CS 716: Introduction to communication networks

- 7th class; 12th Aug 2011

Instructor: Sridhar Iyer IIT Bombay

Clicker Question

The time taken for a signal to travel from sender to receiver is: _____.

1. Round-Trip-Time	2. Transmission delay
3. Propagation delay	4. Transmission + Propagation

It is not sufficient to just pick an answer. You need to also think about how you will justify your answer!

Recall from last class (PHY): Bandwidth and Delay

Bandwidth:


Amount of data that can be transmitted per unit time.

Delay (Latency):

- Time taken to send a message from point A to point B
 - Latency = Propagation + Transmit + Queue
 - Propagation = Distance / SpeedOfLight
 - Transmit = Size / Bandwidth
 - Queue = Waiting for Transmit
- Recall activity for components of End-to-End delay.

Delay X Bandwidth Product

- Relative importance of bandwidth and delay
 - Small message: 1ms vs 100ms dominates
 1Mbps vs 100Mbps
 - Large message: 1Mbps vs 100Mbps dominates
 1ms vs 100ms
- Example:
 - 100ms delay and 45Mbps bandwidth
 - => 560 KB of data in the pipe

Activity: Pair-Solo

How long will it take to <u>successfully</u> transmit a 10MB file from A to C?

- Assume that the speed of light 300000 KM/sec, Queuing delays are zero and that there is no buffer at node B.
- Pair Discuss the solution approach with your neighbour.
- Solo Work out the answer by yourself.

Example: Linux PHY interface

PHY Interface definitions

- int phy_read(struct phy_device *phydev, u16 regnum);
- int phy_write(struct phy_device *phydev, u16 regnum, u16 val);
- Other functions such as print_status, enable_interrupt, ...

- Ethernet drivers in /usr/src/linux/net/inet/eth.c
 - http://www.kernel.org/pub/linux/kernel/v1.0
 - http://www.google.co.in/codesearch

Example PHY protocols

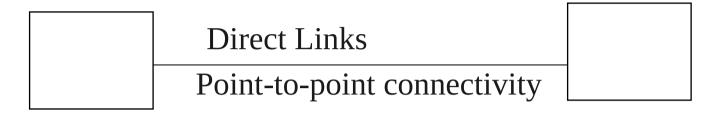
- Telephone Modems V.92, SONET/SDH, DSL, ISDN.
- Ethernet: 10BASE-T, 1000BASE-T.
- WiFi: 802.11 a/b/g
- GSM Um radio interface physical layer.
- Bluetooth Physical Layer.
- USB, RS-232.
- Firewire
-
- Quick reference: http://en.wikipedia.org/wiki/Category:Physical_layer_protocols

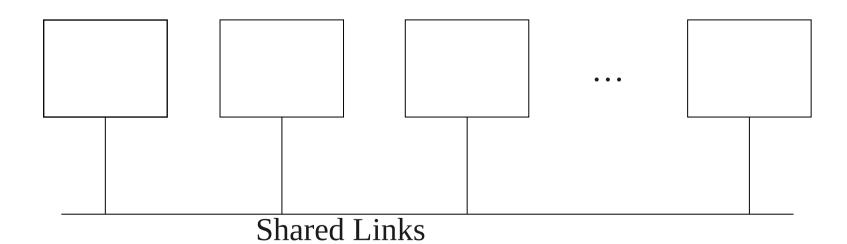
PHY configurable parameters

- Preset configurations are sufficient in most cases.
- GUI and text-based tools/utilities available to user:
 - ethtool, Mii-tool
- Common actions:
 - ifup eth0: Turn on the Ethernet
 - Ifdown eth0: Turn off the Ethernet
 - /etc/init.d/network [status | stop | start]
- Config parameters are stored in files typically in:
 - /etc/network/interfaces
 - /etc/sysconfig/network-scripts/ifcfg-eth0 /etc/network/
 - Actual file names may vary across Linux flavours/versions

More on Modulation schemes

- Fast Ethernet 100BASE-T and Gigabit Ethernet 1000BASE-T utilize Pulse Amplitude Modulation (PAM-5).
 - See Ethernet Working Group, IEEE 802.3 http://www.ieee802.org/3/

