
CS 348: Computer Networks

- TCP; 24th Sept – 4th Oct 2012

Instructor: Sridhar Iyer
IIT Bombay

IIT Bombay cs 348 2

Reliable Transport
● We have already designed a reliable communication protocol

for an analogy scenario.

– Recall the functioning of secretaries in the CEO example.
What did they have to do to reliably transfer the document
using weak and unreliable messenger boys?

● From the analogy, we have learnt some ideas about how to
ensure reliable transport.

– Use buffers, timeouts, acknowledgments, retransmission ..

● We need to apply these ideas to an IP network to get details
of the protocol between a source (S) and destination (D).

IIT Bombay cs 348 3

More specifically ...
The actions of the transport layer:

● Before beginning the data transfer:

– What actions does (transport layer at) S need to do?
– What messages does S need to send to D?
– What responses does D need to give to S?
– What actions does D need to do at its end?

● During the data transfer:

– Consider above questions again in this context.
● Upon completion of the data transfer:

– Consider above questions again in this context.

IIT Bombay cs 348 4

TCP: Transmission Control Protocol
[RFC 793, …]

Guaranteed service protocol
● Ensures that a packet has been received by the destination by

using timeouts, acknowledgements and retransmission

Connection-oriented protocol
● Applications need to establish a TCP connection prior to

transfer, to fix initial sequence numbers
● Done using a 3-way handshake

Full duplex protocol
● Both ends can simultaneously read and write

IIT Bombay cs 348 5

More TCP features
Flow and congestion control:
● Source uses feedback (ack) to adjust transmission rate.

Byte stream:
● Ignores message boundaries.
● Source may send two messages of length 20 and 50

bytes, but destination may simply receive 70 bytes.

Multiplexed:
● many applications can share access to a single TCP

layer.

IIT Bombay cs 348 6

TCP functioning

Application data is broken into Segments (what TCP
considers the best sized units to send)

● Segment: unit of data passed from TCP to IP
● MSS: Maximum segment size

TCP sequences data by associating a sequence number
with every byte it sends

Sending TCP maintains a timer for each segment sent
● waiting for acknowledgement (ACK)
● If ACK doesn’t come in time, segment is retransmitted

IIT Bombay cs 348 7

TCP functioning

Receiving TCP
● Sends ACK: ACK number is the sequence number of the

next byte expected
● Re-sequences the data
● Discards duplicates

●Congestion and Flow control
● Sending TCP regulates amount of data to avoid network

congestion
● Receiving TCP prevents fast senders from swamping it

IIT Bombay cs 348 8

TCP connections and sockets
connections are the fundamental abstraction of communication.

● Port: A number on a host assigned to an application to allow multiple
destinations.
● Endpoint: A pair, a destination host and a port number on that host.
● Connection: A pair of end points.
● Socket: An abstract address formed by the IP address and port
number (characterizes an endpoint)

Unique identifier for a connection: [<Source IP address, port
number>, <Destination IP address, port number>]

There are exactly two end-points communicating with each other in
a TCP connection; Broadcast and multicast aren’t applicable to TCP.

IIT Bombay cs 348 9

MSS: Maximum segment size

●Largest size of segment that TCP will send to the other
end

● Each end announces its MSS at connection
establishment time

● default size is 536 bytes (576 – 40)

●Done to avoid fragmentation
● MSS related to outgoing link’s MTU

IIT Bombay cs 348 10

TCP header

IIT Bombay cs 348 11

Port numbers

●16-bit port numbers- 0 to 65535

●0 to 1023 are well-known ports
● assigned to common applications
● telnet uses 23, SMTP 25, HTTP 80 etc.

●1024 to 49151 are registered ports
● 6000 through 6063 for X-win server

●49152 to 65535 are dynamic or private ports.

IIT Bombay cs 348 12

More questions ...
● How does the transport layer at S distinguish between

packets coming down to it from multiple applications
(ex: http and ssh)?
● Their destination (D) may be the same or different.

● How to determine the number bits to allocate for the
sequence number (unique packet id)?
● Suppose you use 3 bits, the 1st packet and 8th packet

will both have [000] as the sequence number.

● How to decide the number of packets that S could
transmit before it waits for the 1st acknowledgment?
● Suppose you transmit one packet, wait for its ack, then

the next packet and so on, what is the drawback?

