Hash Functions and Hash Tables

A hash function h maps keys of a given type to integers in a fixed interval $[0, \ldots, N-1]$. We call $h(x)$ hash value of x.

Examples:

- $h(x)=x \bmod N$
is a hash function for integer keys
- $h((x, y))=(5 \cdot x+7 \cdot y) \bmod N$ is a hash function for pairs of integers

$$
h(x)=x \bmod 5
$$

	key	
0	element	
	6	tea
	2	coffee
	14	chocolate

A hash table consists of:

- hash function h
- an array (called table) of size N

The idea is to store item (k, e) at index $h(k)$.

Hash Tables: Example 1

Example: phone book with table size $N=5$

- hash function $h(w)=($ length of the word $w) \bmod 5$

- Ideal case: one access for find (k) (that is, $O(1)$).
- Problem: collisions
- Where to store Joe (collides with Sue)?
- This is an example of a bad hash function:
- Lots of collisions even if we make the table size N larger.

Hash Tables: Example 2

A dictionary based on a hash table for:

- items (social security number, name)
- 700 persons in the database

We choose a hash table of size $N=1000$ with:

- hash function $h(x)=$ last three digits of x

Collisions

Collisions

occur when different elements are mapped to the same cell:

- Keys k_{1}, k_{2} with $h\left(k_{1}\right)=h\left(k_{2}\right)$ are said to collide.

Different possibilities of handing collisions:

- chaining,
- linear probing,
- double hashing, ...

Collisions continued

Usual setting:

- The set of keys is much larger than the available memory.
- Hence collisions are unavoidable.

How probable are collisions:

- We have a party with p persons. What is the probability that at least 2 persons have birthday the same day $(N=365)$.
- Probability for no collision:

$$
\begin{aligned}
q(p, N) & =\frac{N}{N} \cdot \frac{N-1}{N} \cdots \frac{N-p+1}{N} \\
& =\frac{(N-1) \cdot(N-2) \cdots(N-p+1)}{N^{p-1}}
\end{aligned}
$$

- Already for $p \geq 23$ the probability for collisions is >0.5.

Hashing: Efficiency Factors

The efficiency of hashing depends on various factors:

- hash function
- type of the keys: integers, strings,...
- distribution of the actually used keys
- occupancy of the hash table (how full is the hash table)
- method of collision handling

The load factor α of a hash table is the ratio n / N, that is, the number of elements in the table divided by size of the table.

High load factor $\alpha \geq 0.85$ has negative effect on efficiency:

- lots of collisions
- low efficiency due to collision overhead

What is a good Hash Function?

Hash fuctions should have the following properties:

- Fast computation of the hash value $(O(1))$.
- Hash values should be distributed (nearly) uniformly:
- Every has value (cell in the hash table) has equal probabilty.
- This should hold even if keys are non-uniformly distributed.

The goal of a hash function is:

- 'disperse' the keys in an apparently random way

Example (Hash Function for Strings in Python)

We dispay python hash values modulo 997:

$$
\begin{array}{rlrl}
h\left({ }^{\prime} \mathrm{a}^{\prime}\right) & =535 & h\left({ }^{\prime} \mathrm{b}^{\prime}\right) & =80 \\
h\left(\mathrm{ab}^{\prime}\right) & =354 & h\left(\mathrm{'c}^{\prime}\right)=618 & h\left(\mathrm{'}^{\prime} \mathrm{d}^{\prime}\right)=163 \\
& =979 & \ldots &
\end{array}
$$

At least at first glance they look random.

Hash Code Map and Compression Map

Hash function is usually specified as composition of:

- hash code map: h_{1} : keys \rightarrow integers
- compression map: h_{2} : integers $\rightarrow[0, \ldots, N-1]$

The hash code map is appied before the compression map:

- $h(x)=h_{2}\left(h_{1}(x)\right)$ is the composed hash function

The compression map usually is of the form $h_{2}(x)=x \bmod N$:

- The actual work is done by the hash code map.
- What are good N to choose? ... see following slides

Compression Map: Example

We revisit the example (social security number, name):

- hash function $h(x)=x$ as number mod 1000

Assume the last digit is always 0 or 1 indicating male/femal.

