

IEEE Communications Magazine • January 2006 850163-6804/06/$20.00 © 2006 IEEE

CROSS-LAYER DESIGN

Vijay T. Raisinghani and Sridhar Iyer, Indian Institute of Technology Bombay

Cross-Layer Feedback Architecture for
Mobile Device Protocol Stacks

INTRODUCTION
To ensure interoperability with the existing
Internet, standard protocol stacks (e.g., Trans-
mission Control Protocol (TCP)/Internet Proto-
col (IP) [1]) are being deployed, even in mobile
wireless setups, that is, on the mobile devices
and intermediate nodes in the wireless network.
However, these standard protocol stacks func-
tion inefficiently in mobile wireless environments
[2]. This is primarily due to the layered architec-
ture and implementation of protocol stacks. We
highlight the inefficiencies of layered protocol
stacks by using TCP as an example.

TCP is an end-to-end reliable transport pro-
tocol. TCP at the sender uses acknowledgments
from the receiver as a signal to send additional
packets. A missing acknowledgment is interpret-
ed as an indication of packet loss due to conges-
tion in the network. However, in mobile wireless
environments packet losses are also caused by
poor wireless channel conditions and disconnec-
tions. Since TCP is unaware of these channel
conditions, it invokes its standard algorithm and
reduces its throughput. It can be seen that TCP
throughput can be improved by making it aware
of the wireless channel conditions. For example,
the retransmissions could be deferred until the
channel conditions improve. There are various
methods of improving TCP performance, which

entail modifications at the end station(s) or base
station/router. We refer interested readers to [2]
for an introduction to TCP algorithms, problems
related to TCP in wireless environments, and the
various solutions proposed in literature.

In wireless environments, the performance of
other layers as well can be improved by enabling
cross-layer feedback [3]. The feedback could be
from layers above or below a layer (discussed
further below).

As new wireless networks are deployed to
enhance the performance of the existing proto-
col stacks, various cross-layer feedback optimiza-
tions would be required. These cross-layer
optimizations would require easy integration
with the existing stack. If the cross-layer opti-
mizations were implemented in an ad hoc man-
ner, it would lead to:
• Decreased execution efficiency of the stack
• Difficulty in ensuring protocol correctness

of the protocols modified using cross-layer
feedback

• Difficulty in maintaining the cross-layer
optimizations
Thus, to help standardize and ease the devel-

opment, deployment, and maintenance of the
various cross-layer optimizations, appropriate
architecture is essential. Existing approaches to
cross-layer feedback do not satisfy all of these
requirements.

Cross-layer feedback optimizations may need
to be implemented at the intermediate nodes
(base station or router) or mobile host (MH).
We focus on cross-layer feedback in the MH
since we believe that it would be easier to imple-
ment changes on the end-devices than in the
network.

Our architecture ECLAIR [4] provides a
guideline for designing and implementing cross-
layer feedback in an easy and efficient manner
on a mobile device. ECLAIR exploits the fact
that protocol behavior is determined by the val-
ues stored in the protocol’s data structures. In
ECLAIR, a tuning layer (TL) for each layer, pro-
vides an interface to read and update these pro-
tocol data-structures. TLs are used by protocol
optimizers (POs), which contain cross-layer feed-
back algorithms. The POs form the optimizing
sybsystem (OSS).

We briefly explain ECLAIR’s prototype
implementation and validation. We then provide
guidelines for architecture selection and

ABSTRACT

Applications using traditional protocol stacks
(e.g., TCP/IP) from wired networks do not func-
tion efficiently in mobile wireless environments.
This is primarily due to the layered architecture
and implementation of protocol stacks. One
mechanism to improve the efficiency of the stack
is cross-layer feedback, that is, making informa-
tion from within one layer available to another
layer of the stack. For example, TCP retransmis-
sions can be reduced by making it aware of net-
work disconnections or handoff events. We
highlight the need for a cross-layer feedback
architecture and identify key design goals for an
architecture. We present our ECLAIR architec-
ture, which satisfies these design goals. We
describe a prototype implementation that vali-
dates ECLAIR. We also discuss other cross-
layer architectures and provide a cross-layer
design guide.

RAISINGHANI LAYOUT 12/20/05 7:57 AM Page 85

IEEE Communications Magazine • January 200686

ECLAIR deployment. Finally, we summarize
and conclude the article.