IIT Bombay cs 348 13

Sequence number size

Sequence number identifies the byte in the stream between sender &
receiver; Sequence number wraps around to 0 after reaching 232 – 1

Should be long enough so that sender does not confuse the
sequence numbers on acks

● sending at < 100 packets/sec (R)
● wait for 200 sec before giving up (T)
● receiver may delay up to 100 sec (A)
● packet can be in network up to 300 sec (MSL: Max Segment

Lifetime)
● Sender may send 900*100 packets before ack

2^seq_size > R (2 MSL + T + A)

IIT Bombay cs 348 14

Initial sequence number
●Sequence numbers: another reason

● host A opens connection to B, source port 123, destination
port 456

● Suppose connection terminates, a new connection opens, A
and B assign the same port numbers

● delayed pkt arrives from old connection
●New connection will have different initial sequence number (ISN)

●Tutorial Question: Confirm that Sequence Number Wrap
Around Time is around 57 minutes for 10 Mbps Ethernet,
while using 32 bits for Sequence Number.

IIT Bombay cs 348 15

SYN J, mss 1024

SYN K, mss 1024

ACK J+1

ACK K+1

ServerClient

Segment 2
passive open

Connection
established

active open
segment 1

Segment 3

TCP connection
establishment

IIT Bombay cs 348 16

TCP 3-way handshake
1: Client sends SYN segment specifying the port number of
Server and its initial sequence number (ISN)

2: Server responds with its own SYN containing its ISN and
also acknowledges the client’s SYN

3: client responds to the SYN from the server by ACKing its
ISN plus one

●Why 3-way handshake?
Problem with 2-way handshake is that SYNs themselves are not
protected with sequence numbers
3-way handshake protects against delayed SYNs

Wait for 1 MSL (30s to 2 min) upon boot before initiating connection

IIT Bombay cs 348 17

ServerClient

FIN M

ACK M+1

FIN N

ACK N+1

Active
close
segment 1

Half
close

Passive close
segment 2

data

Segment 4

Segment 3

TCP connection termination

IIT Bombay cs 348 18

TCP client states

IIT Bombay cs 348 19

TCP server states

IIT Bombay cs 348 20

Recap: TCP functioning
Socket: [<Source IP address, port no>, <Destination IP address, port no >]

Sending TCP maintains a timer for each segment sent
● waiting for acknowledgement (ACK)
● If ACK doesn’t come in time, segment is retransmitted

 Receiving TCP
● Sends ACK
● Re-sequences the data
● Discards duplicates

●Sequence number identifies the byte in the stream between sender &
receiver; Sequence number wraps around to 0 after reaching 232 – 1

IIT Bombay cs 348 21

 TCP flow control
●TCP uses the sliding window protocol for flow control

● Allows sender to transmit multiple segments without waiting
for ACKs

● Sender’s window size is upper limit on un-ACKed segments
● Similarly, receiver has a window for buffering (not

necessarily the same size as the senders’)

●Window size may grow and shrink
● Window size controls how much data (bytes), starting with

the one specified by the Ack number, that the receiver can
accept

● 16-bit field limits window to 65535 bytes

IIT Bombay cs 348 22

Window advancement

2 3 4 5 6 7 8 9 10 11 131 12

Sender’s window

2 3 4 5 6 7 8 9 10 11 131 12

Sender’s window

Ack 5

IIT Bombay cs 348 23

Window based flow control

●Window size minimum of
● receiver’s advertised window - determined by available

buffer space at the receiver
● congestion window - determined by sender, based on

network feedback

2 3 4 5 6 7 8 9 10 11 131 12

Sender’s window

Acks received Not transmitted

IIT Bombay cs 348 24

TCP ACK generation

• in-order segment arrival, everything else already
ACKed: Delayed ACK (500 ms)

• in-order segment arrival, one delayed ACK pending:
Cumulative ACK

• out-of-order segment arrival, higher-than-expect seq
no.: Duplicate ACK

• arrival of segment that partially or completely fills gap:
Cumulative ACK

IIT Bombay cs 348 25

TCP: retransmission scenarios
Host A

Seq=92, 8 bytes data

ACK=100

lossti
m

e
o
u

t

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

Host A

Seq=100, 20 bytes data

ACK=100

S
e
q
=

9
2

 t
im

e
o
u
t

premature timeout,
cumulative ACKs

Host B

Seq=92

ACK=120

Seq=92, 8 bytes data

S
e
q
=

1
0

0
 t

im
e
o
u
t

ACK=120

IIT Bombay cs 348 26

Activity - Retransmission

● What will happen if we choose too small a value for the
value of Retransmission Timeout (RTO)?

