#### CS 348: Computer Networks

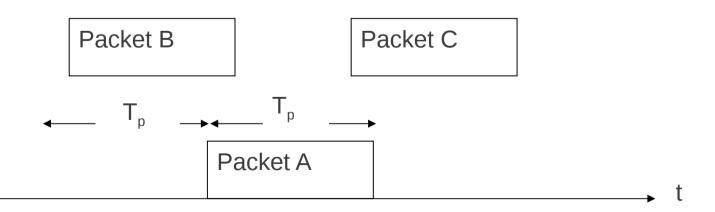
### - CSMA; 13<sup>th</sup> Aug 2012

#### Instructor: Sridhar Iyer IIT Bombay

# **Clicker Question**

Suppose a MAC protocol does not impose any constraints and permits any sender to immediately transmit whenever it has data.

What do you feel about implementing such a protocol?

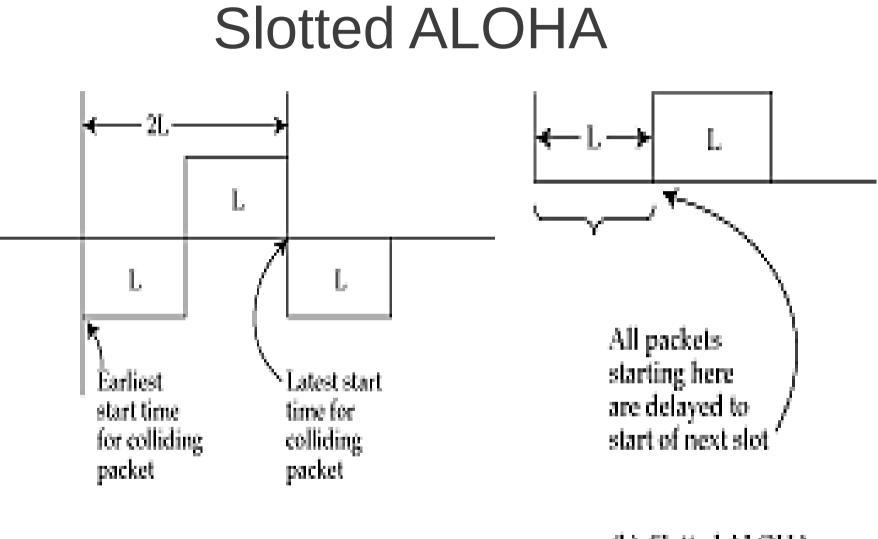

| 1. It would be too inefficient and is not worth implementing. | 2. It would be easy to implement and is worth considering. |
|---------------------------------------------------------------|------------------------------------------------------------|
| 3. It can cause unbounded delays for the upper layers.        | 4. It can be used for senders having stream data.          |

# Contention-based MAC: ALOHA

- Users transmit whenever they have data to send
- Collisions occur, and if packet is lost, then source has to retransmit
- Collision are detected by
  - listening while transmitting
  - loss of acknowledgements
- If collision, then sender waits random time to avoid repeated collision

# Vulnerable interval

- For a given frame, the time when no other frame may be transmitted if a collision is to be avoided.
- Assume all packets have same length (L) and require  $T_{\mbox{\tiny p}}$  seconds for transmission
- Each packet vulnerable to collisions for time  $V_0 = ??$




# ALOHA: Vulnerable interval

- Suppose packet A sent at time t<sub>0</sub>
- If pkt B sent any time in  $[t_0 T_0 to t_0]$ 
  - end of packet B collides with beginning of packet A
- If pkt C sent any time in  $[t_0 to t_0 + T_p]$ 
  - start of packet C will collide with end of packet A
- Total vulnerable interval for packet A is 2T<sub>n</sub>
- Can we do something to improve the efficiency?

# Slotted ALOHA

- A simple way to double ALOHA's capacity
- Make sure transmissions start on a slot boundary
- Halves vulnerability interval
- Requires global synchronization
- Master station generates *synchronization pulses* for time-slots
- Used in cellular phone uplink



(a) ALOHA

(b) Slotted ALOHA

### **Carrier Sense Multiple Access**

- Listen before you speak
- Check whether the medium is active before sending a packet (i.e *carrier sensing*)
- If medium is idle, then transmit
- If collision happens, then detect and resolve

# Activity: Think-Pair-Share

Suppose your group now has to work out the details:

