
BoBs: Breakable Objects

Vikram Jamwal
KR School of IT,

IIT Bombay, INDIA

vikram@it.iitb.ac.in

Sridhar Iyer
KR School of IT,

IIT Bombay, INDIA

sri@it.iitb.ac.in

ABSTRACT
Direct redeployment of an application from one scenario to
another through straightforward refactoring is difficult. Ap-
plication objects need to be in a form amenable to partition-
ing. We propose Breakable Objects - BoBs, as a solution. We
show how BoBs may be used(BoB Driven Architecture) in
an application and how BoBs are favorable to splitting and
redeployment.

Categories and Subject Descriptors: D.1.5 [Program-
ming Techniques]: - Object-Oriented Programming; D3.3
[Programming Languages]: - Constructs and Features

General Terms: Design, Languages, Theory

Keywords: Objects, Refactoring, Application Partitioning

1. BACKGROUND
Distributed systems have grown from having nodes with

uniform computing and communication capabilities, to hav-
ing nodes with widely varying capabilities. The underlying
communication networks also have become more complex
and heterogeneous in nature. A given application may need
to be run in these different deployment scenarios. For ex-
ample, we may access an e-mail in a variety of situations
e.g. using a desktop on LAN or a PDA on 3GA network.
Ideally, given an application designed for one scenario, one
should be able to generate applications for a new scenario
through an automated refactoring process[4].

However, this is extremely difficult in practice for the
following reasons: (i) Functionality partitioning prob-
lem: This involves apportioning application functionality
into component sub-sets suitable for redeployment in new
scenarios. (ii) Distribution problem: This involves dis-
tributing an application’s component across different nodes
and making them work as distributed components. This
might involve modifying application’s source code, applica-
tion’s binaries prior to execution components, or manipulat-
ing application’s execution through run-time interventions
[2]. (iii) Environmental heterogeneity problem: This
involves dealing with differences in environments encoun-
tered due to hardware and software constraints on the tar-
get environment, e.g., CPU speed, link characteristics, bat-
tery power, available system software, operating systems,
run time libraries etc. [5].

Of these, component distribution and environmental het-

Copyright is held by the author/owner.
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

erogeneity (points (ii) and (iii)) have been areas of active
research for quite some time. Functionality partitioning of
application (point (i)), however, remains an important prob-
lem, which still requires much attention. In order to auto-
mate (i), the main requirement is: application functional-
ity should cleanly separate in terms of discrete components
that can be grouped into deployment-specific subsets. This
is hard to achieve in practice as we may not be able to draw
clean lines of separation through an application - some func-
tionality may span across multiple components, or a single
component may include parts of multiple functionality.

For example, in an e-mail application, Folder class may
have its functionality partitioned between client and server
for online and disconnected modes. For the offline mode, it
may be required only on client.

Hence, we need application component (e.g. Folder) in
a form such that its functionality can be easily partitioned
into sub-entities. Due to complexity of various features, tra-
ditional objects are not always suitable for such partitioning.

We propose the concept of Breakable Object - BoB. A BoB
is similar to an object in a class based object-oriented sys-
tem, but has a simplified structure to allow easy refactoring
of its functionality. We have found that BoB-based applica-
tion design greatly facilitates automated refactoring of the
application for various redeployment scenarios.

2. BOB OVERVIEW
An informal definition of BoB is as follows: A BoB is an

entity (class/object) in a program that can be readily split
into sub-entities. Sub entities should be so formed that they
can replace the BoB while retaining the semantics (opera-
tional) of the original program.

Additionally, BoB supports an interface and has an added
construct - together - to denote the groupings of its inter-
face methods which are designated inseparable by the de-
signer of the BoB.

3. BOB PROGRAMMING MODEL
Our programming model for BoBs, called JavaBoB is

based on the object oriented language Java. Though simple,
the programming model is functionally comprehensive.

BoB class resembles a Java class except the restrictions
that are placed on certain features. There is an additional
programming language construct in JavaBoB , viz., together,
which is used to specify inseparable methods. A preproces-
sor generates Java class definition files (.java files) from the
BoB class definition files (.bob files). Thus Java BoBs can
be used with existing Java Virtual Machines(JVMs) with-



out any modification to the latter. Due to lack of space, we
omit the formal description of a BoB Class here; we provide
it in [3].

The JavaBoB classes differs from those in Java principally
in the following ways: 1. Public fields: No public fields
are exported by the BoB. The designer provides getter and
setter methods for accessing the fields if required. 2. Inher-
itance: The class that needs to be split cannot be a derived
class. The only class that a BoB class implicitly inherits
from is object, the root Java object class. Same applies
to the interface inheritance. Also each BoB is a final class.
We propose the use of aggregation and delegation, as the
preferable composition mechanisms for BoBs. 3. Thread-
ing: BoB is not an active object; that is, it cannot run as
separate threads on its own. However, BoB methods can
be accessed by different threads in a program and we can
specify the methods as synchronized.

