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ABSTRACT

Transmission Control Protocol (TCP) is known to suffer from
performance degradation in mobile wireless environments. This
is because such environments are prone to packet losses due to
high bit error rates and mobility induced disconnections. TCP
interprets packet losses as an indication of congestion and inap-
propriately invokes congestion control mechanisms, which leads
to degraded performance. In this paper we show how cross-layer
feedback, i.e. information from layers above and below, may be
used to improve TCP performance over wireless networks.

To illustrate the power of cross layer feedback, we present two
novel mechanisms. One, we incorporate user feedback into the
protocol stack by which the TCP throughput of a desired set of
applications running on the mobile host can be dynamically con-
trolled. Other, we propose an approach to use the lower layer con-
nection and disconnection information, for improving TCP perfor-
mance. Both these mechanisms entail minimal modification to the
mobile host and no modifications to the sender or other network
entities.

We have implemented both these mechanisms in ns-2 and the
simulation results demonstrate the effectiveness of cross layer
feedback.

I. INTRODUCTION

Transmission Control Protocol (TCP) [18] is a reliable,
connection-oriented, full-duplex, transport protocol widely used
in wired networks. Mobile wireless environments are prone to
packet losses, high bit error rates, and mobility induced discon-
nections. TCP interprets packet losses as an indication of conges-
tion and inappropriately invokes congestion control mechanisms,
which leads to degraded performance [20].

Much research has been done proposing various mechanisms
for improving TCP performance [3], [9], [13], [14]. However,
few approaches utilize the information available at other layers
[6]. We believe that leveraging information at other layers may
have significant impact on improving the performance of TCP. In
this paper we show (i) the benefit of using user level feedback and
(ii) using lower layer feedback for improving TCP performance.

Our first contribution is the idea of incorporating user feedback
into the protocol stack. For example: A user could dynamically
indicate application priorities and the system may in turn tune the
receiver buffers of the various applications to control the through-
put of the applications.

While some approaches [10], [11] have been proposed for au-
tomatic tuning of TCP buffers at application start, there are others

�

This author is a Ph.D student at IIT Bombay, sponsored by Tata Infotech Ltd.

which propose dynamic tuning of the receive buffers based on the
varying bandwidth-delay product and application characteristics
[8], [15]. However, all of these approaches focus on increasing
the overall throughput of applications. Further, none of these ap-
proaches take into consideration the dynamic changing of appli-
cation priorities. We believe that user feedback can be gainfully
used by the system to increase the throughput of TCP, as per user
specified application priorities.

We show using simulations in ns-2, that user feedback in terms
of application priority, implemented as receiver window control
(RWC), helps improve throughput of the desired applications.

Our second contribution is the approach of using lower layer
feedback, in terms of connection and disconnection signals, to im-
prove TCP performance.

While several approaches have been proposed for improving
TCP performance under adverse channel conditions [3], [4], [9],
[13], [14], there are a few approaches [5], [6], [16] which tackle
mobility induced disconnection. Also, most of these schemes do
not work well when the sender is the mobile host (MH) instead of
the fixed host (FH). We use network layer feedback to appropri-
ately manipulate the TCP congestion control mechanism, leading
to enhanced TCP throughput in both directions of data transfer.

We show using simulations in ns-2 that network layer feedback
leads to significant improvement in TCP performance.

The paper is organized as follows: section II presents an
overview of cross layer feedback. In section III we present our
user feedback scheme, section IV presents the receiver window
control mechanism. In section V we present our lower layer feed-
back scheme. Section VI concludes the paper.

II. CROSS LAYER FEEDBACK

It is well known that layering is desirable since it helps in cre-
ation of standard modular software components. However, proto-
col stack implementations based on layering do not function effi-
ciently in mobile wireless environments. This is due to the highly
variable nature of wireless links and the resource-poor nature of
mobile devices. We believe that cross layer feedback may be used,
to improve the performance of layered protocol stacks, in wireless
environments.

Cross layer feedback can be categorized as follows:
� Upper to lower layers: This feedback may be application QoS
requirements to lower layers, user feedback, and TCP timer infor-
mation to lower layers.
One example of upper to lower layer feedback is [7], which
presents a model to adapt the maximum number of link-layer re-
transmissions based on the QoS desired at the transport layer.



� Lower to upper layers: This feedback may be link characteris-
tics and network connectivity information to upper layers. A few
of the schemes that use lower layer feedback to improve the per-
formance at upper layers like TCP are as follows: [6] propose us-
ing Mobile-IP layer feedback for inducing fast retransmit at TCP.
This helps in reducing the multiple timeouts in TCP due to cellu-
lar handoffs. Along similar lines, [19] propose the use of layer2
hand-off information at the Mobile-IP layer to reduce Mobile-IP
hand-off latency.

In the next section, we present our idea of upper to lower layer
feedback i.e. user feedback.

III. USER FEEDBACK

While some aspects of cross layer feedback have been explored
[6], [7], [19], to the best of our knowledge none of these schemes
employ user inputs for dynamically controlling application prior-
ity.

While the system, based on heuristics, can take certain actions,
a user may be able to take better decisions, which may be con-
trary to the decision of the system. For example: a user may see
an approaching tunnel and know by experience that a disconnec-
tion will occur inside the tunnel. This information if given to the
system, to adapt pro-actively, rather than react to signal deterio-
ration or disconnection, can enable it to prioritize user specified
applications.

