
CS 716: Introduction to
communication networks

- 19th class; 12th Oct 2011

Instructor: Sridhar Iyer
IIT Bombay

IIT Bombay cs 716 2

Recap of last class: TCP basics

Guaranteed-service protocol
● Ensures that a packet has been received by the destination by

using timeouts, acknowledgements and retransmission

Connection-oriented protocol
● Applications need to establish a TCP connection prior to

transfer, to fix initial sequence numbers
● Done using a 3-way handshake

Full-duplex protocol
● Both ends can simultaneously read and write

Byte-stream based protocol
●Ignores message boundaries. ACK indicates next byte expected.

IIT Bombay cs 716 3

Recap: TCP functioning
Socket: [<Source IP address, port no>, <Destination IP address, port no >]

Sending TCP maintains a timer for each segment sent
● waiting for acknowledgement (ACK)
● If ACK doesn’t come in time, segment is retransmitted

 Receiving TCP
● Sends ACK
● Re-sequences the data
● Discards duplicates

●Sequence number identifies the byte in the stream between sender &
receiver; Sequence number wraps around to 0 after reaching 232 – 1

IIT Bombay cs 716 4

 TCP flow control
●TCP uses the sliding window protocol for flow control

● Allows sender to transmit multiple segments without waiting
for ACKs

● Sender’s window size is upper limit on un-ACKed segments
● Similarly, receiver has a window for buffering (not

necessarily the same size as the senders’)

●Window size may grow and shrink
● Window size controls how much data (bytes), starting with

the one specified by the Ack number, that the receiver can
accept

● 16-bit field limits window to 65535 bytes

IIT Bombay cs 716 5

Window advancement

2 3 4 5 6 7 8 9 10 11 131 12

Sender’s window

2 3 4 5 6 7 8 9 10 11 131 12

Sender’s window

Ack 5

IIT Bombay cs 716 6

Window based flow control

●Window size minimum of
● receiver’s advertised window - determined by available

buffer space at the receiver
● congestion window - determined by sender, based on

network feedback

2 3 4 5 6 7 8 9 10 11 131 12

Sender’s window

Acks received Not transmitted

IIT Bombay cs 716 7

TCP ACK generation

• in-order segment arrival, everything else already
ACKed: Delayed ACK (500 ms)

• in-order segment arrival, one delayed ACK pending:
Cumulative ACK

• out-of-order segment arrival, higher-than-expect seq
no.: Duplicate ACK

• arrival of segment that partially or completely fills gap:
Cumulative ACK

IIT Bombay cs 716 8

TCP: retransmission scenarios
Host A

Seq=92, 8 bytes data

ACK=100

lossti
m

e
o
u

t

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

Host A

Seq=100, 20 bytes data

ACK=100

S
e
q
=

9
2

 t
im

e
o
u
t

premature timeout,
cumulative ACKs

Host B

Seq=92

ACK=120

Seq=92, 8 bytes data

S
e
q
=

1
0

0
 t

im
e
o
u
t

ACK=120

IIT Bombay cs 716 9

Activity - Retransmission

● What will happen if we choose too small a value for the
value of Retransmission Timeout (RTO)?

● What will happen if we choose too large a value?

● How should we choose an appropriate value of RTO?
● If you feel that the value of RTO should be adaptive (vary

dynamically depending on the “situation”), on what basis
should the initial value be chosen? How should the
adaptation be performed?

● When does it make sense to have a fixed value of RTO?

IIT Bombay cs 716 10

RTT estimation

●Accurate timeout mechanism is important for congestion
control

● Too long: Under-utilization
● Too short: Wasteful retransmission

●Fixed: Choose a timer interval apriori;
● useful if system is well understood and variation in

packet-service time is small

●Adaptive: Choose interval based on past measurements of
RTT

IIT Bombay cs 716 11

Exponential averaging filter

●Measure SampleRTT for segment/ACK pair

●Compute weighted average of RTT

• EstimatedRTT = α PrevEstimatedRTT + (1 – α)
SampleRTT

● RTO = β * EstimatedRTT

●Typically α = 0.9; β = 2

IIT Bombay cs 716 12

Exponential backoff
●Double RTO on each timeout
●Reset RTO when timely ACK is received for non-retx
segment.

Packet
transmitted

Time-out occurs
before ack received,
packet retransmitted

Timeout interval doubled

T1 T2 = 2 * T1

IIT Bombay cs 716 13

TCP Retransmission

●Default:
● Cumulative ACKs, Duplicate ACKs
● go-back-N retransmission ← Recall this?

●Optimization:
● Selective ACK (SACK)

● need to specify ranges of bytes received (requires
large overhead)

● Selective retransmission

IIT Bombay cs 716 14

Window Size

●TCP uses sliding window protocol for efficient transfer
● Default buffer: 4096 to 16384 bytes
● Ideal: window (and Rx buffer) = bandwidth-delay product

●AdvertisedWindow = MaxRcvBuffer - (LastByteRcvd – NextByteRead)
● MaxSendWin = MIN (CongestionWindow, AdvertisedWindow)
● CongestionWindow limits amount of data in transit

●SendingWindow = MaxSendWin - (LastByteSent – LastByteAcked)

●What happens if the AdvertisedWindow is small (few bytes)?

IIT Bombay cs 716 15

Silly-Window syndrome
●Sender's window <= AdvertisedWindow of Receiver
●Slow application receiver

● TCP advertises small windows.
● Sender sends small segments.

