CS 716: Introduction to communication networks

- 14th class; 21st Sept 2011

Instructor: Sridhar Iyer IIT Bombay

Think-Pair-Share: IP addressing

- What is the need for IP addresses?
 - Why not have only MAC addresses?
- Given that IP addresses are required, come up with a suitable way of structuring them.
 - What are the pros and cons of your solution?
 - Analogy: Think about a post-office.
 - What information needs to be maintained by each postoffice in order to route a letter from here to anywhere?

IP Addressing

- Addresses need to be globally unique, so they are hierarchical
- Another reason for hierarchy: aggregation
 - reduces size of routing tables
 - at the expense of longer routes

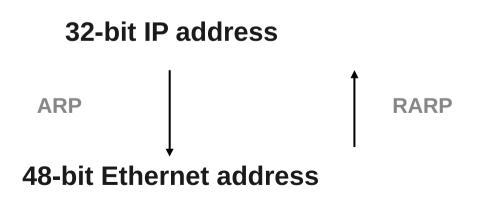
Network layer

- Need:
 - Hide type of subnet
 - Ethernet, Token Ring, FDDI ...
 - Hide topology of subnets
- Provides:
 - Uniform addressing
 - Packet delivery

IP characteristics

- IP can run on
 - Ethernet (CSMA/CD)
 - FDDI (token ring)
 - telephone trunks (SONET or PDH)
 - wireless links (CSMA/CA)
 - satellite links (ALOHA)
 - other technologies like X.25, ISDN
- underlying technology can be upgraded without affecting TCP/IP

Network layer functions

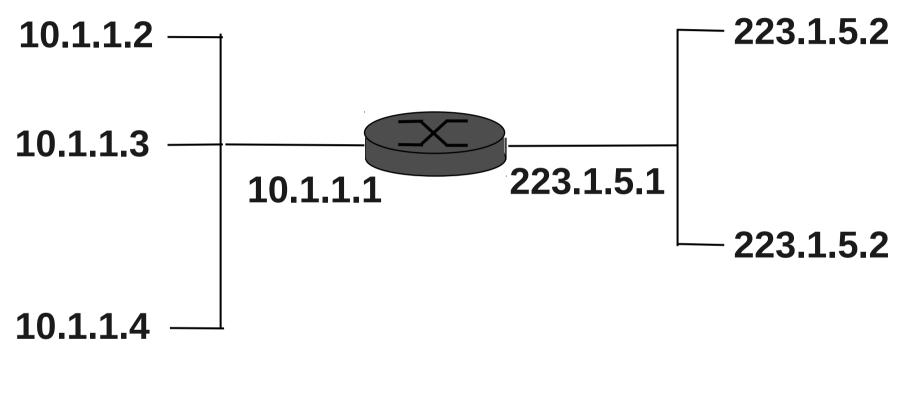

- Internetworking
 - uniform addressing scheme
- Routing
 - choice of appropriate paths from source to destination
- Congestion Control
 - avoid overload on links/routers

Addressing

- Address: byte-string that identifies a node; usually unique
 - physical address: device level
 Ethernet HWaddr 00:1c:c0:ae:a7:65
 - network address: network level
 inet addr:10.129.5.151
 - logical address: application level
 www.addr: www.cse.iitb.ac.in

Address Resolution Protocol (ARP) RFC 1010

- Address resolution provides mapping between IP addresses and datalink layer addresses
- point-to-point links don't use ARP, have to be configured manually


ARP request/reply; cache

- ARP requests are broadcasts
 - "Who owns IP address x.x.x.x.?".
- ARP reply is unicast
- ARP cache is created and updated dynamically
 - arp –a displays entries in cache
- Every machine broadcasts its mapping when it boots

IP addressing

- Internet Protocol (IP)
 - connectionless packet delivery and "best-effort" quality of service
- Every host interface has its own IP address
- Routers have multiple interfaces, each with its own IP address

IP addressing example

11011111 0000001 00000101 00000101 223 1 5 2

IP forwarding

At a host:

- Destination on my net?
 - If yes, use ARP and deliver directly.
 - If not, give to default gateway.

At a gateway:

- Am I the destination IP?
 - If yes, deliver packet to higher layer.
 - If not, which interface to forward on?
 - consult Routing Tables to decide.

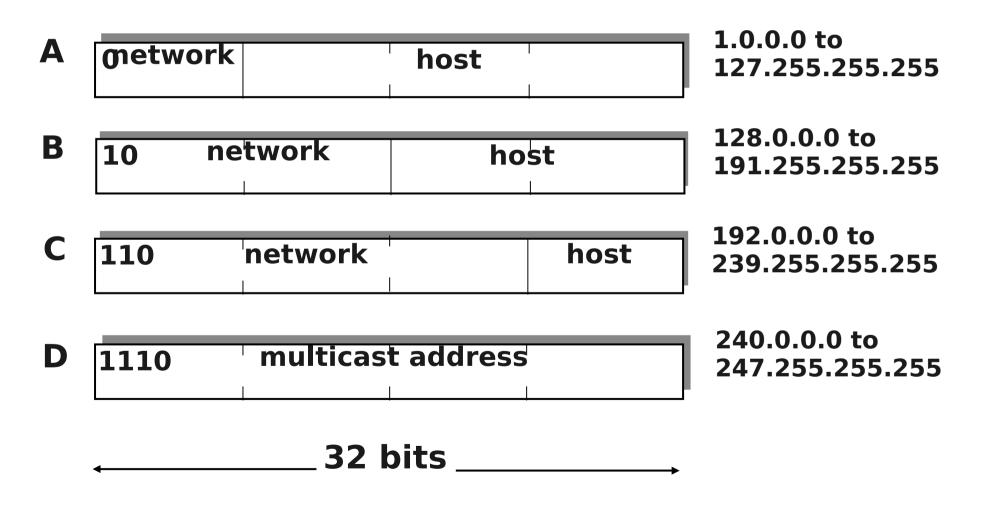
Think-Pair-Share: Address space

• Why 32 bit address space?

