
CS 348: Computer Networks

- Sockets; 8th – 11th Oct 2012

Instructor: Sridhar Iyer
IIT Bombay



IIT Bombay cs 348 2

TCP/IP layers
● Physical Layer: 

● deals with interfaces to the physical transmission medium
● Data Link Layer: 

● deals with framing, error detection/correction and multiple 
access

● Network Layer: 
● deals with addressing, routing and congestion control

● Transport Layer: 
● deals with retransmissions, sequencing and congestion 

control
● Application Layer: 

● providing services to application developers
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Layering: physical communication 
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Layering: logical communication 
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Application layer
● Application: 

● communicating, distributed processes
● running in network hosts in “user space”
● exchange messages to implement 

application
● e.g., email, file transfer, the Web
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Application layer protocols

● one “piece” of an application
● define messages exchanged by application 

components and actions taken
● uses services provided by lower layer 

protocols
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Client-Server paradigm

Typical network app 
has two pieces: 

client and server
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Actions

● Client
● initiates contact with server (“speaks first”)
● typically requests service from server 
● e.g.: sends request for Web page

● Server
● provides requested service to client
● e.g., sends requested Web page
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Example: Web access 
(HTTP)

<html>
Some networking companies:
<a href=“http://www.cisco.com”>
Cisco</a>
<a href=“http://www.motorola.com”>
Motorola</a>
</html>

net.html www.it.iitb.ac.in
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net.html

Some networking companies:
Cisco   Motorola

HTML rendering
of net.html

www.cisco.com
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Transport service requirements
● Data loss

● some apps (e.g., audio) can tolerate some loss; 
others (e.g., ftp) require 100% reliability

● Timing
● some apps (e.g., interactive games) require low 

delay to be “effective”
● Bandwidth

● some apps (e.g., multimedia) require minimum 
amount of bandwidth to be “effective”
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Transport service requirements

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

financial apps

Data loss

no loss
no loss
loss-tolerant
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb
same as above 
few Kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no
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Some application protocols

Application

e-mail
remote terminal access

Web 
file transfer

streaming multimedia

remote file server

Internet telephony

Application
layer protocol

smtp [RFC 821]
telnet [RFC 854]
http [RFC 2068]
ftp [RFC 959]
RTP [RFC 3550]

NFS

VoIP [RFC 3261]

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

typically UDP
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Traditional distributed applications

● Application logic
● Transport interface code:

● Makes the appropriate network calls to send and 
receive the messages 

● Usually divided into transport-independent and 
transport-dependent parts

● Middleware  provides transparency of the 
transport interface code



IIT Bombay cs 348 14

Middleware 

● Software between application programs and 
OS/network

● Provides a set of higher-level distributed 
computing capabilities and a set of standards-
based interfaces
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Middleware

● Interfaces allow applications to be distributed 
and to take advantage of other services 
provided over the network

● Middleware is a set of services that are 
accessible to application programmers through 
an API

● Example: Sockets, RPC, CORBA
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Application Program

Middleware
Service 1

API

Middleware
Service 3

API

Middleware
Service 2

API

Middleware & API
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Sockets API

● Interface between application and transport 
layer
● two processes communicate by
● sending data into a socket
● reading data out of a socket

● Client “identifies” Server process using <IP 
address ; port number>
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Sockets interface

process

TCP with
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Socket

● host-local, application-owned, OS-
controlled, communication interface

● two processes communicate by sending 
data into socket, reading data out of 
socket

● door between application process and 
transport protocol 
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Socket types

● Socket identification:
● “IP address” of client and server hosts 
● “port number”  of client and server 

applications 
● Socket types:

● reliable, byte stream-oriented (TCP)
● Unreliable, connection-less datagram (UDP)
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Client actions

● Create a socket (socket)
● Map server name to IP address 

(gethostbyname)
● Connect to a given port on the server address 

(connect)

● Client must contact server first!
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Server actions

● Create a socket (socket)
● Bind to one or more port numbers (bind)
● Listen on the socket (listen)
● Accept client connections (accept)
● Server process must be running!
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Sockets API: History

● introduced in BSD4.1 UNIX, 1981
● extended the conventional UNIX I/O facilities 

to use file descriptors for network 
communication

● extended the read and write system calls so 
they work with the new network descriptors.
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Sockets data structure

Internal data struct for file 0

...