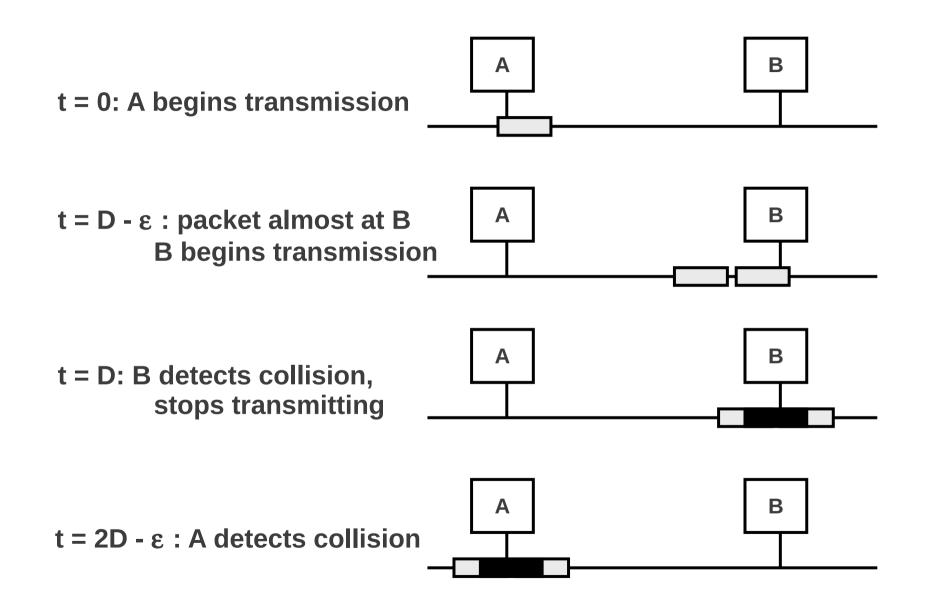
- What are needed to enable collision detection?
- How does a station recover from collision?
- Hint: Typical Ethernet (10BaseT; 100BaseT) has
  - A minimum frame size (64 bytes).
  - A maximum segment length (100 meters?).
  - Think about why these are required and how these numbers are arrived at.

### 1 - Persistent CSMA

- Sense the channel.
- IF the channel is *idle*, THEN transmit.
- IF the channel is *busy*, THEN continue to listen until channel is *idle*.
- Now transmit immediately.

### P - Persistent CSMA

- Sense the channel.
- IF the channel is *idle*, THEN
  - with probability p transmit and
  - with probability (1-p) delay for *one time slot* and start over.
- IF the channel is *busy*, THEN delay *one time-slot* and start over.
  - Time slot is usually set to the maximum propagation delay.
  - as p decreases,
    - stations wait longer to transmit, but
    - the number of collisions decreases


#### Non-Persistent CSMA

- Sense the channel.
- IF the channel is *idle*, THEN transmit.
- If the channel is *busy*, THEN wait a *random amount of time* and start over.
- Random time needs to be chosen appropriately.


# Collision detection (CSMA/CD)

- All aforementioned scheme can suffer from collision.
- Device can detect collision by:
  - Listen while transmitting.
  - Transmit for 2 \* propagation delay.
  - Jamming signal.

#### Contention Interval - 2D



#### Minimum frame size



## Minimum frame size

- It takes A a complete RTT (2D) to detect collision
- When B detects collision (gets more power than it is putting out) it generates 48-bit noise burst ("Jam" bits) to warn all other stations
- Min. frame size equal to number of bits transmitted during one RTT:
  - slotTime: number of bits transmitted by a source during the max. RTT ( $2D = 51.2 \mu sec$ ) for any Ethernet network.
  - Collisions must be detected by sources while still transmitting
  - All frames must be at least 1 slot (on 10Mbps, this is 512 bits)

## **Collision recovery**

- On collision detection wait for random time before retrying.
- Binary Exponential Backoff Algorithm:
  - Reduces the chances of two waiting stations picking the same random time.

# **Binary Exponential Backoff**

1.On detecting 1<sup>st</sup> collision for packet x station A chooses a number r between 0 and 1. waits for r \* slot time and transmit.

- k. On detecting k<sup>th</sup> collision for packet x
  choose r between 0,1,...,(2<sup>k</sup>−1)
  - When value of k becomes high (10), give up.
  - Randomization increase with larger window, but delay increases.
  - Slot time is 2 \* propagation delay.

# Frame: Ethernet (IEEE 802.3)

- CSMA/CD with jamming
- Ethernet Address (48 bits)
  - Example: 08:00:0D:01:74:71
- Ethernet Frame Format
  - Why 46-1500 bytes?

| Pre-<br>amble<br>(7) | S Destinatio<br>F n<br>D Address | Address | L<br>(2 | Data<br>(46-1500) | FCS<br>(4) |
|----------------------|----------------------------------|---------|---------|-------------------|------------|
|----------------------|----------------------------------|---------|---------|-------------------|------------|

# Activity: Pair-Solo

Consider two nodes communicating using the CSMA/CD protocol (as in Ethernet).

- Suppose the bandwidth is 100 Mbps, the frame size is 1500 bytes and propagation speed is 3x10^8 m/sec.
- Calculate the maximum possible distance between the nodes such that the sender can detect any collision.
- Pair Discuss the solution approach with your neighbour.
- Solo Work out the answer by yourself.