CROSS-LAYER FEEDBACK
BACKGROUND

Cross-layer feedback means enabling interaction
of a layer with any other layer in the protocol
stack. A layer may interact with layers above or
below it.

A survey of various cross-layer feedback pro-
posals is presented in [3]. We list a few examples
of cross-layer feedback for each layer as follows.

•Physical: Channel condition (e.g., bit error
rate) status from the physical layer can be used
by the link layer to adapt its error-control mech-
anisms. Also, the physical-layer transmit power
can be tuned by the medium access control
(MAC) layer to increase the range of transmis-
sion.

•Link/MAC layer: The number of retransmis-
sions at the link layer can serve as a measure of
channel condition. TCP may re-estimate its
retransmission timers based on this data. The
link layer may adapt its error correction mecha-
nism based on the quality-of-service (QoS)
requirements of the application layer, that is,
acceptable delay, packet losses, and so forth.

•Network: Mobile-IP hand-off begin/end
information can be used at TCP to manipulate
its retransmission timer. The Mobile-IP layer
can use link layer hand-off events to reduce
Mobile-IP hand-off latency.

•Transport: Packet loss date at TCP can help
the application layer adapt its sending rate. The
link layer can adapt its error control mechanisms
based on TCP retransmission timer information.

•Application: An application can use infor-
mation about channel conditions from the physi-
cal layer to adapt its sending rate. Also, an
application can indicate to the user the through-
put it requires and the current throughput.

•User: A user may give the system an indica-
tion of impending disconnection. This informa-
tion may be used by TCP to freeze its
retransmission timer.

As can be seen from these examples, a large
number of cross-layer interactions are possible in
the stack. Hence, a systematic approach to cross-
layer feedback is essential. Next, we discuss the
implementation aspects of cross-layer feedback
and motivate the need for a cross-layer feedback
architecture.

THE NEED FOR A
CROSS-LAYER FEEDBACK ARCHITECTURE

From the software engineering perspective,
cross-layer feedback is essentially a modification
to the existing protocol stack. Since the stack
forms an important part of the operating system,
it is important that any modification to the stack:
• Imposes minimal overhead on the stack
• Does not introduce any errors in the stack
• Is easily extensible and reversible if required

Cross-Layer Feedback: Ad Hoc Approach —
An ad hoc approach could be used to implement
cross-layer feedback, that is, blocks of code

could be introduced in the existing layers to
enable cross-layer feedback. For example, to
enable TCP to receive hand-off information
from the MAC layer, additional code would be
introduced in the TCP and MAC layers. This
additional code in TCP would query the MAC
layer and determine the TCP adaptation, while
the additional code in the MAC layer would
provide an interface for querying the MAC
layer’s internal state.

We note that an ad hoc approach to cross-
layer feedback has the following problems:
• Each additional cross-layer feedback code

block would slow down the execution of a
layer (e.g., TCP) and thus reduce the
throughput of that layer. If a layer interacts
with many other layers, this would lead to a
large reduction in its throughput.

• The cross-layer feedback code will have to
be rewritten for porting to other operating
systems.

• Multiple cross-layer optimizations within a
layer could lead to conflicts [5] and hence
difficulty in ensuring correctness of the
layer’s algorithms.

• Once added to a layer, cross-layer feedback
code would be difficult to update or
remove, since the code would be inter-
twined with regular-layer code.

• Trial (fast prototyping) of new cross-layer
feedback ideas would not be easy, since the
layer code would need to be modified.
The above problems of an ad hoc approach

highlight the need for an architecture for cross-
layer feedback. From the above, we can derive
the design goals of a cross-layer feedback archi-
tecture.

Design Goals for a Cross-Layer Feedback
Architecture

•Rapid prototyping, which would enable easy
development and deployment of new cross-layer
feedback optimizations, independent of existing
stack.

•Minimum intrusion, which would enable
interfacing with existing stack without significant
changes in the existing stack. Here significant
changes means too many or large code modifica-
tions to the layer(s). This would aid in maintain-
ability, that is, easy extension or reversal of the
cross-layer optimization and protecting the cor-
rectness of the stack, with minimal efforts.

•Portability, which would enable easy port-
ing to different systems.