Then 80% of the cells in the table stay unused! Bad hash!

Compression Map: Division Remainder

A better hash function for 'social security number':

- hash function $h(x)=x$ as number mod 997
- e.g. $h(025-611-000)=025611000 \bmod 997=409$

Why 997 ? Because 997 is a prime number!

- Let the hash function be of the form $h(x)=x \bmod N$.
- Assume the keys are distributed in equidistance $\Delta<N$:

$$
k_{i}=z+i \cdot \Delta
$$

We get a collision if:

$$
\begin{aligned}
& k_{i} \bmod N=k_{j} \bmod N \\
& \Longleftrightarrow z+i \cdot \Delta \bmod N=z+j \cdot \Delta \bmod N \\
& \Longleftrightarrow i=j+m \cdot N \quad(\text { for some } m \in \mathbb{Z})
\end{aligned}
$$

Thus a prime maximizes the distance of keys with collisions!

Hash Code Maps

What if the keys are not integers?

- Integer cast: interpret the bits of the key as integer.

What if keys are longer than 32/64 bit Integers?

- Component sum:
- partition the bits of the key into parts of fixed length
- combine the components to one integer using sum (other combinations are possible, e.g. bitwise xor, ...)

$$
\begin{gathered}
1001010|0010111| 0110000 \\
1001010+0010111+0110000=74+23+48=145
\end{gathered}
$$

Hash Code Maps, continued

Other possible hash code maps:

- Polynomial accumulation:
- partition the bits of the key into parts of fixed length

$$
a_{0} a_{1} a_{2} \ldots a_{n}
$$

- take as hash value the value of the polynom:

$$
a_{0}+a_{1} \cdot z+a_{2} \cdot z^{2} \ldots a_{n} \cdot z^{n}
$$

- especially suitable for strings (e.g. $z=33$ has at most 6 collisions for 50.000 english words)
- Mid-square method:
- pick m bits from the middle of x^{2}
- Random method:
- take x as seed for random number generator

Collision Handling: Chaining

Chaining: each cell of the hash table points to a linked list of elements that are mapped to this cell.

- colliding items are stored outside of the table
- simple but requires additional memory outside of the table

Example: keys = birthdays, elements = names

- hash function: $h(x)=$ (month of birth) $\bmod 5$

Worst-case: everything in one cell, that is, linear list.

Collision Handling: Linear Probing

Open addressing:

- the colliding items are placed in a different cell of the table

Linear probing:

- colliding items stored in the next (circularly) available cell
- testing if cells are free is called 'probing'

Example: $h(x)=x \bmod 13$

- we insert: $18,41,22,44,59,32,31,73$

Colliding items might lump together causing new collisions.

Linear Probing: Search

Searching for a key k (findElement (k)) works as follows:

- Start at cell $h(k)$, and probe consecutive locations until:
- an item with key k is found, or
- an empty cell is found, or
- all N cells have been probed unsuccessfully.
findElement (k) :
$i=h(k)$
$p=0$
while $p<N$ do

$$
c=A[i]
$$

if $c==\varnothing$ then return No_Such_Key
if $c . k e y==k$ then return c.element
$i=(i+1) \bmod N$
$p=p+1$
return No_Such_Key

Linear Probing: Deleting

Deletion remove (k) is expensive:

- Removing 15, all consecutive elements have to be moved:

To avoid the moving we introduce a special element Available:

- Instead of deleting, we replace items by Available (A).

- From time to time we need to 'clean up':
- remove all Available and reorder items

Linear Probing: Inserting

Inserting insertltem (k, o) :

- Start at cell $h(k)$, probe consecutive elements until:
- empty or Available cell is found, then store item here, or
- all N cells have been probed (table full, throw exception)

Example: insert(3) in the above table yields $(h(x)=x \bmod 13)$

Important: for findElement cells with Available are treated as filled, that is, the search continues.