4. BOB DRIVEN ARCHITECTURE
We explain here briefly the stages involved in a BoB based

programming process:
1. Program Design and Implementation The pro-

gram designer proceeds in a manner similar to object-oriented
analysis and design, and uses requirement guidelines to di-
vide the application functionality into a set of objects and
BoBs. In this stage a deployment independent version of
the application is prepared.

2. Splitting and Reorganization The split-configurations
for a given scenario are specified for all the relevant BoBs.
A Splitting Engine prepares class-definitions for the new set
of BoB-splits that will replace the original BoB in the pro-
gram. The rest of program is reorganized to convert the
references to original BoBs into references to their splits. In
this stage application functionality is partitioned into node-
specific subsets of objects.

3. Redeployment Each application component is first
mapped to a node of the application deployment setup (de-
ployment configuration specifications). Components are pre-
pared for these new distributed environments by doing source
/binary level transformations on them. These application
components are finally redistributed across the specified nodes
of the network.

In our work so far, we have provided the guidelines for
BoB based program design and implementation, and evolved
the algorithms for BoB splitting and reorganizations. These
algorithms have been verified for correctness using Abstract
State Machines models for JavaBoB [3]. The redeployment
Engine is still under development, and currently uses mech-
anisms developed by J-orchestra [8], Pangaea [7] for BoB
deployments.

Case Study: We have applied BoB-based programming
and restructuring process to a real-world application - a
distributed e-mail application client. We are able to ob-
tain three configurations for this application - offline, dis-
connected and online, through automated refactorings. We
illustrate this case-study in the poster.

5. RELATED WORK
We discuss here the related work in application partition-

ing and object refactoring areas.
Application Partitioning: Application partitioning sys-

tems like J-orchestra [8], Pangaea [7] , try to automate ap-

plication partitioning of arbitrary Java programs, Coign [2]
does partitioning of COM based applications. Work on the
application partitioning has so far focused mainly on find-
ing optimal ways to partition an application among different
nodes, and component conversions into distributed compo-
nents. Our focus is: (i) to define an entity which is more
suitable for such partitioning (ii) automate the partitioning
process, given an external specification of deployment con-
figuration. This makes our approach a purely declarative
way of application partitioning. Additionally, BoBs support
a finer granularity level of partitioning than these systems.

Class Refactoring: Different methods of refactoring have
been proposed in literature [1] [4][6]. Class refactoring meth-
ods like extract class, extract interface etc. [1] provide means
to refactor classes for improving designs of the existing code.
However, no comprehensive techniques exist to provide refac-
toring for redeployment, as proposed in this paper.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have motivated the need for structuring

programs in such a way that they can be easily refactored
for deployment in various scenarios. Toward this end, we
have developed the notion of BoBs as an entity in a pro-
gramming language and also presented the methodology for
BoB-based programming architecture. Although, in this pa-
per we concern ourselves with class-based programming lan-
guage models only, the definition of BoB is generic and is
applicable to an object in object based systems, a compo-
nent in component driven systems, or a service in service
oriented systems. We are in the process of developing a spe-
cialized BoB deployment engine. In future, we also plan to
investigate mechanisms by which two BoBs can be merged.

7. REFERENCES
[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and

D. Roberts. Refactoring: improving the design of
existing code. Object Technology Series.
Addison-Wesley, 1999.

[2] G. C. Hunt. Automatic distributed partitioning of
component-based applications. PhD thesis, University of
Rochester. Dept. of Computer Science, 1998.

[3] V. Jamwal and S. Iyer. BoB Based Programming and
Formalizations. Technical Report KReSIT, IIT
Bombay, India, 2005. Available at:
www.it.iitb.ac.in/~vikram/bob-formal.pdf.

[4] T. Mens and T. Tourwe. A survey of software
refactoring. IEEE Transactions on Software
Engineering, 30(2):126–139, Feb. 2004.

[5] M. Mikic-Rakic. Software Architectural Support for
Disconnected Operation in Distributed Environments.
PhD thesis.

[6] W. F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of Illinois,
Urbana-Champaign , IL , USA, 1992.

[7] A. Spiegel. Pangaea: An automatic distribution
front-end for java. In J. D. P. R. et. al., editor,
IPPS/SPDP Workshops, pages 93–99, 1999.

[8] E. Tilevich and Y. Smaragdakis. J-orchestra:
Automatic java application partitioning. In
B. Magnusson, editor, ECOOP, volume 2374 of Lecture
Notes in Computer Science, pages 178–204. Springer,
2002.