0

1

2

Family: PF_INET

...

Service: SOCK_STREAM

Local IP:

Remote IP:

Local Port:

Remote Port:
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Socket functions

● When a socket is created it does not contain 
information about how it will be used
● A passive socket is used by a server to wait for an 

incoming connection
● An active socket is used by a client to initiate a 

connection
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Sockets example

● client reads line from standard input (inFromUser 
stream) , sends to server via socket (outToServer 
stream)

● server reads line from socket
● server converts line to uppercase, sends back to 

client
● client reads from socket (inFromServer stream)
● Client prints line to standard output (outToUser 

stream)
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Socket function calls

● socket: create a descriptor for use in network 
communication
● socket (family, type, protocol)
● returns integer descriptor for socket or –1

● close: terminate communication and de-allocate 
a socket descriptor
● close (s)
● returns 0 or -1
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Socket function calls 

● connect: connect to a remote peer
● connect (s, address, len)
● used to specify the remote end point address
● used by client primarily
● used with TCP and UDP
● returns 0 or –1
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Socket function calls

● gethostbyname (name)
● translates host name to an IP address
● returns pointer to a “hostent” structure, or 0 (error)

● getprotobyname (name)
● translates protocol’s name to its official integer value
● returns pointer to a “protoent” structure, or 0 (error)

● getservbyname (name, protocol)
● used to map a service name to a protocol port 

number
● returns pointer to a “servent” structure, or 0 (error)
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Socket function calls

● bind: bind a local IP address and protocol 
number to a socket
● bind (s, address, len)
● used by servers primarily 
● returns 0 (success), or -1 (error)
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Socket function calls

● listen: place the socket in passive mode

● listen (s, Qlen)

● puts the socket in a receiving mode to accept 
incoming requests

● sets a limit on the queue size for incoming TCP 
connection requests

● returns 0 or –1
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Socket function calls

● accept: accept the next incoming connection
● accept (s, address, len)
● used only by servers
● returns socket descriptor of the new socket
● used only with TCP
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Socket function calls

● write: send outgoing data across a connection

 write (s, buffer, len)

 send (s, msg, len, flags)

– returns the number of bytes sent, or -1

 sendto (s, msg, len, flags, to, tolen)

– send a message using the destination structure “to”
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Socket function calls

● read:  acquire incoming data
 read (s, buffer, len)
 recv (s, buffer, len, flags)

» returns the number of bytes, or –1 (error)

 recvfrom (s, buffer, len, flags, from, fromlen)
» gets the next message that arrives at a socket and records the 

sender’s address
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Socket function calls

● select (numfds, refds, wrfds, exfds, time)
● provides asynchronous I/O by permitting a single 

process to wait for the first of a set of file descriptors 
to become ready

● caller can also specify a maximum timeout for the 
wait

● returns the number of ready file descriptors, 0 if time 
limit reached, or -1
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Socket parameter 
description

•buffer: character array

•flags: integer, control bits
•numfds: number of file 
descriptors
•refds: address of fds for 
input
•wrfds: address of fds for 
output
•exfds: address of fds for 
exceptions

•s, from to: socket 
descriptor

•address: pointer to the 
struct sockaddr

•len, fromlen, tolen: size of 
sockaddr

•name: character string

•protocol: char string

•Qlen: integer
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Socket programming with 
TCP

● Client:
● must contact server first
● creates client-local TCP socket
● specifying IP address, port number of server 

process
● client TCP establishes connection to server 

TCP
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Socket programming with 
TCP

● Server:
● server process must first be running
● server must have created socket to accept 

client’s contact
● When contacted by client, server TCP creates 

new socket for server process to 
communicate with client
– allows server to talk with multiple clients
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TCP socket interaction

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket, port=x, 
for incoming request:

welcomeSocket = ServerSocket()

create socket,
connect to hostid, port=x
clientSocket = Socket()

close
connectionSocket

read reply from
connectionSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP 
setup
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Example: Java client (TCP)

import java.io.*; 
import java.net.*; 
class TCPClient { 

    public static void main(String argv[]) throws Exception 
    { 
        String sentence; 
        String modifiedSentence; 

        BufferedReader inFromUser = 
          new BufferedReader(new InputStreamReader(System.in)); 

        Socket clientSocket = new Socket("hostname", 6789); 

        DataOutputStream outToServer = 
          new DataOutputStream(clientSocket.getOutputStream()); 

        

Create
input stream

Create 
client socket, 

connect to server

Create
output stream

attached to socket
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Java client (TCP), contd.