•Efficiency, which would enable efficient
(minimum execution overhead) implementation
of cross-layer feedback.

The above goals motivated our study of the
need for a cross-layer feedback architecture. In
the next section, we discuss existing approaches
to cross-layer feedback.

RELATED WORK
We discuss various architectures for cross-layer
feedback within the mobile device.

One of the early proposals is the Physical
Media Independence (PMI) [6] architecture. In
PMI, cross-layer feedback is achieved through
guard modules and adaptation modules. PMI is

An ad hoc approach

could be used to

implement

cross-layer feedback,

that is, blocks of

code could be

introduced in the

existing layers to

enable cross-layer

feedback. For

example, to enable

TCP to receive

hand-off information

from the MAC layer,

additional code

would be introduced

in the TCP and

MAC layers.

RAISINGHANI LAYOUT 12/20/05 7:57 AM Page 86

IEEE Communications Magazine • January 2006 87

aimed at monitoring the network interface avail-
ability. Guard modules monitor interface charac-
teristics such as connected, powered, and so forth.
Adaptation modules attached to each layer of the
network stack receive policy-related information
from higher-layer modules, and event indications
from lower-layer modules. The adaptation mod-
ules adapt the respective layers using the operat-
ing system utilities. The information about
interface events propagates layer by layer. For
example, if the MAC layer receives an event for
adaptation, it would adapt its behavior first and
then propagate the information to the next high-
er layer.

An architecture that is focused on the net-
work environment was proposed in [7]. In this
architecture, cross-layer feedback is achieved
through Internet Control Message Protocol
(ICMP) messages. The physical/MAC layers,
network layer, and application layer/user moni-
tor the network for events such as bandwidth
change, hand-off, and so on. When an event
occurs, the information is propagated to the
upper layers through ICMP messages (we refer
to this as the ICMP-arch). These ICMP mes-
sages are generated by some module running on
the system and contain all the event-related
information. A special handler at the socket
layer traps these messages, adapts protocols, and

also propagates the information to the applica-
tions. The applications register for events using
the Application Programming Interface (API)
provided. The protocol adaptations are defined
by the application developer using the API pro-
vided.

Cross-layer information can also be
exchanged through an Interlayer Signaling Pipe
(ISP) [8], that is, through packet headers. This is
suitable for cases where some adaptation may be
required at lower layers for each packet from
higher layers. However, this requires that lower
layers be able to read higher-layer headers. This
necessitates modification to the layer code where
adaptation is required. For cross-layer feedback
from lower to higher layers, the lower layers
would need to change the packet header, which
could lead to packet errors.

Cross-Layer Signaling Shortcuts (CLASS)
was proposed in [9]. CLASS allows direct inter-
action between the layers. For example, the
application layer can directly interact with the
link layer. However, CLASS has drawbacks simi-
lar to that of an ad hoc approach.

MobileMan [10] adds another stack compo-
nent called Network Status. This component is a
repository provided for network information
sharing among the layers. The access to Network
Status is standardized. MobileMan recommends

nnnn Figure 1. ECLAIR: cross-layer feedback architecture.

Existing stack

User

ECLAIR

Tuning layers

Im
p1

Im
p2

Im
p3 App1 TL

App2 TL

User TL

Generic
Implementation

specific
Optimizing
subsystem

Protocol
optimizer 1

Protocol
optimizer 2

Protocol
optimizer 3

Protocol
optimizer n

RegisterOptimizing action Notify

Application

Transport

Network

MAC

PHY 802.11
PHY TL

M
A

C
TL

802.11
MAC TL

PH
Y

TL

802.11
PHY TL

802.11
PHY TL

GPRS
MAC TL

GPRS
PHY TL

N
et

BS
D

Li
nu

x

U
ni

x TCPTL

UDPTL

Mobile
leIPTL

IPTLNetwork TL

Transport TL

Application TL

User TL

Mobility
support TL

MobileMan

recommends

replacing the

standard protocol

layer with a

redesigned network-

status-oriented

protocol, so that the

protocol can interact

with Network Status.

MobileMan has been

deployed on

experimental

testbeds for

ad hoc networks.

RAISINGHANI LAYOUT 12/20/05 7:57 AM Page 87

IEEE Communications Magazine • January 200688

replacing the standard protocol layer with a
redesigned network-status-oriented protocol, so
that the protocol can interact with Network Sta-
tus. MobileMan has been deployed on experi-
mental testbeds for ad hoc networks.

