CS 716: Introduction to communication networks

- 2nd class; 27th July 2011

Instructor: Sridhar Iyer
IIT Bombay
For those who missed the last class

• Eligibility for taking this course in credit mode.
 • Course is for non-CSE, non-ECE, PG students.
 • CSE/ECE PG students should take CS 653 or CS 641.
 • UG students should take CS 348.

• Objective of the course:
 • Introduction to communication networks.
 • Institute elective offered by CSE dept.
 • There is no lab/programming in this course.
Emphasis of the course

- The course will not go into much excruciating details; It will not be too top-level either.
- The course will focus on concepts that are 'broadly useful', in networking and elsewhere.
- Mostly we will try to understand: “How does X work?”, with emphasis on “Why is X designed this way?”

- Technical topics: Internet, TCP/IP, WiFi, GSM, etc.
- Textbook: Instructor will draw from many sources;
 - You can refer to the book by Kurose and Ross.
Teaching-Learning methods

This course is oriented towards being:

- **learner-centric:**
 - I will not be simply lecturing.
 - You will have to do a lot of thinking during class!

- **collaborative-learning:**
 - You will do many group discussion activities.
 - You will teach and learn from each other!

- **analogy-based reasoning:**
 - I will pose problems from familiar areas (analogy).
 - You will solve them and apply the solution to Networking.
Revisit problem from last class

- There are two companies A and B, located in cities about 200 km apart.

- The CEO of company A wants to send a document, of about 100 pages, to the CEO of company B.

- What is your opinion on how can this be done, given the following constraints:
Constraints

- There is no email, no fax, no phone, no post office - no form of modern communication whatsoever.
- The only means of communication are some messenger boys.
- The messenger boys are very weak. Each can carry only 10 pages at a time!
- The messenger boys are very fickle. They may decide to quit without notice, at any time, even in the middle of carrying some pages!
Activity: Think-Group-Share

- Think.
 - Take 2 minutes to think about it individually.
 - Record your ideas for the solution in your notebook.
- Group.
 - Discuss your ideas with others in your group.
 - Then, work out the solution in detail, as a group. You can take 5-10 minutes for doing this.
- Share.
 - Share your group's solution with the entire class.
 - Other groups to identify pros and cons of each.
Problem-Solving: ABCDE Process

A) Assume a simple, favourable case of given scenario
 • State your assumptions clearly (and later relax them)
B) Brainstorm for possible solutions
 • Evaluate pros and cons of each wrt given scenario constraints
C) Choose one solution that satisfies the given constraints
 • Avoid attempts for premature optimization
 • Avoid including “additional features” that are not asked for
D) Do the detailing of the chosen solution
 • Do not go back to brainstorming for evaluating other ideas
E) Examine correctness and completeness
 • Carry out 'What-if' scenarios on various boundary conditions
 and see if your solution needs to be modified
Key points for the CEO example

• Need for secretary and dispatch sections.

• Need to specify actions of each entity clearly.
 - CEO gives **data** - document (D) and name (CEO-B) to secretary, along with **control** – send this by tomorrow.
 - Secretary looks up name and finds address, packetizes, inserts sequence numbers, maintains acknowledgement.

• Specify the actions for each entity, starting with CEO-A, till the document reaches CEO-B.
Analogy with Networking

- The networking topic for today - Overview.
- Show correspondence between entities in the network and the analogy. Give the terms – layers (http; tcp; ip).
- Show correspondence between the concepts used in the analogy and those in the network. Give the networking terms for these concepts – protocol, pkt...
- Maintain a list of concepts being discovered.
- Summarize the network discussion, highlighting the application of the concepts discovered.
Key points for the Overview

• Notion of layers, protocols and interfaces.
 – CEO corresponds to application layer.
 – Secretary corresponds to TCP.
 – Dispatch corresponds to IP.

• Concerns and functions at each layer are different.
 – Need to be clearly specified for the abstraction to work!

• Notions of reliable versus best-effort service.

• DNS and other topics touched upon.
Animation

• Here are some links to animation applets:
 • http://highered.mcgraw-hill.com/sites/0072967722/student_view0/animations.html#
 • http://www.cs.stir.ac.uk/~kjt/software/comms/jasper.html

• Here is a link to a 13-minute animation video:
 • http://video.google.com/videoplay?docid=-5019530929128132102#
At the end of this topic

You should be able to do:

- Recognize the analogy between the CEO example and communication in a network.
- Identify layers, interfaces and entities in a protocol.
- State the need for communication protocols.
- Design a reliable communication protocol over an unreliable network.

- Work in a group towards solving a given problem.
- Clarify specifications of a problem by identifying and asking the appropriate questions.
- State the assumptions made for your solution.
- Make simplifying assumptions for the initial solution, before going on to general/efficient/optimal ones.
Repeat: Why does this course emphasize...

• Your idea of the “solution”:
 – To help you see that most technology evolves from simple ideas; You already know many such ideas!

• Group discussions:
 – That is how details of most technologies are worked out.
 – Evaluate pros and cons of solutions, within 'constraints'.

• Analogies:
 – That is how scientists attempt to solve new problems.
 – Analogies may help you to see conceptual similarities in various areas of your work (and adapt solutions).

• Fun:
 – That is when you learn; See last year's students' comments.
Reflection

• What did I learn in today's class?
• Each student to mention one point.

• Take-home questions:
 • What are the differences between an interface and a protocol? What are the similarities?