Hash Functions and Hash Tables

A hash function *h* maps keys of a given type to integers in a fixed interval [0, ..., N-1]. We call h(x) hash value of *x*.

Examples:

- h(x) = x mod N
 is a hash function for integer keys
- ► h((x, y)) = (5 · x + 7 · y) mod N is a hash function for pairs of integers

 $h(x) = x \mod 5$

	key	element
0		
1	6	tea
2	2	coffee
3		
4	14	chocolate

A hash table consists of:

- hash function h
- an array (called table) of size N

The idea is to store item (k, e) at index h(k).

Hash Tables: Example 1

Example: phone book with table size N = 5

▶ hash function $h(w) = (\text{length of the word } w) \mod 5$

- ldeal case: one access for find(k) (that is, O(1)).
- Problem: collisions
 - Where to store Joe (collides with Sue)?
- This is an example of a bad hash function:
 - Lots of collisions even if we make the table size *N* larger.

Hash Tables: Example 2

A dictionary based on a hash table for:

- items (social security number, name)
- 700 persons in the database

We choose a hash table of size N = 1000 with:

▶ hash function h(x) = last three digits of x

Collisions

Collisions

occur when different elements are mapped to the same cell:

• Keys k_1 , k_2 with $h(k_1) = h(k_2)$ are said to collide.

$$\begin{array}{c} 0 \\ 1 \\ \bullet \\ 2 \\ \bullet \\ 3 \\ \vdots \end{array}$$
 (025-611-001, Mr. X)
? (123-456-002, Dipsy)
? (123-456-002, Di

Different possibilities of handing collisions:

- chaining,
- linear probing,
- double hashing, ...

Usual setting:

- The set of keys is much larger than the available memory.
- Hence collisions are unavoidable.

How probable are collisions:

- ► We have a party with *p* persons. What is the probability that at least 2 persons have birthday the same day (*N* = 365).
- Probability for no collision:

$$q(p, N) = \frac{N}{N} \cdot \frac{N-1}{N} \cdots \frac{N-p+1}{N}$$
$$= \frac{(N-1) \cdot (N-2) \cdots (N-p+1)}{N^{p-1}}$$

• Already for $p \ge 23$ the probability for collisions is > 0.5.

Hashing: Efficiency Factors

The efficiency of hashing depends on various factors:

- hash function
- type of the keys: integers, strings,...
- distribution of the actually used keys
- occupancy of the hash table (how full is the hash table)
- method of collision handling

The load factor α of a hash table is the ratio n/N, that is, the number of elements in the table divided by size of the table.

High load factor $\alpha \ge 0.85$ has negative effect on efficiency:

- Iots of collisions
- Iow efficiency due to collision overhead

What is a good Hash Function?

Hash fuctions should have the following properties:

- Fast computation of the hash value (O(1)).
- Hash values should be distributed (nearly) uniformly:
 - Every has value (cell in the hash table) has equal probability.
 - > This should hold even if keys are non-uniformly distributed.
- The goal of a hash function is:
 - 'disperse' the keys in an apparently random way

Example (Hash Function for Strings in Python)

We dispay python hash values modulo 997:

$$h(`a') = 535$$
 $h(`b') = 80$ $h(`c') = 618$ $h(`d') = 163$
 $h(`ab') = 354$ $h(`ba') = 979$

At least at first glance they look random.

Hash Code Map and Compression Map

Hash function is usually specified as composition of:

- ▶ hash code map: h_1 : keys → integers
- ▶ compression map: h_2 : integers \rightarrow [0, ..., N 1]

The hash code map is appied before the compression map:

• $h(x) = h_2(h_1(x))$ is the composed hash function

The compression map usually is of the form $h_2(x) = x \mod N$:

- The actual work is done by the hash code map.
- ▶ What are good *N* to choose? ... see following slides

Compression Map: Example

We revisit the example (social security number, name):

• hash function h(x) = x as number mod 1000

Assume the last digit is always 0 or 1 indicating male/femal.