The framework in [11] proposes a cross-layer
manager. The protocol layers expose events and
state variables to the cross-layer manager. Man-
agement algorithms are woken up by the events.
The cross-layer manager uses the state variables
to query/set the protocol internal state. Four
interlayer coordination planes are identified,
namely, security, quality of service, mobility, and
wireless link adaptation. Internal details of this
framework are not available.

The above examples of cross-layer feedback
focus on improvements within the protocol stack.
The Global Resource Adaptation through Coop-
eration (GRACE) framework [12] is aimed at
cross-layer adaptation across the hardware, soft-
ware (OS), and application layers. However,
GRACE does not address adaptation of any the
protocol stack layers.

The cross-layer architectures proposed in the
literature that focus on cross-layer interaction
within the stack on the mobile device [6–11] do
not address the all the design goals identified
above. These architectures do not fully address
the goals of rapid prototyping, maintainability,
portability, and efficiency. In MobileMan [10], it
is recommended that the protocol layer be
replaced by a redesigned protocol. This would
lead to increased implementation and mainte-
nance efforts. Further, the layers may need to be
changed in case the Network Status component
is enhanced. Efficiency would be lower in archi-

tectures such as ICMP-arch [7] since the infor-
mation is wrapped in ICMP messages, which
increases the event communication overheads. In
PMI [6] as well the event information propagates
layer by layer, which would decrease the cross-
layer execution speed. In ISP [8] the overhead of
scanning each packet and adaptation would slow
down the execution of the lower layers and thus
reduce throughput. Further, there is no provision
for any-to-any layer-event communication in
either PMI [6], ICMP-arch [7], or ISP [8].

We refer interested readers to [5] for useful
caveats and principles related to cross-layer
feedback design and to [3] for a survey of cross-
layer feedback optimizations.

Thus far we have presented the existing
approaches to cross-layer feedback. As dis-
cussed, these approaches do not fully address
the design goals identified in the previous sec-
tion. In the next section we present our proposal
for a cross-layer feedback architecture —
ECLAIR — which is based on the design goals
presented above.

ECLAIR DESIGN
For enabling rapid prototyping of new cross-layer
feedback optimizations, ECLAIR is split into
two subsystems: TLs and OSS. Figure 1 shows
the details of ECLAIR.

Tuning Layers — The purpose of a TL is to
provide an interface to protocol data structures
that determine the protocol’s behavior. For
example, a TCP tuning layer (TCPTL) is provid-
ed for TCP.

For ease of reference, we group the TLs
according to their function. For example, Trans-
port TL refers to the collection of transport pro-
tocol TLs such as TCPTL for TCP, UDPTL for
UDP, and so forth.

A TL can read and update the protocol data-
structures. A protocol implementation typically
has data-structures for control and data. A proto-
col’s behavior is determined by its control data-
structures. For example, in Linux, TCP control
information is stored in a data structure struct
tcp_opt embedded within the socket data struc-
ture struct sock. The interested reader can
refer to standard texts on Linux TCP/IP inter-
nals for details.

For the purpose of portability, a TL is subdi-
vided into a generic tuning sublayer and an imple-
mentation-specific sublayer [4] (Fig. 1).

Optimizing Subsystem — The OSS contains
the algorithms and data-structures for cross-layer
optimizations. The OSS contains many protocol
optimizers (POs). A PO contains the algorithm
for a particular cross-layer optimization. For an
optimizing action (Fig. 1; solid line, solid arrow-
head), a PO invokes a function in the TL, using
the TL’s API. The PO (or POs) registers for
events with TLs, using the register API (Fig. 1;
dashed line, hollow arrowhead). The TLs notify
the registered POs whenever an event occurs.
The PO also uses TL APIs for querying the cur-
rent state of the protocol layer which is to be
modified (e.g., the TCP’s state could be conges-
tion avoidance or slow start phase).

nnnn Figure 2. Generic tuning sublayer: example APIs.

U
se

r

set_application_priority ()
register ()

A
pp

lic
at

io
n

get_delay_requirement ()
get_bandwidth_requirement ()

register ()

IP

get_active_interface ()
set_active_interface ()

register ()

80
2.

