CS 716: Introduction to communication networks

- 10th class; 24th Aug 2011

Instructor: Sridhar Iyer
IIT Bombay
Activity: In-class Assignment

Consider 3 mountains in a straight line, A-B-C. There is a watch-tower on top of each mountain, each having a guard.

- The only mode of communication between the guards is by shouting!
- The distances between A-B-C are such that A-B are within shouting and hearing range of each other. Similarly, B-C are within range. However, A-C are not within range.

Design a protocol to be used in the above scenario, such that A-B-C may communicate meaningfully with each other.
Recap of previous class

Topics covered: ALOHA, CSMA/CD

• Choice of MAC depends on:
 – stream vs burst data.
 – spectrum costs.

• ALOHA and slotted ALOHA

• CSMA/CD:
 – 1-persistent, p-persistent, non-persistent.
 – Collision detection (minimum frame size).
 – Collision recovery (binary exponential backoff).
Activity: Think-Pair-Share

Consider computers connected using wireless links instead of Ethernet cables. WiFi is a popular Ethernet-like protocol for such wireless LANs.

- WiFi also uses CSMA in a manner similar to Ethernet, but instead of Collision Detection (CD), it uses Collision Avoidance (CA).

- Why do you think this is so?
- Suggest one mechanism for implementing CA.

- Do Think-Pair-Share.
Difference between Wired and Wireless

- If both A and C sense the channel to be idle at the same time, they send at the same time.
- Collision can be detected at sender in Ethernet.

![Ethernet LAN](image1)
![Wireless LAN](image2)
Hidden Terminal Problem

- A sends to B, C cannot receive A.
- C wants to send to B, C senses a “free” medium (CS fails)
- Collision occurs at B.
- A cannot receive the collision (CD fails).
- A and C cannot hear each other.
- A is “hidden” for C.
Wireless PHY

- Medium has neither absolute nor readily observable boundaries outside which stations are unable to receive frames
- Are unprotected from outside signals and are significantly less reliable than wired PHYs
- Have time varying and asymmetric propagation properties

- Lack full connectivity
 - the assumption that every station (STA) can hear every other STA in invalid
Solution for Hidden Terminals

- A first sends a *Request-to-Send (RTS)* to B
- On receiving RTS, B responds *Clear-to-Send (CTS)*
- Hidden node C overhears CTS and keeps quiet
 - Transfer duration is included in both RTS and CTS
- Exposed node overhears a RTS but not the CTS
Reliability: ACKs

- When B receives DATA from A, B sends an **ACK**
- If A fails to receive an **ACK**, A retransmits the DATA
- Both C and D remain quiet until **ACK** (to prevent collision of **ACK**)
- Expected duration of transmission+ACK is included in RTS/CTS packets
IEEE 802.11 (popular as WiFi)

• Standards covers the MAC sublayer and PHY layers

• Three different physical layers in the 2.4 GHz band
 • FHSS (Frequency Hopping Spread Spectrum)
 • DSSS (Direct Sequence Spread Spectrum)
 • IR (Infra Red)

• OFDM (Orthogonal Frequency Division Multiplexing) based PHY layer in the 5 GHz band
802.11- in the TCP/IP stack

- **mobile terminal**
- **access point**
- **server**
- **fixed terminal**

Network Diagram

- **application**
 - TCP
 - IP
 - LLC
 - 802.11 MAC
 - 802.11 PHY

- **fixed terminal**
 - application
 - TCP
 - IP
 - LLC
 - 802.3 MAC
 - 802.3 PHY

802.11 PHY

Source: Schiller
Animations

- And others – Google “CSMA/CA applet”.
At the end of this topic

You should be able to do:

• Distinguish between characteristics of wired and wireless PHY.
• Describe the collision avoidance (CA) mechanism in WiFi.
• Explain how the hidden terminal problem results in CS and CD failing.
• Evaluate when to use a CA mechanism instead of CD.
• Perform binary exponential back-off calculations.

Reflection

• What did I learn in today's class?
• Each student to mention one point.

• Take-home questions:
 • What are the pros and cons of using RTS/CTS?
 • When is it ok to directly transmit data instead of RTS?