Then 80% of the cells in the table stay unused! Bad hash!

Compression Map: Division Remainder

A better hash function for 'social security number':

- ▶ hash function h(x) = x as number mod 997
- ▶ e.g. $h(025 611 000) = 025611000 \mod 997 = 409$

Why 997? Because 997 is a prime number!

- Let the hash function be of the form $h(x) = x \mod N$.
- Assume the keys are distributed in equidistance $\Delta < N$:

$$k_i = \mathbf{Z} + i \cdot \Delta$$

We get a collision if:

$$k_i \mod N = k_j \mod N$$

$$\iff z + i \cdot \Delta \mod N = z + j \cdot \Delta \mod N$$

$$\iff i = j + m \cdot N \quad \text{(for some } m \in \mathbb{Z}\text{)}$$

Thus a prime maximizes the distance of keys with collisions!

Hash Code Maps

What if the keys are not integers?

Integer cast: interpret the bits of the key as integer.

000100100011 = 291

What if keys are longer than 32/64 bit Integers?

- Component sum:
 - partition the bits of the key into parts of fixed length
 - combine the components to one integer using sum (other combinations are possible, e.g. bitwise xor, ...)

1001010 | 0010111 | 0110000 1001010 + 0010111 + 0110000 = 74 + 23 + 48 = 145

Hash Code Maps, continued

Other possible hash code maps:

- Polynomial accumulation:
 - partition the bits of the key into parts of fixed length

 $a_0 a_1 a_2 \dots a_n$

take as hash value the value of the polynom:

$$a_0 + a_1 \cdot z + a_2 \cdot z^2 \dots a_n \cdot z^n$$

- especially suitable for strings (e.g. z = 33 has at most 6 collisions for 50.000 english words)
- Mid-square method:
 - pick *m* bits from the middle of x^2
- Random method:
 - take x as seed for random number generator

Collision Handling: Chaining

Chaining: each cell of the hash table points to a linked list of elements that are mapped to this cell.

- colliding items are stored outside of the table
- simple but requires additional memory outside of the table

Example: keys = birthdays, elements = names

▶ hash function: $h(x) = (\text{month of birth}) \mod 5$

Worst-case: everything in one cell, that is, linear list.

Collision Handling: Linear Probing

Open addressing:

the colliding items are placed in a different cell of the table

Linear probing:

- colliding items stored in the next (circularly) available cell
- testing if cells are free is called 'probing'

Example: $h(x) = x \mod 13$

we insert: 18, 41, 22, 44, 59, 32, 31, 73

Colliding items might lump together causing new collisions.

Linear Probing: Search

Searching for a key k (findElement(k)) works as follows:

- Start at cell h(k), and probe consecutive locations until:
 - an item with key k is found, or
 - an empty cell is found, or
 - all N cells have been probed unsuccessfully.

```
findElement(k):

i = h(k)

p = 0

while p < N do
```

```
while p < N do

c = A[i]

if c == \emptyset then return No_Such_Key

if c.key == k then return c.element

i = (i + 1) \mod N

p = p + 1

return No_Such_Key
```

Linear Probing: Deleting

Deletion remove(k) is expensive:

Removing 15, all consecutive elements have to be moved:

To avoid the moving we introduce a special element Available:

Instead of deleting, we replace items by Available (A).

From time to time we need to 'clean up':

remove all Available and reorder items

Linear Probing: Inserting

Inserting insertItem(k, o):

Start at cell h(k), probe consecutive elements until:

- empty or Available cell is found, then store item here, or
- all N cells have been probed (table full, throw exception)

Example: insert(3) in the above table yields ($h(x) = x \mod 13$)

Important: for findElement cells with Available are treated as filled, that is, the search continues.