●Solution:
● Receiver advertises window only if size is MSS or half the

buffer.
● Sender typically sends data only if a full segment can be sent.

What happens if AdvertisedWindow = 0?

IIT Bombay cs 716 16

Activity - Congestion control
●On detecting a packet loss, TCP sender assumes that network
congestion has occurred and reduces the CongestionWindow,
which in turn reduces amount of data that can be sent per RTT.

●How should we choose value of CongestionWindow?
● Given that it should be adaptive, what should be its initial

value?
● How should the adaptation (increase/decrease) be

performed?

IIT Bombay cs 716 17

AIMD: Additive increase
Multiplicative decrease

●Source infers congestion upon RTO.

●Increase CongestionWindow (linearly, by 1 per RTT)
when congestion goes down.

●Decrease CongestionWindow (multiplicatively, by factor
of 2) when congestion goes up.
●

●Provides fair sharing of links

IIT Bombay cs 716 18

Slow start and Congestion avoidance

●AIMD may be too conservative

●CongestionWindow: cwnd

●Slow Start
● Increase cwnd exponentially upto a threshold

(ssthresh)

●Congestion Avoidance
● Increase cwnd linearly after ssthresh

IIT Bombay cs 716 19

Slow start phase

• initialize:
• Cwnd = 1

• for (each ACK)
• Cwnd++

• until
• loss detection OR
•Cwnd > ssthresh

Host A

one segment

R
T
T

Host B

time

two segments

four segments

IIT Bombay cs 716 20

Congestion avoidance phase
/* Cwnd > threshold */
• Until (loss detection) {
 every w ACKs:
 Cwnd++
 }
• ssthresh = Cwnd/2
• Cwnd = 1
• perform slow start

1

Host A Host B

time
R
T
T

four segments

five segments

IIT Bombay cs 716 21

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8

Time (round trips)

C
on

ge
st

io
n

W
in

do
w

 s
iz

e
(s

eg
m

en
ts

)

Slow start

Congestion
avoidance

Slow start
threshold

Typical TCP behaviour

IIT Bombay cs 716 22

Congestion control: Timeout

0

5

10

15

20

25

0 3 6 9 12 15 20 22 25

Time (round trips)

C
o

n
g

es
ti

o
n

 w
in

d
o

w
 (

se
g

m
en

ts
)

ssthresh = 8 ssthresh = 10

cwnd = 20

After timeout

IIT Bombay cs 716 23

Fast retransmit and Fast recovery
●Slow start follows timeout

● timeout occurs when no more packets are getting across.
●IF one packet got dropped but others got through?

●Fast retransmit follows duplicate ACKs
● multiple (>= 3) dupacks come back when a packet is

lost, but latter packets get through.
●Fast recovery follows fast retransmit
●ssthresh = min(cwnd, advertised window)/2
●New cwnd = ssthresh

IIT Bombay cs 716 24

0

2

4

6

8

10

0 2 4 6 8 10 12 14

Time (round trips)

W
in

do
w

 si
ze

 (s
eg

m
en

ts
)

advertised window

After fast recovery

Congestion control:
Fast retransmit and Fast recovery

IIT Bombay cs 716 25

TCP Tahoe

●Detects congestion using timeouts
●Initialization

● cwnd initialized to 1;
● ssthresh initialized to 1/2 MaxWin

●Upon timeout
● ssthresh = 1/2 cwnd, cwnd = 1
● enter slow start

IIT Bombay cs 716 26

TCP Reno

●Detects congestion loss using timeouts as well as
duplicate ACKs
●On timeout, TCP Reno behaves same as TCP Tahoe
●On fast retransmit

● skips slow start and goes directly into congestion
avoidance phase

● ssthresh = 1/2 cwnd; cwnd = ssthresh

IIT Bombay cs 716 27

Self study: UDP (User Datagram Protocol)

●Datagram oriented Internet transport
●“best effort” service; doesn't guarantee any reliability.
UDP segments may be:

● lost
● delivered out of order to application

●connectionless:
● no handshaking between UDP sender, receiver
● each UDP segment handled independently of others

● What applications is UDP transport layer suitable for?
●

IIT Bombay cs 716 28

Closure
● TCP animations

● http://oscar.iitb.ac.in/onsiteDocumentsDirectory/tcp/tcp/index.html

● http://www.net-seal.net/animations.php

● Tutorial Questions:
● What are the pros and cons of TCP versus UDP?
● Plot graph of TCP Reno sender when every 7th packet is

delivered out-of-sequence.
● Topics NOT covered

● TCP Optimizations: SACK, ECN, ...
● Throughput analysis, QoS guarantees, ...

	Slide 1
	TCP: Transmission Control Protocol [RFC 793, …]
	TCP functioning
	 TCP flow control
	Window advancement
	Slide 6
	TCP ACK generation [RFC 1122, 2581]
	Slide 8
	Slide 9
	Slide 10
	Exponential averaging filter
	Exponential backoff
	Slide 13
	Bulk data
	Silly-Window syndrome
	Slide 16
	Slide 17
	Slide 18
	Slow start phase
	Congestion avoidance phase
	Slide 21
	Slide 22
	Fast retransmit
	Congestion control: Fast retransmit and Fast recovery
	TCP Tahoe
	TCP Reno
	UDP: User Datagram Protocol [RFC 768]
	Slide 28

