
CS 348: Computer Networks

- Sockets; 8th – 11th Oct 2012

Instructor: Sridhar Iyer
IIT Bombay

IIT Bombay cs 348 2

TCP/IP layers
● Physical Layer:

● deals with interfaces to the physical transmission medium
● Data Link Layer:

● deals with framing, error detection/correction and multiple
access

● Network Layer:
● deals with addressing, routing and congestion control

● Transport Layer:
● deals with retransmissions, sequencing and congestion

control
● Application Layer:

● providing services to application developers

IIT Bombay cs 348 3

Layering: physical communication

application
transport
network

link
physical

application
transport
network

link
physical

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

data

data

IIT Bombay cs 348 4

Layering: logical communication

application
transport
network

link
physical

application
transport
network

link
physical

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

data

data

data

transport

transport

ack

IIT Bombay cs 348 5

Application layer
● Application:

● communicating, distributed processes
● running in network hosts in “user space”
● exchange messages to implement

application
● e.g., email, file transfer, the Web

IIT Bombay cs 348 6

Application layer protocols

● one “piece” of an application
● define messages exchanged by application

components and actions taken
● uses services provided by lower layer

protocols

IIT Bombay cs 348 7

Client-Server paradigm

Typical network app
has two pieces:

client and server

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physicalRequest

Reply

IIT Bombay cs 348 8

Actions

● Client
● initiates contact with server (“speaks first”)
● typically requests service from server
● e.g.: sends request for Web page

● Server
● provides requested service to client
● e.g., sends requested Web page

IIT Bombay cs 348 9

Example: Web access
(HTTP)

<html>
Some networking companies:

Cisco

Motorola
</html>

net.html www.it.iitb.ac.in

Client R
e

q
ue

st
 fo

r
r e

so
u

rc
e

ht
tp

://
w

w
w

.it
.i i

tb
.a

c.
i n

/n
et

.h
tm

l

Response:
net.html

Some networking companies:
Cisco Motorola

HTML rendering
of net.html

www.cisco.com

IIT Bombay cs 348 10

Transport service requirements
● Data loss

● some apps (e.g., audio) can tolerate some loss;
others (e.g., ftp) require 100% reliability

● Timing
● some apps (e.g., interactive games) require low

delay to be “effective”
● Bandwidth

● some apps (e.g., multimedia) require minimum
amount of bandwidth to be “effective”

IIT Bombay cs 348 11

Transport service requirements

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

financial apps

Data loss

no loss
no loss
loss-tolerant
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb
same as above
few Kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

IIT Bombay cs 348 12

Some application protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

remote file server

Internet telephony

Application
layer protocol

smtp [RFC 821]
telnet [RFC 854]
http [RFC 2068]
ftp [RFC 959]
RTP [RFC 3550]

NFS

VoIP [RFC 3261]

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

typically UDP

IIT Bombay cs 348 13

Traditional distributed applications

● Application logic
● Transport interface code:

● Makes the appropriate network calls to send and
receive the messages

● Usually divided into transport-independent and
transport-dependent parts

● Middleware provides transparency of the
transport interface code

IIT Bombay cs 348 14

Middleware

● Software between application programs and
OS/network

● Provides a set of higher-level distributed
computing capabilities and a set of standards-
based interfaces

IIT Bombay cs 348 15

Middleware

● Interfaces allow applications to be distributed
and to take advantage of other services
provided over the network

● Middleware is a set of services that are
accessible to application programmers through
an API

● Example: Sockets, RPC, CORBA

IIT Bombay cs 348 16

Application Program

Middleware
Service 1

API

Middleware
Service 3

API

Middleware
Service 2

API

Middleware & API

IIT Bombay cs 348 17

Sockets API

● Interface between application and transport
layer
● two processes communicate by
● sending data into a socket
● reading data out of a socket

● Client “identifies” Server process using <IP
address ; port number>

IIT Bombay cs 348 18

Sockets interface

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

IIT Bombay cs 348 19

Socket

● host-local, application-owned, OS-
controlled, communication interface

● two processes communicate by sending
data into socket, reading data out of
socket

● door between application process and
transport protocol

IIT Bombay cs 348 20

Socket types

● Socket identification:
● “IP address” of client and server hosts
● “port number” of client and server

applications
● Socket types:

● reliable, byte stream-oriented (TCP)
● Unreliable, connection-less datagram (UDP)

IIT Bombay cs 348 21

Client actions

● Create a socket (socket)
● Map server name to IP address

(gethostbyname)
● Connect to a given port on the server address

(connect)

● Client must contact server first!

IIT Bombay cs 348 22

Server actions

● Create a socket (socket)
● Bind to one or more port numbers (bind)
● Listen on the socket (listen)
● Accept client connections (accept)
● Server process must be running!

