CS 348: Computer Networks

- DNS; 22nd Oct 2012

Instructor: Sridhar Iyer IIT Bombay

Domain Name System

- Map between host names and IP addresses
 - People: many identifiers: name, Passport #, ...
 - Internet hosts:
 - IP address (32 bit) used for addressing datagrams
 - "name", e.g., www.iitb.ac.in used by humans

DNS

- Provides logical hierarchical view of the Internet
 - globally *distributed database* implemented in hierarchy of many *name servers*
 - *application-layer protocol* to communicate to *resolve* names (address/name translation)
 - client/server interaction

DNS clients and servers

- clients: query servers to resolve names; nslookup
- servers: name server daemons, reply to queries; BIND, named
- gethostbyname: resolver library call that can be invoked from application program

Lazily validated cache for performance

DNS design

Centralized DNS?

- single point of failure
- traffic volume
- distant centralized database
- maintenance
- doesn't scale!
- So...Distributed DNS

Name hierarchy

- Unique domain suffix is assigned by Internet
 Authority
- No limit on number of subdomains or number of levels
- Domains within an organization do not have to be uniform in number of subdomains or levels
 - www.iitb.ac.in
 - www.it.iitb.ac.in

Top-level domains

Domain Name/	Assignment
com	Commercial
edu	Educational
gov	Government
mil	Military
net	Network
org	Other organizations
arpa	Advanced Research Project Agency
country code	au, uk, ca

DNS hierarchy

- Servers are organized in a hierarchy
- Each server has an authority over a part of the naming hierarchy
- The server does not need to keep all names
- It needs to know other servers who are responsible for other subdomains

DNS: Local name servers

Local Name Servers:

- each organization/ISP has *local (default) name server*
- host DNS query first goes to local name server
- Authoritative Name Server:
 - for a host: stores that host's IP address, name
 - can perform name/address translation for that host's name

Name server hierarchy

- A single server can serve multiple domains
- Root server knows about servers for top-level domains
- Each server knows the root server

DNS: Root name servers

- Contacted by local name server that cannot resolve name
- Root Name Server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

Several root name servers worldwide

DNS hierarchy: Example

DNS: Example

host xyz.iitb.ac.in wants IP address of www.ibm.com

- 1. Contacts its local DNS server, dns.iitb.ernet.in
- 2. dns.iitb.ernet.in contacts root name server, if necessary
- 3. root name server contacts authoritative name server, dns.ibm.com, if necessary

DNS: Name resolution

- Recursive queries:
 - puts burden of name resolution on contacted name server
 - not scalable under heavy load
- Iterated queries:
 - contacted server replies with name of server to contact. Ex: root name server may know *intermediate name server* to contact to find authoritative name server

Recursive queries

DNS optimization

- Spatial Locality: Local computers referenced more often than remote
- Temporal Locality: Same set of domains referenced repeatedly \Rightarrow Caching
- Each entry has a time to live (TTL)
- Replication:
 - Multiple servers. Multiple roots.
 - Ask the geographically closest server.

DNS: caching and updating

- A name server *caches* the mappings learnt
 - cache entries have a time-to-live period after which they become invalid
 - update/notify mechanisms: RFC 2136

DNS record

- Resource Record (RR) format: (name, value, type, ttl)
- Type=A: name is hostname; value is IP address
- Type=NS: name is domain (e.g. ibm.com); value is IP address of authoritative name server for this domain
- Type=CNAME: name is an alias name for some "cannonical" (the real) name; value is cannonical name
- Type=MX: value is hostname of mailserver associated with name

DNS protocol

- client-server interaction
 - query and reply messages, both with same message format
- Message header
 - identification: 16 bit # for query, reply uses same #
 - flags: query or reply; recursion desired; recursion available; reply is authoritative

DNS message format

12 bytes