Linear Probing: Possible Extensions

Disadvantages of linear probing:

- Colliding items lump together, causing:
 - Ionger sequences of probes
 - reduced performance

Possible improvements/ modifications:

instead of probing successive elements, compute the *i*-th probing index h_i depending on *i* and k:

$$h_i(k) = h(k) + f(i,k)$$

Examples:

- Fixed increment *c*: $h_i(k) = h(k) + c \cdot i$.
- Changing directions: $h_i(k) = h(k) + c \cdot i \cdot (-1)^i$.
- Double hashing: $h_i(k) = h(k) + i \cdot h'(k)$.

Double hashing uses a secondary hash function d(k):

Handles collisions by placing items in the first available cell

 $h(k) + j \cdot d(k)$

for j = 0, 1, ..., N - 1.

- The function d(k) always be > 0 and < N.
- The size of the table *N* should be a prime.

Double Hashing: Example

We use double hashing with:

- ► *N* = 13
- $\blacktriangleright h(k) = k \mod 13$

•
$$d(k) = 7 - (k \mod 7)$$

k	h (k)	d(k)	Probes
18	5	3	5
41	2	1	2
22	9	6	9
44	5	5	5, 10
59	7	4	7
32	6	3	6
31	5	4	5,9,0
73	8	4	8

Performance of Hashing

In worst case insertion, lookup and removal take O(n) time:

occurs when all keys collide (end up in one cell)

The load factor $\alpha = n/N$ affects the performace:

Assuming that the hash values are like random numbers, it can be shown that the expected number of probes is:

$$1/(1 - \alpha)$$

Performance of Hashing

In worst case insertion, lookup and removal take O(n) time:

occurs when all keys collide (end up in one cell)

The load factor $\alpha = n/N$ affects the performace:

Assuming that the hash values are like random numbers, it can be shown that the expected number of probes is:

 $1/(1-\alpha)$

In practice hashing is very fast as long as $\alpha < 0.85$:

O(1) expected running time for all Dictionary ADT methods

Applications of hash tables:

- small databases
- compilers
- browser caches

No hash function is good in general:

► there always exist keys that are mapped to the same value Hence no single hash function *h* can be proven to be good.

However, we can consider a set of hash functions *H*. (assume that keys are from the interval [0, M - 1])

We say that *H* is universal (good) if for all keys $0 \le i \ne j < M$: probability(h(i) = h(j)) $\le \frac{1}{N}$

for h randomly selected from H.

The following set of hash functions *H* is universal:

- Choose a prime p betwen M and $2 \cdot M$.
- Let H consist of the functions

 $h(k) = ((a \cdot k + b) \mod p) \mod N$

for
$$0 < a < p$$
 and $0 \le b < p$.

Proof Sketch.

Let $0 \le i \ne j < M$. For every $i' \ne j' < p$ there exist unique a, b such that $i' = a \cdot i + b \mod p$ and $j' = a \cdot i + b \mod p$. Thus every pair (i', j') with $i' \ne j'$ has equal probability. Consequently the probability for $i' \mod N = j' \mod N$ is $\le \frac{1}{N}$.

Comparison AVL Trees vs. Hash Tables

Dictionary methods:

	search	insert	remove
AVL Tree	$O(\log_2 n)$	$O(\log_2 n)$	$O(\log_2 n)$
Hash Table	O(1) ¹	<i>O</i> (1) ¹	<i>O</i> (1) ¹

¹ expected running time of hash tables, worst-case is O(n).

Ordered dictionary methods:

	closestAfter	closestBefore
AVL Tree	<i>O</i> (log ₂ <i>n</i>)	<i>O</i> (log ₂ <i>n</i>)
Hash Table	<i>O</i> (<i>n</i> + <i>N</i>)	<i>O</i> (<i>n</i> + <i>N</i>)

Examples, when to use AVL trees instead of hash tables:

- 1. if you need to be sure about worst-case performance
- if keys are imprecise (e.g. measurements),
 e.g. find the closest key to 3.24: closestTo(3.72)