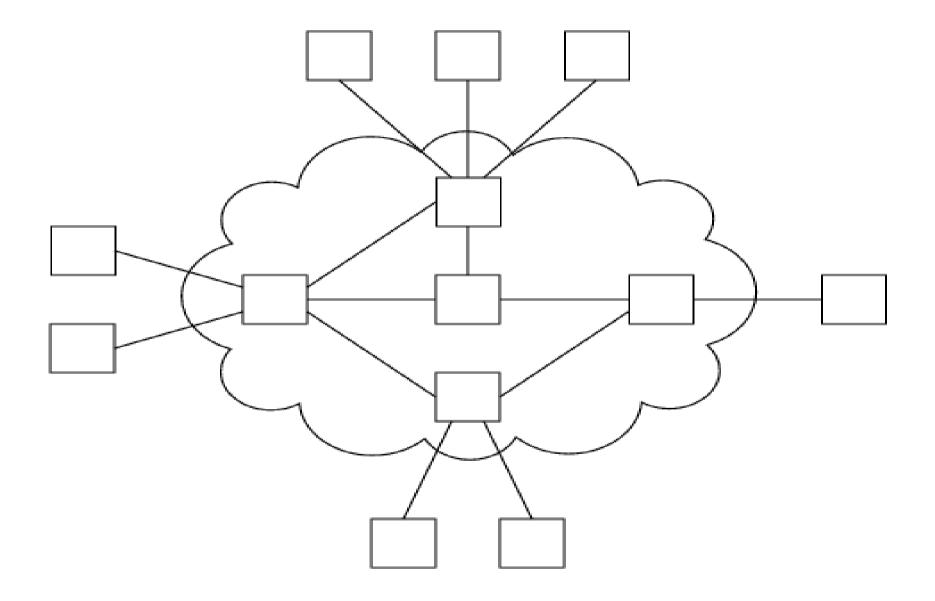

- WiFi 802.11b uses Direct Sequence Spread Spectrum (DSSS) and 802.11g uses Orthogonal Frequency Division Multiplexing (OFDM)
 - See Wireless LAN Working Group, IEEE 802.11 http://www.ieee802.org/11/


More on PHY design

Is beyond the scope of this course!

- Topics in PHY lead to research areas such as:
 - Design of Transmitters, Antennas and Receivers.
 - Modulation techniques.
 - Coding, error correction.
 - ... and many more.

We will move from a single link to ...



Multiple access network

11

And then onto ... switched networks

Today's class discussion

 Having seen the concepts in PHY, we will get into the Link layer (MAC and LLC), also known as Layer 2.

- What should be the concerns of the Link layer?
- What services should Link layer provide?
- What are the pros and cons of sharing a link?
- What are the issues in sharing a link (multiple-access;
 MAC Medium Access Control)?
- Let us quickly put some answers on the board!

Multiple-access

- A PHY link may sometimes be shared among multiple senders and receivers.
 - Is this desirable? What are the pros and cons?
 - Tradeoffs: cost, utilization, security, ...
 - Some student's answers that came up:
 - LAN is better for adding nodes without much increase # of links.
 - Do we have a choice?
 - Wireless is inherently a shared medium!
- Broad idea:
 - Sharing a given resource among multiple users.
 - Terms: Multiprocessing; Multitasking; Multiplexing.

Activity: Think-Pair-Share

Consider a room full of people (such as this class)

- 1. What are three different ways/modes in which communication can happen in this room?
 - Hint: Think about the different types of conversations.
- 2. For each of the above communication modes:
 - 1. Do we need any protocol between the entities?
 - If yes, why? If no, why not?
 - 2. If yes, suggest a protocol that could be used.

15

Activity: Think-Pair-Share (contd)

3. More Questions:

- What factors need to be considered for MAC protocol design?
- How does each factor influence the MAC protocol?

Example:

Factors	How they affect
Mode of	Duration of access to the medium; If all have equal
communication	priority, round-robin time-slots could be used.
Cost of medium	Licensed v/s unlicensed spectrum in wireless.

- Think Individually
 - Add as many entries as you can to the above table.
- Pair Discuss with your neighbour.
 - Copy answers from your neighbour's list that you have missed out!

16

Share - Discuss with entire class.

Some points from last year

- Broadcast if one person wants to talk to everyone.
- Priority if one person is more important to be heard.
- Round robin if equal opportunity to be given to all.
- Intra-group versus inter-group communication.

- ...

Key points to consider for MAC

Types/Modes of communication:

- Although the medium is shared, who is talking to whom?
 - 1-to-1: Conversation between two students in a corner.
 - One-to-Many: Instructor lecturing.
 - Many-to-One: Students responding to instructor's question.
 - Many-to-Many: Your group discussion!

Protocols for each modes of communication:

- 1-to-1: Separate space; Separate channel (language/frequency).
- 1-to-Many: Broadcast; Often associated with notion of Priority.
- Many-to-One: Polling; Round-robin; Some notion of taking turns.
- Many-to-Many: Speak at will; Listen before talk; Handle collisions!