CS 348: Computer Networks

- Medium Access; 9th Aug 2012

Instructor: Sridhar Iyer
IIT Bombay
Activity: Think-Pair-Share

Consider a room full of people (such as this class)

1. What are three different ways/modes in which communication can happen in this room?
 - Hint: Think about the different types of conversations.

2. For each of the above communication modes:
 1. Do we need any protocol between the entities?
 • If yes, why? If no, why not?

 2. If yes, suggest a protocol that could be used.
Key points to consider for MAC

• Types/Modes of communication:
 – Although the medium is shared, who is talking to whom?
 • 1-to-1: Conversation between two students in a corner.
 • One-to-Many: Instructor lecturing.
 • Many-to-One: Students responding to instructor's question.
 • Many-to-Many: Your group discussion!

• Protocols for each modes of communication:
 • 1-to-1: Separate space; Separate channel (language/frequency).
 • 1-to-Many: Broadcast; Often associated with notion of Priority.
 • Many-to-One: Polling; Round-robin; Some notion of taking turns.
 • Many-to-Many: Speak at will; Listen before talk; Handle collisions!
Multiple-access

• A link may sometimes be shared among multiple senders and receivers.
 • Is this desirable? What are the pros and cons?
 – Tradeoffs: cost, utilization, security, …
 • Do we have a choice?
 – Wireless is inherently a shared medium!

• Broad idea:
 – Sharing a given resource among multiple users.
 – Terms: Multiprocessing; Multitasking; Multiplexing.
Effective resource sharing

Need to share (*multiplex*) network resources (nodes and links) among multiple users.

Logical view: Wired LAN

Logical view: Wireless LAN
Common Multiplexing Strategies

- **Space-Division Multiplexing (SDM):**
 - Different user groups are separated physically.

- **Time-Division Multiplexing (TDM):**
 - Each user periodically gets the entire bandwidth for a small burst of time.

- **Frequency-Division Multiplexing (FDM):**
 - Frequency spectrum divided into logical channels; Each user has exclusive access to his channel.

- **Code-Division Multiplexing (CDM):**
 - Each user has access to the entire spectrum but uses a different code sequence.

- Variants and combinations of above are used in practical networks.
Frequency multiplex

Separation of the whole spectrum into smaller frequency bands
A channel gets a certain band of the spectrum for the whole time

Advantages:
- no dynamic coordination necessary
- works also for analog signals

Disadvantages:
- waste of bandwidth if the traffic is distributed unevenly
- inflexible
- guard spaces

Source: Schiller - Mobile Communications
Time multiplex

A channel gets the whole spectrum for a certain amount of time

Advantages:
- only one carrier in the medium at any time
- throughput high even for many users

Disadvantages:
- precise synchronization necessary

Source: Schiller - Mobile Communications
Code multiplex

Each channel has a unique code

All channels use the same spectrum at the same time

Advantages:
- bandwidth efficient
- no coordination and synchronization necessary
- good protection against interference and tapping

Disadvantages:
- lower user data rates
- more complex signal regeneration

Implemented using spread spectrum technology

Source: Schiller - Mobile Communications
Activity: Pair-Solo

Consider a channel having Time Division Multiplexing.

- Each time slot is of 100 millisec duration. The total bandwidth available on the channel is 64 Mbps.
- There are 10 users. Slots are allotted to users in a round-robin fashion. Users always have data to send.
- How much data would each user have transmitted at end of 5 seconds? What is the throughput per user?

- Pair - Discuss the solution approach with your neighbour.
- Solo - Work out the answer by yourself.
Designing multiple access protocols

Problem: control access so that

- Throughput (the number of frames, packets, or segments, exchanged per second) is maximized.
- Access delay (time spent waiting for a chance to transmit) is minimized.
Control methods options- Where?

- Centralized
 A controller grants access to the network.

- Distributed
 The stations collectively determine the order of transmission.
Control methods options - How?

• Unrestricted v/s Scheduled
 —Transmit freely v/s only during reserved intervals.

• Synchronous v/s Asynchronous
 —Specific capacity dedicated to a connection versus capacity made available in response to dynamic needs.
Multiple access protocols

Fall into two categories

- Deterministic access:
 - Stations talk only when they are authorized by access protocol
 - Time Division Multiple Access (TDMA): telephony, GSM.

- Non-deterministic access:
 - Contention based schemes. Collisions are avoided if possible, else resolved.
 - ALOHA: pure and slotted
 - CSMA/CD (Ethernet); CSMA/CA (WiFi)
Key: Choice of strategy depends on

- Do stations send steady streams or bursts of packets?
 - with streams, doesn’t make sense to contend for medium access on a per-packet basis.
 - with bursts, makes sense to contend for medium access, per-packet, to avoid wasting bandwidth.

- Do applications need guaranteed delay bounds?
 - with delay-guarantees, need to have a scheduled access and admission control.
 - with no-guarantees, simple contention-based schemes could be sufficient.

- What is the licensing cost for using the medium?
 - with licensed medium, need to make efficient use of the spectrum (resulting in complex protocols and expensive hardware).
 - with 'free' medium, often need to keep the hardware costs low (resulting in simple protocols but lower efficiency).
Concept-level summary

- MAC implementations in most technologies are some variations or combinations of:
 - Multiplexing strategies: FDM, TDM, CDM..
 - Control strategies: Centralized, Distributed, Priority..
 - Sharing strategies: Round robin, Polling, Carrier Sensing..

- Next class - details of design decisions for some specific technologies.