IIT Bombay cs 348 23

Sockets API: History

● introduced in BSD4.1 UNIX, 1981
● extended the conventional UNIX I/O facilities

to use file descriptors for network
communication

● extended the read and write system calls so
they work with the new network descriptors.

IIT Bombay cs 348 24

Sockets data structure

Internal data struct for file 0

...

0

1

2

Family: PF_INET

...

Service: SOCK_STREAM

Local IP:

Remote IP:

Local Port:

Remote Port:

IIT Bombay cs 348 25

Socket functions

● When a socket is created it does not contain
information about how it will be used
● A passive socket is used by a server to wait for an

incoming connection
● An active socket is used by a client to initiate a

connection

IIT Bombay cs 348 26

Sockets example

● client reads line from standard input (inFromUser
stream) , sends to server via socket (outToServer
stream)

● server reads line from socket
● server converts line to uppercase, sends back to

client
● client reads from socket (inFromServer stream)
● Client prints line to standard output (outToUser

stream)

IIT Bombay cs 348 27

Socket function calls

● socket: create a descriptor for use in network
communication
● socket (family, type, protocol)
● returns integer descriptor for socket or –1

● close: terminate communication and de-allocate
a socket descriptor
● close (s)
● returns 0 or -1

IIT Bombay cs 348 28

Socket function calls

● connect: connect to a remote peer
● connect (s, address, len)
● used to specify the remote end point address
● used by client primarily
● used with TCP and UDP
● returns 0 or –1

IIT Bombay cs 348 29

Socket function calls

● gethostbyname (name)
● translates host name to an IP address
● returns pointer to a “hostent” structure, or 0 (error)

● getprotobyname (name)
● translates protocol’s name to its official integer value
● returns pointer to a “protoent” structure, or 0 (error)

● getservbyname (name, protocol)
● used to map a service name to a protocol port

number
● returns pointer to a “servent” structure, or 0 (error)

IIT Bombay cs 348 30

Socket function calls

● bind: bind a local IP address and protocol
number to a socket
● bind (s, address, len)
● used by servers primarily
● returns 0 (success), or -1 (error)

IIT Bombay cs 348 31

Socket function calls

● listen: place the socket in passive mode

● listen (s, Qlen)

● puts the socket in a receiving mode to accept
incoming requests

● sets a limit on the queue size for incoming TCP
connection requests

● returns 0 or –1

IIT Bombay cs 348 32

Socket function calls

● accept: accept the next incoming connection
● accept (s, address, len)
● used only by servers
● returns socket descriptor of the new socket
● used only with TCP

IIT Bombay cs 348 33

Socket function calls

● write: send outgoing data across a connection

 write (s, buffer, len)

 send (s, msg, len, flags)

– returns the number of bytes sent, or -1

 sendto (s, msg, len, flags, to, tolen)

– send a message using the destination structure “to”

IIT Bombay cs 348 34

Socket function calls

● read: acquire incoming data
 read (s, buffer, len)
 recv (s, buffer, len, flags)

» returns the number of bytes, or –1 (error)

 recvfrom (s, buffer, len, flags, from, fromlen)
» gets the next message that arrives at a socket and records the

sender’s address

IIT Bombay cs 348 35

Socket function calls

● select (numfds, refds, wrfds, exfds, time)
● provides asynchronous I/O by permitting a single

process to wait for the first of a set of file descriptors
to become ready

● caller can also specify a maximum timeout for the
wait

● returns the number of ready file descriptors, 0 if time
limit reached, or -1

IIT Bombay cs 348 36

Socket parameter
description

•buffer: character array

•flags: integer, control bits
•numfds: number of file
descriptors
•refds: address of fds for
input
•wrfds: address of fds for
output
•exfds: address of fds for
exceptions

•s, from to: socket
descriptor

•address: pointer to the
struct sockaddr

•len, fromlen, tolen: size of
sockaddr

•name: character string

•protocol: char string

•Qlen: integer

IIT Bombay cs 348 37

Socket programming with
TCP

● Client:
● must contact server first
● creates client-local TCP socket
● specifying IP address, port number of server

process
● client TCP establishes connection to server

TCP

IIT Bombay cs 348 38

Socket programming with
TCP

● Server:
● server process must first be running
● server must have created socket to accept

client’s contact
● When contacted by client, server TCP creates

new socket for server process to
communicate with client
– allows server to talk with multiple clients

IIT Bombay cs 348 39

TCP socket interaction

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket, port=x,
for incoming request:

welcomeSocket = ServerSocket()

create socket,
connect to hostid, port=x
clientSocket = Socket()

close
connectionSocket

read reply from
connectionSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
setup

IIT Bombay cs 348 40

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server

Create
output stream

attached to socket

IIT Bombay cs 348 41

Java client (TCP), contd.