11
M

A
C

get_contention_window ()
set_contention_window ()
get_rts_cts_threshold ()
set_rts_cts_threshold ()
get_fragmentation_threshold ()
set_fragmentation_threshold ()

register ()

80
2.

11
PH

Y

get_transmit_rate ()
set_transmit_rate ()
get_transmit_power ()
set_transmit_power ()

register ()

M
ob

ile
 IP

register ()

TC
P

get_proto_block_head ()
get_recv_win ()
get_tcp_state ()
get_rtt ()
get_retx_timer ()

set_recv_win ()
set_tcp_state ()
set_rtt ()
set_retx_timer ()

register ()

RAISINGHANI LAYOUT 12/20/05 7:57 AM Page 88

IEEE Communications Magazine • January 2006 89

The OSS executes concurrently with the exist-
ing protocol stack and does not increase the
stack-processing overhead.

Some example APIs of the generic tuning
sublayer are presented in Fig. 2, where MAC
and Physical TL APIs for the 802.11 Wireless
LAN standard are shown.

Besides meeting the design goals highlighted
earlier, ECLAIR provides additional benefits.
Since the cross-layer system is separate, it can be
easily/dynamically enabled or disabled. Also,
individual POs may be enabled or disabled.
Besides the layer-specific TLs, ECLAIR also has
a User TL (UTL). UTL allows a device user or
an external entity (e.g., a distributed algorithm
or a base station) to tune the device behavior.
Lastly, ECLAIR allows any-to-any layer commu-
nication through the POs.

In the next section, we present a prototype
implementation of ECLAIR. The prototype is
based on user feedback to TCP [13, 14]. User
feedback has also been proposed by other
researchers in different contexts. However, we
restrict the focus of this article to the architec-
tural aspects of cross-layer feedback.

ECLAIR IMPLEMENTATION:
USER FEEDBACK

Users can provide useful feedback for improving
the performance of the stack or the user experi-
ence [13, 14]. One example is when a user may
want to control the throughput of applications
running on the device. For example, a user may
want one file download to get more bandwidth
than another.

One method of controlling the application’s
bandwidth share is through manipulation of
the receiver window of its TCP connection [13,
14]. TCP uses congestion- and flow-control
mechanisms to avoid swamping the network or
the receiver [1]. The receiver reflects its receive
buffer status by the advertised window field in
the acknowledgments to the sender. When the
network losses are low, the send rate of a TCP
sender is determined by this advertised win-
dow. This property can be exploited to inten-
tionally restrict the throughput of some
applications on the mobile device. This would
lead to increased throughput for the rest of the
applications.

Algorithm: The user assigns some priority
number to each application. An application’s
priority number is used to calculate its receiver
window.

Implementation: The use of ECLAIR for the
above PO, the receiver window control PO (RWC
PO), is shown in Fig. 3.

The explanation of the sequence shown in
Fig. 3 is as follows: (1) TCPTL reads data-struc-
ture location information at system start; (2a),
(2b) the PO registers for user events and the
user changes priorities for running applications;
(3) application and respective priority informa-
tion is passed to the RWC PO; (4a), (4b) cur-
rent receiver window/buffer information is
collected via TCPTL (this information is used to
re-calculate the new receiver window values for
the various applications, and it is assumed that
the application can be identified by the sockets);
(5a), (5b) the receiver window values are set for
each application.

In Fig. 3, the dotted lines from sock repre-

nnnn Figure 3. ECLAIR architecture: receiver window control.

ECLAIR

Existing stack
modules

Cross-layer feedback
modules

TCP data structures

sock{}
User tuning layer2b

2a

5a5b

4b 4a

3
UTL

TCP

1
TCPTL

{

}

On event 3

RWC PO

User (device user)

Optimizing
subsystem
(OSS)

tcp_opt{}

Users can provide

useful feedback for

improving the

performance of the

stack or the user

experience. One

example is when a

user may want to

control the

throughput of

applications running

on the device.

For example, a user

may want one file

download to get

more bandwidth

than another.

RAISINGHANI LAYOUT 12/20/05 7:57 AM Page 89

IEEE Communications Magazine • January 200690

sent the memory references from sock to other
data structures.

We refer the interested reader to [4] for the
design of Mobile-IP and TCP interaction, using
ECLAIR.

