k) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5, 10
59 7 4 7
32 6 3 6
31 5 4 5,9,0
73 8 4 8

0 1 2 3 4 5 6 7 8 9 10 11 12
1841 22 44593231 73



Performance of Hashing

In worst case insertion, lookup and removal take O(n) time:
I occurs when all keys collide (end up in one cell)

The load factor α = n/N affects the performace:
I Assuming that the hash values are like random numbers,

it can be shown that the expected number of probes is:

1/(1 − α)

α

f (x)

1/(1 − α)

0.2 0.4 0.6 0.8 1

5

10

15

20



Performance of Hashing

In worst case insertion, lookup and removal take O(n) time:
I occurs when all keys collide (end up in one cell)

The load factor α = n/N affects the performace:
I Assuming that the hash values are like random numbers,

it can be shown that the expected number of probes is:

1/(1 − α)

In practice hashing is very fast as long as α < 0.85:
I O(1) expected running time for all Dictionary ADT methods

Applications of hash tables:
I small databases

I compilers

I browser caches



Universal Hashing

No hash function is good in general:
I there always exist keys that are mapped to the same value

Hence no single hash function h can be proven to be good.

However, we can consider a set of hash functions H.
(assume that keys are from the interval [0,M − 1])

We say that H is universal (good) if for all keys 0 ≤ i 6= j < M:

probability(h(i) = h(j)) ≤ 1
N

for h randomly selected from H.



Universal Hashing: Example

The following set of hash functions H is universal:
I Choose a prime p betwen M and 2 ·M.

I Let H consist of the functions

h(k) = ((a · k + b) mod p) mod N

for 0 < a < p and 0 ≤ b < p.

Proof Sketch.
Let 0 ≤ i 6= j < M. For every i ′ 6= j ′ < p there exist unique a,b
such that i ′ = a · i + b mod p and j ′ = a · i + b mod p. Thus
every pair (i ′, j ′) with i ′ 6= j ′ has equal probability. Consequently
the probability for i ′ mod N = j ′ mod N is ≤ 1

N .



Comparison AVL Trees vs. Hash Tables

Dictionary methods:

search insert remove
AVL Tree O(log2 n) O(log2 n) O(log2 n)

Hash Table O(1) 1 O(1) 1 O(1) 1

1 expected running time of hash tables, worst-case is O(n).

Ordered dictionary methods:

closestAfter closestBefore
AVL Tree O(log2 n) O(log2 n)

Hash Table O(n + N) O(n + N)

Examples, when to use AVL trees instead of hash tables:
1. if you need to be sure about worst-case performance
2. if keys are imprecise (e.g. measurements),

e.g. find the closest key to 3.24: closestTo(3.72)