● What will happen if we choose too large a value?

● How should we choose an appropriate value of RTO?
● If you feel that the value of RTO should be adaptive (vary

dynamically depending on the “situation”), on what basis
should the initial value be chosen? How should the
adaptation be performed?

● When does it make sense to have a fixed value of RTO?

IIT Bombay cs 348 27

RTT estimation

●Accurate timeout mechanism is important for congestion
control

● Too long: Under-utilization
● Too short: Wasteful retransmission

●Fixed: Choose a timer interval apriori;
● useful if system is well understood and variation in

packet-service time is small

●Adaptive: Choose interval based on past measurements of
RTT

IIT Bombay cs 348 28

Exponential averaging filter

●Measure SampleRTT for segment/ACK pair

●Compute weighted average of RTT

• EstimatedRTT = α PrevEstimatedRTT + (1 – α)
SampleRTT

● RTO = β * EstimatedRTT

●Typically α = 0.9; β = 2

IIT Bombay cs 348 29

Exponential backoff
●Double RTO on each timeout
●Reset RTO when timely ACK is received for non-retx
segment.

Packet
transmitted

Time-out occurs
before ack received,
packet retransmitted

Timeout interval doubled

T1 T2 = 2 * T1

IIT Bombay cs 348 30

TCP Retransmission

●Default:
● Cumulative ACKs, Duplicate ACKs
● go-back-N retransmission ← Recall this?

●Optimization:
● Selective ACK (SACK)

● need to specify ranges of bytes received (requires
large overhead)

● Selective retransmission

IIT Bombay cs 348 31

Window Size

●TCP uses sliding window protocol for efficient transfer
● Default buffer: 4096 to 16384 bytes
● Ideal: window (and Rx buffer) = bandwidth-delay product

●AdvertisedWindow = MaxRcvBuffer - (LastByteRcvd – NextByteRead)
● MaxSendWin = MIN (CongestionWindow, AdvertisedWindow)
● CongestionWindow limits amount of data in transit

●SendingWindow = MaxSendWin - (LastByteSent – LastByteAcked)

●What happens if the AdvertisedWindow is small (few bytes)?

IIT Bombay cs 348 32

Silly-Window syndrome
●Sender's window <= AdvertisedWindow of Receiver
●Slow application receiver

● TCP advertises small windows.
● Sender sends small segments.

●Solution:
● Receiver advertises window only if size is MSS or half the

buffer.
● Sender typically sends data only if a full segment can be sent.

What happens if AdvertisedWindow = 0?

IIT Bombay cs 348 33

Activity - Congestion control
●On detecting a packet loss, TCP sender assumes that network
congestion has occurred and reduces the CongestionWindow,
which in turn reduces amount of data that can be sent per RTT.

●How should we choose value of CongestionWindow?
● Given that it should be adaptive, what should be its initial

value?
● How should the adaptation (increase/decrease) be

performed?

IIT Bombay cs 348 34

AIMD: Additive increase
Multiplicative decrease

●Source infers congestion upon RTO.

●Increase CongestionWindow (linearly, by 1 per RTT)
when congestion goes down.

●Decrease CongestionWindow (multiplicatively, by factor
of 2) when congestion goes up.
●

●Provides fair sharing of links

IIT Bombay cs 348 35

Slow start and Congestion avoidance

●AIMD may be too conservative

●CongestionWindow: cwnd

●Slow Start
● Increase cwnd exponentially upto a threshold

(ssthresh)

●Congestion Avoidance
● Increase cwnd linearly after ssthresh

IIT Bombay cs 348 36

Slow start phase

• initialize:
• Cwnd = 1

• for (each ACK)
• Cwnd++

• until
• loss detection OR
•Cwnd > ssthresh

Host A

one segment

R
T
T

Host B

time

two segments

four segments

IIT Bombay cs 348 37

Congestion avoidance phase
/* Cwnd > threshold */
• Until (loss detection) {
 every w ACKs:
 Cwnd++
 }
• ssthresh = Cwnd/2
• Cwnd = 1
• perform slow start