Next, we present the implementation details
of user feedback (RWC) based on the architec-
ture presented above.

User Feedback: Implementation Details —
We chose Linux for the implementation since its
source code is freely available and modifiable.
The relevant TCP data-structures are in the
header file sock.h. tcp_opt is TCP’s control
data-structure. sock is the socket data-structure.
window_clamp and rcv_ssthresh are used

for controlling the advertised window in TCP.
Figure 4 shows the call flow of the RWC proto-
type implementation using ECLAIR. Our cur-
rent implementation largely has TL functionality
only. In this prototype the RWC calculation is
performed by the user. The parameters are
passed to the TL to change the control parame-
ters (receiver window) in the socket. The IP
address parameter is used to identify the applica-
tion’s TCP socket within which the receiver win-
dow value is to be changed.

The RWC PO and TL are coded in a single
kernel-loadable module. No modification was
required to the existing TCP layer code. Inter-
ested readers can refer to standard texts about
Linux device drivers for details about writing
Linux kernel modules.

Using the above implementation, on a Linux
desktop, we conducted experiments over our
department’s wireless LAN. The desktop was
connected to our department LAN using 802.11
wireless LAN equipment. We started two http
file-transfer sessions from the desktop to two
Web servers on our department LAN. The desk-
top was the receiver. Figure 5 shows the result
when RWC was not invoked. The flow that starts
first (flow 1) gets most of the bandwidth. In
another set of experiments, during the transfer,
RWC was invoked on the desktop in order to
reduce the receiver window of flow 1. The result-
ing graph (Fig. 6) shows the decrease in through-
put of the session (flow 1) controlled by RWC
and an increase in throughput of the other ses-
sion (flow 2). These experiments validate our
ECLAIR implementation.

In this section, we discussed ECLAIR design,
its prototype implementation, and validation. In
the next section we present a cross-layer feed-
back design guide.

CROSS-LAYER
FEEDBACK DESIGN GUIDE

ARCHITECTURE SELECTION
To ensure correctness and efficiency, one of the
primary criteria for selecting a cross-layer feed-
back architecture is the type of adaptation. The
adaptation can be synchronous or asynchronous.
In synchronous adaptation, whenever a layer
receives some cross-layer feedback, it proceeds
with its regular execution only after executing the
adaptation required. For example, assume that a
network disconnection event is detected and TCP
adaptation is required. In the synchronous case,
TCP’s regular execution would proceed only
after the required adaptation is completed. In
the asynchronous case, the control data-struc-
tures of TCP would be updated so as to effect a
change in TCP behavior while TCP execution is
in progress.

ECLAIR is suited for asynchronous adapta-
tion, since it is separate from the existing stack.

Cross-layer feedback correctness would be
affected if an architecture suitable for asyn-
chronous adaptation were used for synchronous
adaptation. For example, cross-layer feedback
adaptation, which is to be triggered by informa-
tion contained in each packet, would fail if an
asynchronous architecture like ECLAIR were

nnnn Figure 4. Call flow: RWC using ECLAIR.

Window_clamp
rcv_ssthresh

sock {}

tcp_opt {}

USER space

KERNEL space

U
se

r
pr

og
ra

m
C

ha
ra

ct
er

 d
ev

ic
e

dr
iv

er
 (

ke
rn

el
 m

od
ul

e)

ioctl(<characterdevice>,
 <param>,rwc_struct);

RWCIOctl {

 receive rwc_struct from user space;
 rcvwin = input receiver window value;

 linux_set_rcv_win {
 // tcp socket list head from tcp.h

 traverse socket list;
 locate specific socket;

 // write to socket struct fields

 tp->window_clamp = rcvwin;
 tp->rcv_ssthresh = rcvwin;

 }

 }

 Input parameters
 from command prompt:
<IP address> of sender
<Receive_window_value> read params into rwc_struct;

nnnn Figure 5. Receiver window control experiments over WLAN (802.11): no
RWC.

Time (s)

00:08 00:0900:00
200

300

Th
ro

ug
hp

ut
 (

kb
yt

es
/s

)

400

500

600

700

800

00:0700:0600:0500:0400:0300:0200:01

Flow 1 (no RWC)
Flow 2 (no RWC)

RAISINGHANI LAYOUT 12/20/05 7:57 AM Page 90

IEEE Communications Magazine • January 2006 91

used. Furthermore, the efficiency would be
reduced if a synchronous architecture were used
for an adaptation, which can be done asyn-
chronously.