        BufferedReader inFromServer = 
          new BufferedReader(new
          InputStreamReader(clientSocket.getInputStream())); 

        sentence = inFromUser.readLine(); 

        outToServer.writeBytes(sentence + '\n'); 

        modifiedSentence = inFromServer.readLine(); 

        System.out.println("FROM SERVER: " + modifiedSentence); 

        clientSocket.close(); 
                   
    } 
} 

Create
input stream

attached to 
socket

Send line
to server

Read line
from server
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Example: Java server (TCP)
import java.io.*; 
import java.net.*; 

class TCPServer { 

  public static void main(String argv[]) throws Exception 
    { 
      String clientSentence; 
      String capitalizedSentence; 

      ServerSocket welcomeSocket = new ServerSocket(6789); 
  
      while(true) { 
            Socket connectionSocket = welcomeSocket.accept(); 

           BufferedReader inFromClient = 
            new BufferedReader(new
            InputStreamReader(connectionSocket.getInputStream())); 

           

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached 

to socket
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Java server (TCP), contd.

           DataOutputStream  outToClient = 
             new DataOutputStream(connectionSocket.getOutputStream()); 

           clientSentence = inFromClient.readLine(); 

           capitalizedSentence = clientSentence.toUpperCase() + '\n'; 

           outToClient.writeBytes(capitalizedSentence); 
        } 
    } 
} 

 

Read in  line
from socket

Create output
stream, 

attached 
to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection
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Socket programming with 
UDP

● UDP: no “connection” between client and server
● no handshaking
● sender explicitly attaches IP address and port of 

destination
● server must extract IP address, port of sender from 

received datagram

● UDP: transmitted data may be received out of 
order, or lost
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UDP socket interaction

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket = 
DatagramSocket()

Client

Create, address (hostid, port=x,
send datagram request 
using clientSocket

create socket,port=x, 
For incoming request:
serverSocket = 
DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port umber
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TCP sockets

● Reliable, connection-oriented sockets are useful 
when
● Remote procedures are not idempotent
● Reliability is a must
● Messages exceed UDP packet size
● Server is stateful



IIT Bombay cs 348 47

UDP sockets

● Unreliable, connectionless sockets are useful 
when
● Remote procedures are idempotent
● Reliability is not very important
● Server and client messsages fit completely within a 

packet
● Server is stateless
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Client architecture
● Simpler than servers

● Typically do not interact with multiple servers 
concurrently

● Typically do not require special ports
● Most client software executes as a conventional 

program
● Clients, unlike servers, do not require special 

privileged ports
● Most clients rely on OS for security
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Server architecture

● Can be quite complex
● Depends on requirements for

● Type of connection
● Server state
● Servicing of requests
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Type of connection

● Connection-Oriented: 
● reliable but needs OS resources

● Connection-less:
● needs less resources but application has to 

handle loss of messages
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Server state

● Stateless:
● each transaction is independent, crash transparent

● Stateful:
● server maintains state, faster but expensive for 

server
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Servicing of requests

● Iterative:
● accept requests one at a time

● Concurrent:
● fork a new process for each client
● can service multiple clients
● needs more resources 
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Super server process: inetd

● Common services have dedicated port 
numbers

● inetd binds to all ports required
● Selects and accepts incoming client calls
● Forks program that provides port-specific 

service and continues
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inetd (Internet daemon)

ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l -a
telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

Lines from /etc/inetd.conf

Client Server Port
Mail smtpd 25
Telnet telnetd 23
FTP ftpd 20, 21
Browser httpd 80
SNMP snmpd 161
NFS nfsd 2049

Lines from /etc/services.conf
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socket()

bind()

listen()

accept()

read()

write()

process request

get a blocked client

Server Process

TCP UDP

socket()

connect()

write()

read()

Client Process

socket()

bind()

sendto()

recvfrom()

Client Process

1

2

3

socket()

bind()

recvfrom()

sendto()

Server Process

get a blocked client

process request

Sockets Summary
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