Linear Probing: Possible Extensions

Disadvantages of linear probing:

- Colliding items lump together, causing:
- longer sequences of probes
- reduced performance

Possible improvements/ modifications:

- instead of probing successive elements, compute the i-th probing index h_{i} depending on i and k :

$$
h_{i}(k)=h(k)+f(i, k)
$$

Examples:

- Fixed increment $c: h_{i}(k)=h(k)+c \cdot i$.
- Changing directions: $h_{i}(k)=h(k)+c \cdot i \cdot(-1)^{i}$.
- Double hashing: $h_{i}(k)=h(k)+i \cdot h^{\prime}(k)$.

Double Hashing

Double hashing uses a secondary hash function $d(k)$:

- Handles collisions by placing items in the first available cell

$$
h(k)+j \cdot \boldsymbol{d}(k)
$$

for $j=0,1, \ldots, N-1$.

- The function $d(k)$ always be >0 and $<N$.
- The size of the table N should be a prime.

Double Hashing: Example

We use double hashing with:

- $N=13$
- $h(k)=k \bmod 13$
- $d(k)=7-(k \bmod 7)$

k	$h(k)$	$d(k)$	Probes
18	5	3	5
41	2	1	2
22	9	6	9
44	5	5	5,10
59	7	4	7
32	6	3	6
31	5	4	$5,9,0$
73	8	4	8

31		41			18	32	59	73	22	44		
0	1	2	3	4	5	6	7	8	9	10	11	12

Performance of Hashing

In worst case insertion, lookup and removal take $O(n)$ time:

- occurs when all keys collide (end up in one cell)

The load factor $\alpha=n / N$ affects the performace:

- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes is:

$$
1 /(1-\alpha)
$$

Performance of Hashing

In worst case insertion, lookup and removal take $O(n)$ time:

- occurs when all keys collide (end up in one cell)

The load factor $\alpha=n / N$ affects the performace:

- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes is:

$$
1 /(1-\alpha)
$$

In practice hashing is very fast as long as $\alpha<0.85$:

- $O(1)$ expected running time for all Dictionary ADT methods

Applications of hash tables:

- small databases
- compilers
- browser caches

Universal Hashing

No hash function is good in general:

- there always exist keys that are mapped to the same value Hence no single hash function h can be proven to be good.

However, we can consider a set of hash functions H. (assume that keys are from the interval [$0, M-1]$)

We say that H is universal (good) if for all keys $0 \leq i \neq j<M$:

$$
\operatorname{probability}(h(i)=h(j)) \leq \frac{1}{N}
$$

for h randomly selected from H.

Universal Hashing: Example

The following set of hash functions H is universal:

- Choose a prime p betwen M and $2 \cdot M$.
- Let H consist of the functions

$$
h(k)=((a \cdot k+b) \bmod p) \bmod N
$$

for $0<a<p$ and $0 \leq b<p$.

Proof Sketch.

Let $0 \leq i \neq j<M$. For every $i^{\prime} \neq j^{\prime}<p$ there exist unique a, b such that $i^{\prime}=a \cdot i+b \bmod p$ and $j^{\prime}=a \cdot i+b \bmod p$. Thus every pair $\left(i^{\prime}, j^{\prime}\right)$ with $i^{\prime} \neq j^{\prime}$ has equal probability. Consequently the probability for $i^{\prime} \bmod N=j^{\prime} \bmod N$ is $\leq \frac{1}{N}$.

Comparison AVL Trees vs. Hash Tables

Dictionary methods:

	search	insert	remove
AVL Tree	$O\left(\log _{2} n\right)$	$O\left(\log _{2} n\right)$	$O\left(\log _{2} n\right)$
Hash Table	$O(1)^{1}$	$O(1)^{1}$	$O(1)^{1}$

${ }^{1}$ expected running time of hash tables, worst-case is $O(n)$.
Ordered dictionary methods:

	closestAfter	closestBefore
AVL Tree	$O\left(\log _{2} n\right)$	$O\left(\log _{2} n\right)$
Hash Table	$O(n+N)$	$O(n+N)$

Examples, when to use AVL trees instead of hash tables:

1. if you need to be sure about worst-case performance
2. if keys are imprecise (e.g. measurements), e.g. find the closest key to 3.24: closestTo(3.72)