 BufferedReader inFromServer =
 new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));

 sentence = inFromUser.readLine();

 outToServer.writeBytes(sentence + '\n');

 modifiedSentence = inFromServer.readLine();

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close();

 }
}

Create
input stream

attached to
socket

Send line
to server

Read line
from server

IIT Bombay cs 348 42

Example: Java server (TCP)
import java.io.*;
import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception
 {
 String clientSentence;
 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {
 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =
 new BufferedReader(new
 InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

IIT Bombay cs 348 43

Java server (TCP), contd.

 DataOutputStream outToClient =
 new DataOutputStream(connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes(capitalizedSentence);
 }
 }
}

Read in line
from socket

Create output
stream,

attached
to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

IIT Bombay cs 348 44

Socket programming with
UDP

● UDP: no “connection” between client and server
● no handshaking
● sender explicitly attaches IP address and port of

destination
● server must extract IP address, port of sender from

received datagram

● UDP: transmitted data may be received out of
order, or lost

IIT Bombay cs 348 45

UDP socket interaction

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create, address (hostid, port=x,
send datagram request
using clientSocket

create socket,port=x,
For incoming request:
serverSocket =
DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port umber

IIT Bombay cs 348 46

TCP sockets

● Reliable, connection-oriented sockets are useful
when
● Remote procedures are not idempotent
● Reliability is a must
● Messages exceed UDP packet size
● Server is stateful

IIT Bombay cs 348 47

UDP sockets

● Unreliable, connectionless sockets are useful
when
● Remote procedures are idempotent
● Reliability is not very important
● Server and client messsages fit completely within a

packet
● Server is stateless

IIT Bombay cs 348 48

Client architecture
● Simpler than servers

● Typically do not interact with multiple servers
concurrently

● Typically do not require special ports
● Most client software executes as a conventional

program
● Clients, unlike servers, do not require special

privileged ports
● Most clients rely on OS for security

IIT Bombay cs 348 49

Server architecture

● Can be quite complex
● Depends on requirements for

● Type of connection
● Server state
● Servicing of requests

IIT Bombay cs 348 50

Type of connection

● Connection-Oriented:
● reliable but needs OS resources

● Connection-less:
● needs less resources but application has to

handle loss of messages

IIT Bombay cs 348 51

Server state

● Stateless:
● each transaction is independent, crash transparent

● Stateful:
● server maintains state, faster but expensive for

server

IIT Bombay cs 348 52

Servicing of requests

● Iterative:
● accept requests one at a time

● Concurrent:
● fork a new process for each client
● can service multiple clients
● needs more resources

IIT Bombay cs 348 53

Super server process: inetd

● Common services have dedicated port
numbers

● inetd binds to all ports required
● Selects and accepts incoming client calls
● Forks program that provides port-specific

service and continues

IIT Bombay cs 348 54

inetd (Internet daemon)

ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l -a
telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

Lines from /etc/inetd.conf

Client Server Port
Mail smtpd 25
Telnet telnetd 23
FTP ftpd 20, 21
Browser httpd 80
SNMP snmpd 161
NFS nfsd 2049

Lines from /etc/services.conf

IIT Bombay cs 348 55

socket()

bind()

listen()

accept()

read()

write()

process request

get a blocked client

Server Process

TCP UDP

socket()

connect()

write()

read()

Client Process

socket()

bind()

sendto()

recvfrom()

Client Process

1

2

3

socket()

bind()

recvfrom()

sendto()

Server Process

get a blocked client

process request

Sockets Summary

	Slide 1
	TCP/IP layers
	Layering: physical communication
	Layering: logical communication
	Slide 5
	Application layer protocols
	Client-Server paradigm
	Actions
	Example: Web access (HTTP)
	Transport service requirements
	Slide 11
	Some application protocols
	Traditional distributed applications
	Middleware
	Middleware
	Middleware & API
	Sockets API
	Sockets interface
	Socket
	Socket types
	Client actions
	Server actions
	Sockets API: History
	Sockets data structure
	Socket functions
	Slide 26
	Socket function calls
	Socket function calls
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Socket parameter description
	Socket programming with TCP
	Slide 38
	TCP socket interaction
	Example: Java client (TCP)
	Java client (TCP), contd.
	Example: Java server (TCP)
	Java server (TCP), contd.
	Socket programming with UDP
	UDP socket interaction
	TCP sockets
	UDP sockets
	Client architecture
	Server architecture
	Type of connection
	Server state
	Servicing of requests
	Super server process: inetd
	inetd (Internet daemon)
	Sockets Summary