1

Host A Host B

time
R
T
T

four segments

five segments

IIT Bombay cs 348 38

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8

Time (round trips)

C
on

ge
st

io
n

W
in

do
w

 s
iz

e
(s

eg
m

en
ts

)

Slow start

Congestion
avoidance

Slow start
threshold

Typical TCP behaviour

IIT Bombay cs 348 39

Congestion control: Timeout

0

5

10

15

20

25

0 3 6 9 12 15 20 22 25

Time (round trips)

C
o

n
g

es
ti

o
n

 w
in

d
o

w
 (

se
g

m
en

ts
)

ssthresh = 8 ssthresh = 10

cwnd = 20

After timeout

IIT Bombay cs 348 40

Fast retransmit and Fast recovery
●Slow start follows timeout

● timeout occurs when no more packets are getting across.
●IF one packet got dropped but others got through?

●Fast retransmit follows duplicate ACKs
● multiple (>= 3) dupacks come back when a packet is

lost, but latter packets get through.
●Fast recovery follows fast retransmit
●ssthresh = min(cwnd, advertised window)/2
●New cwnd = ssthresh

IIT Bombay cs 348 41

0

2

4

6

8

10

0 2 4 6 8 10 12 14

Time (round trips)

W
in

do
w

 si
ze

 (s
eg

m
en

ts
)

advertised window

After fast recovery

Congestion control:
Fast retransmit and Fast recovery

IIT Bombay cs 348 42

TCP Tahoe

●Detects congestion using timeouts
●Initialization

● cwnd initialized to 1;
● ssthresh initialized to 1/2 MaxWin

●Upon timeout
● ssthresh = 1/2 cwnd, cwnd = 1
● enter slow start

IIT Bombay cs 348 43

TCP Reno

●Detects congestion loss using timeouts as well as
duplicate ACKs
●On timeout, TCP Reno behaves same as TCP Tahoe
●On fast retransmit

● skips slow start and goes directly into congestion
avoidance phase

● ssthresh = 1/2 cwnd; cwnd = ssthresh

IIT Bombay cs 348 44

Self study: UDP (User Datagram Protocol)

●Datagram oriented Internet transport
●“best effort” service; doesn't guarantee any reliability.
UDP segments may be:

● lost
● delivered out of order to application

●connectionless:
● no handshaking between UDP sender, receiver
● each UDP segment handled independently of others

● What applications is UDP transport layer suitable for?
●

IIT Bombay cs 348 45

Closure
● TCP animations

● http://oscar.iitb.ac.in/onsiteDocumentsDirectory/tcp/tcp/index.html

● http://www.net-seal.net/animations.php

● Tutorial Questions:
● What are the pros and cons of TCP versus UDP?
● Plot graph of TCP Reno sender when every 7th packet is

delivered out-of-sequence.
● Topics NOT covered

● TCP Optimizations: SACK, ECN, ...
● Throughput analysis, QoS guarantees, ...

	Slide 1
	Slide 2
	Slide 3
	TCP: Transmission Control Protocol [RFC 793, …]
	Slide 5
	TCP functioning
	Slide 7
	TCP connections
	MSS: Maximum segment size
	Slide 10
	Port numbers
	Slide 12
	Sequence number size
	Initial sequence number
	TCP connection establishment
	TCP 3-way handshake
	TCP connection termination
	TCP client states
	TCP server states
	Slide 20
	TCP flow control
	Window advancement
	Slide 23
	TCP ACK generation [RFC 1122, 2581]
	Slide 25
	Slide 26
	Slide 27
	Exponential averaging filter
	Exponential backoff
	Slide 30
	Bulk data
	Silly-Window syndrome
	Slide 33
	Slide 34
	Slide 35
	Slow start phase
	Congestion avoidance phase
	Slide 38
	Slide 39
	Fast retransmit
	Congestion control: Fast retransmit and Fast recovery
	TCP Tahoe
	TCP Reno
	UDP: User Datagram Protocol [RFC 768]
	Slide 45