To highlight the impact on efficiency, we con-
sider RWC, as explained above. In this case, the
primary requirement is to apportion application
bandwidth, which can be done through asyn-
chronous adaptation. It may not be essential to
tune application bandwidth synchronously. In the
implementation proposed in [14], each read()
of the application invokes RWC algorithm, that
is, the adaptation is synchronous with applica-
tion execution. This would reduce the applica-
tion execution speed hence throughput. If an
asynchronous architecture (e.g., ECLAIR) is
used, the application speed would not be
reduced.

Subsequent to the architecture choice based
on the type of cross-layer feedback, it is essential
to minimize the overheads of the cross-layer
feedback implementation. In the following sub-
sections we discuss the design guide for ECLAIR
implementations for single and multiple PO
cases.

ECLAIR USAGE
Single Cross-Layer Optimization — Separat-
ing POs and TLs into a separate cross-layer sys-
tem, outside the stack, introduces the overhead
of additional function calls. Hence, in case only a
single cross-layer optimization is planned and the
cross-layer system is not to be ported/deployed
on multiple operating systems, then it would be
better to modify the layer code. This would
reduce the overhead of multiple function calls
between the PO and the TL and hence increase
the efficiency of the implementation.

Multiple Cross-Layer Optimizations — In
case of multiple cross-layer optimizations, POs
and TLs should be implemented as specified in
the ECLAIR architecture.

If multiple cross-layer optimizations or POs
directly access the layers, then there is high
dependency of the POs on the layer’s code. Any
change to the layer code will lead to a change in
all the POs interacting with that layer. This
would lead to the maintainability and portability
issues highlighted above. Reducing such depen-
dence is useful for easy maintainability of the
cross-layer system. Introduction of a TL leads to
reduction in the dependency between the layer
code and POs. While a TL is dependent on the
layer code, the impact of a change to the stack is
reduced and localized to the TL’s implementa-
tion specific sublayer. Multiple protocol opti-
mization modules that use the TL need not be
changed, since the generic tuning sublayer inter-
face remains unchanged. Similarly, when the
cross-layer system needs to be ported to another
operating system, only the implementation-spe-
cific sublayer needs to be changed.

In summary, ECLAIR should be used if the
cross-layer type is asynchronous. Furthermore,
POs and TLs should be implemented, as pro-
posed in ECLAIR, if multiple cross-layer opti-
mizations are to be implemented or if the
cross-layer system is to be ported to multiple
operating systems.

CONCLUSION

Layered protocol stacks are inefficient when
deployed in wireless networks. Hence, cross-
layer feedback is essential. However, ad hoc
cross-layer feedback implementations lead to
problems related to easy development/deploy-
ment, maintainability, portability, and execution
efficiency. Thus, an appropriate architecture for
cross-layer feedback is essential.

The key design goals for a cross-layer feed-
back architecture are rapid prototyping, minimum
intrusion, portability, and efficiency. Our architec-
ture ECLAIR satisfies these design goals by
splitting the cross-layer system into TLs and an
OSS. Our prototype implementation of user
feedback (RWC) validated ECLAIR.

Cross-layer feedback can be asynchronous or
synchronous. For ensuring the correctness and
efficiency of cross-layer feedback, the right archi-
tecture needs to be selected. ECLAIR is suitable
for asynchronous cross-layer feedback. ECLAIR
POs and TLs would introduce some overheads;
however, POs and TLs are useful for cross-layer
feedback design, implementation, and evolution.

ECLAIR and various other architectures pro-
posed in the literature do not solve all the issues
related to cross-layer feedback. For example,
one of the important issues is cross-layer feed-
back conflict [5]. ECLAIR provides components
that can be used for implementing conflict-reso-
lution mechanisms.

REFERENCES
[1] W. R. Stevens, TCP/IP Illustrated, Volume I, The Protocols,

AWL, 1994.
[2] Y. Tian, K. Xu, and N. Ansari, “TCP in Wireless Environ-

ments: Problems and Solutions,” IEEE Commun. Mag.,
vol. 43, no. 3, 2005, pp. S27–S32.