• How many bits should be allocated for network number and host number?

 How does a router know which bits to consider for network number and which ones for host number?

IPv4 addresses


- Logical address at network layer
- 32 bit address space
 - Network number, Host number
 - boundary identified by a *subnet mask*
 - can aggregate addresses within subnets
- Machines on the same "network" have same network number

Address classes

- Class A addresses 8 bits network number
- Class B addresses 16 bits network number
- Class C addresses 24 bits network number
- Distinguished by leading bits of address
 - leading 0 => class A (first byte < 128)
 - leading 10 => class B (first byte in the range 128-191)
 - leading 110 => class C (first byte in range 192-223)

IPv4 addresses

class

IPv4 address issues

- Inefficient: wasted addresses
- Inflexible: fixed interpretation
- Not scalable:
 - Number of networks is growing
 - Not enough network numbers

Group Activity – IP addressing

- IPv4 addressing is inefficient due to wasted addresses in class A and class B networks.
- It is also not scalable to growing number of networks.
- Design a solution to fix the above IP address inefficiency problems.
 - What are the pros and cons of your solution?

IP addressing schemes

- Sub-netting: Subnet Masks
 - Create sub networks within an address space.
- CIDR: Classless InterDomain Routing
 - Variable interpretations for the network number.
- DHCP: Dynamic Host Configuration Protocol
 - Assign addresses dynamically from a pool.
- NAT: Network Address Translation
 - Private IP addresses within intranet; Translate to a public IP address at gateway before internet access. So reuse is possible.
- Ipv6: 128 bit address space

Subnet mask

Network Number	Host Number
----------------	-------------

Class B address

111111111111111111111111111111111111111	00000000
---	----------

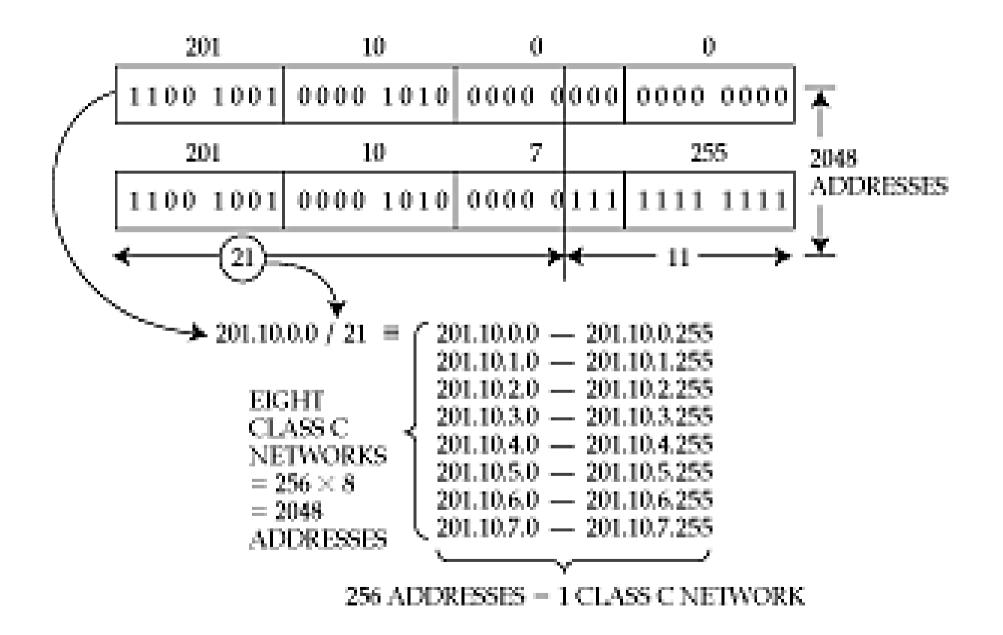
Subnet Mask (255.255.255.0)

Network Number	Subnet ID	Host ID
----------------	-----------	---------

Subnetted Address

Subnet addressing

- Internal routers & hosts use subnet mask to identify "subnet ID" and route packets between "subnets" within the "network"
- Subnet mask can end on any bit
- Mask must have contiguous 1s followed by contiguous zeros. Routers do not support other types of masks.


VLSM: variable length subnet mask

- Multiple different masks possible in a single class address space
 - Eg: 255.255.255.0 and 255.255.254.0 could be used to subnet a single class B address space
 - Allows more efficient use of address space

Classless Inter Domain Routing (CIDR)

- Medium sized networks choose class B addresses, leading to wasted space
 - allow ways to represent a set of class C addresses as a block, so that class C space can be used
 - use a CIDR mask

CIDR

Closure

- Self-study:
 - Read about CIDR (Classless Interdomain Routing).
- Tutorial question:
 - Given an IP address 144.16.116.2 and subnet mask 255.255.255.192. Identify the Net:Subnet and the Host parts of the IP address.