[3] V. T. Raisinghani and S. Iyer, “Cross-Layer Design Opti-
mizations in Wireless Protocol Stacks,” Comp. Com-
mun., vol. 27, no. 8, 2004, pp. 720–24.

[4] V. T. Raisinghani and S. Iyer, “ECLAIR: An Efficient
Cross-Layer Architecture for Wireless Protocol Stacks,”
World Wireless Cong., San Francisco, CA, May 2004.

[5] V. Kawadia and P. R. Kumar, “A Cautionary Perspective
on Cross-Layer Design,” IEEE Wireless Commun., vol.
12, no. 1, 2005, pp. 3–11.

nnnn Figure 6. Receiver window control experiments over WLAN (802.11): RWC.

Time (s)

00:10 00:1200:00
0

100

Th
ro

ug
hp

ut
 (

kb
yt

es
/s

)

200

300

400

500

600

700

00:0800:0600:0400:02

Flow 1 (RWC)
Flow 2 (no RWC)

RAISINGHANI LAYOUT 12/20/05 7:57 AM Page 91

[6] J. Inouye, J. Binkley, and J. Walpole, “Dynamic Network
Reconfiguration Support for Mobile Computers,”
ACM/IEEE Int’l. Conf. Mobile Comp. and Net., Budapest,
Hungary, Sept. 1997.

[7] P. Sudame and B. R. Badrinath, “On Providing Support
for Protocol Adaptation in Mobile Networks,” Mobile
Nets. and Apps., vol. 6, no. 1, 2001, pp. 43–55.

[8] G. Wu et al., “Interactions between TCP and RLP in
Wireless Internet,” IEEE GLOBECOM, Rio de Janeiro,
Brazil, Dec. 1999, vol. 1B, pp. 661–66.

[9] Q. Wang and M. A. Abu-Rgheff, “Cross-Layer Signaling
for Next-Generation Wireless Systems,” WCNC, vol. 2,
Mar. 2003, pp. 1084–89.

[10] M. Conti et al., “Cross-Layering in Mobile Ad Hoc Net-
work Design,” IEEE Comp., vol. 37, no. 2, 2004, pp.
48–51.

[11] G. Carneiro, J. Ruela, and M. Ricardo, “Cross-Layer
Design in 4G Wireless Terminals,” IEEE Wireless Com-
mun., vol. 11, no. 2, 2004, pp. 7–13.

[12] W. Yuan et al., “Design and Evaluation of a Cross-
Layer Adaptation Framework for Mobile Multimedia
Systems,” SPIE/ACM Multimedia Comp. and Net. Conf.,
Santa Clara, CA, 2003.

[13] V. T. Raisinghani, A. K. Singh, and S. Iyer, “Improving
TCP Performance over Mobile Wireless Environments
using Cross-Layer Feedback,” IEEE ICPWC, New Delhi,
India, Dec. 2002.

[14] P. Mehra, A. Zakhor, and C. Vleeschouwer, “Receiver-
Driven Bandwidth Sharing for TCP,” IEEE INFOCOM, San
Francisco, CA, Apr. 2003.

BIOGRAPHIES
VIJAY T. RAISINGHANI (rvijay@it.iitb.ac.in) is a Ph.D. student at
the School of Information Technology at Indian Institute of
Technology (IIT) Bombay. His Ph.D. is sponsored by TATA
Infotech Ltd, Mumbai, where he is working as an associate
consultant. His research interests include cross-layer feedback
and seamless mobility. He received his M.Tech. from the
School of Information Technology at IIT Bombay. Additional
information is available at http://www.it.iitb. ac.in/~rvijay

SRIDHAR IYER (sri@it.iitb.ac.in) is presently an associate pro-
fessor in the School of Information Technology at IIT Bom-
bay. Prior to this, he was a faculty member in the
Department of Computer Science and Engineering at IIT
Guwahati. His research interests include networking proto-
cols and multimedia tools for distance education, wireless
networking, mobile computing frameworks, and some
areas of program/protocol verification. He received his
B.Tech., M.Tech., and Ph.D. degrees from the Department
of Computer Science and Engineering at IIT Bombay. Addi-
tional information can be found at http://www.it.iitb.
ac.in/~sri

92 IEEE Communications Magazine • January 2006

RAISINGHANI LAYOUT 12/20/05 7:57 AM Page 92