Another example of user feedback is dynamic application pri-
oritisation. A user may be running multiple applications on his
MH, such as a ftp application and a video conference. By default,
the system may assume the real-time application (video confer-
ence) to be of higher priority than the ftp. However, in view of
impending disconnection a user may want the ftp to take higher
priority. This is contrary to the usual assumption that the video-
conference is of higher priority. Further, these priority require-
ments may change over time. In the next section we discuss one
method, for controlling dynamic application priority, by modify-
ing the receiver window.

A. Implementing user feedback

User feedback can be communicated to the appropriate layers
of the protocol stack by having a module which captures user in-
puts, like application priority, and conveys it through a separate
control path to lower layers like TCP. The module may interpret
the user inputs into layer specific information. For example: ap-
plication priority information may be mapped to receiver window
control.

The details of the mechanisms for communicating user feed-
back is beyond the scope of this paper.

In the next section, we describe one method of mapping user
feedback about application priorities to lower layer specific infor-
mation i.e. the receiver window control mechanism.

IV. RECEIVER WINDOW CONTROL (RWC)

TCP uses congestion and flow control mechanisms to avoid
swamping the network or the receiver [12]. When the sender is
not congestion window limited, the receiver can control the trans-
mission rate of the sender by advertising a window, which reflects
the buffer state at the receiver. The current TCP implementations

have fixed receive buffer sizes for all applications. Application
level APIs are available, that allow an application to set its re-
ceiver buffer at the start of a connection [17]. However, once set
it cannot be modified to reflect changes in application priorities.

We note that throughput for a TCP connection is is decided
by the receiver window setting and the corresponding bandwidth-
delay product [18]. In case of multiple flows, each having a dif-
ferent bandwidth-delay product, each of the flows will have a dif-
ferent optimum receiver window(awnd). This property of awnd’s
relation to the bandwidth-delay product can be exploited to in-
tentionally make some of the TCP sessions get lower throughput,
and thus dynamically control the application priorities. We call
this approach Receiver Window Control(RWC). This assumes that
total actual receiver buffer space is large enough to allow manip-
ulation(increase or decrease) of the awnd values for the different
sessions.

The intuitive benefits of using RWC can be seen from the fol-
lowing examples: Consider a user running multiple downloads on
a wireless device. Now, the user increases the priority of a par-
ticular download. Through RWC, the advertised window and thus
the throughput can be increased for the higher priority download
and by decreasing the advertised window, the throughput can be
decreased for the lower priority downloads. This control is dy-
namic and is invoked as and when the user changes application
priorities.

A. RWC details

The actions for RWC are summarized below:
Let, � be the number of applications,���

Bandwidth available to MH on the bottleneck link, which is
shared among the applications running on MH.

�
is assumed to

be constant.�����	�
�
for all the applications on the MH and is assumed to be

constant
For the �
��� application, let – before user feedback ��� ����� � initial
advertised window, � � � initial user defined priority, and after
user feedback ��� ������ � new advertised window (computed using
RWC), � �� � new user defined priority. ��� ����� , ��� ������ , � � and � ��
are normalized integer values.
We note that the following condition holds:��
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When user changes priority �-, of application . to � � , , change
advertised window of the applications as follows:
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The priorities are used for relative ordering of the applications and
actual numbers have no significance.

For example, consider three applications. Let,
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. From equation 2: ��� ��� � ��@E?
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and
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. Now, after user feedback, let � � � �IH
( � �A �J@

and
� �D �K@
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,
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and from equation 3: ��� ������ �)>M?Q<R@EST��@VU

. Thus,
it can be seen that RWC increases awnd for the higher priority
application and decreases awnd for the lower priority applications.



In the next section, we discuss our simulation setup and results
for RWC.

B. RWC Simulation Setup

To validate our idea we have conducted some preliminary sim-
ulations, using ns-2. The simulation setup is shown in figure 1.

Two ftp flows, f � and f A , were run from the two FHs, N1 and
N2 respectively. Each simulation run was of 10s duration. The
user feedback was simulated by setting the window parameter of
the TCP sessions, at a time of 5 seconds. The initial priorities
were: � � � @

and � A � @
. This leads to

!���>�H
packets. Thus

from equation 2, ��� ��� � �P@GS
and ��� ��� A �I@ES

. After feedback,
� � � �"H

and � �A �F@
. Thus from equation 2, ��� ������ ��@M@

and from
equation 3, ��� �����A �"H @

.
One set of simulations were done assuming no losses on the

links. A second set was done, assuming a loss of 0.1% on the link
N3-N4, before and after feedback.

C. Observations
� Scenario 1: No loss with no RWC – (figure 2). As expected the
throughput of both f � and f A is found to be equal, each � 1 Mbps.

� Scenario 2: No loss with RWC – (figure 3) the throughput for
f � increases to � 1.31 Mbps (increase by 31%) and that for f A
decreases to � 0.69 Mbps (decrease by 31%).

� Scenario 3: 0.1% loss with RWC – (figure 4) user feedback has
the effect of increasing the throughput for f � , even if there are
some packet losses.

Fixed Host (FH)

2 Mbps, 60ms

N1 100 Mbps, 4ms

100 Mbps, 4msN2

N3 N4

Fixed Host (FH)

Mobile Host (MH)

Fig. 1. RWC: Simulation setup
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Fig. 2. Scenario 1: No loss with no RWC

These simulation results validate our intuition about RWC being
useful for application prioritisation. Further detailed experiments
are needed before we can draw stronger conclusions about RWC.
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Fig. 3. Scenario 2: No loss with RWC
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Fig. 4. Scenario 3: 0.1% loss with RWC

V. LOWER LAYER FEEDBACK

We now describe our approach, ATCP, which utilizes lower
layer feedback regarding status of connectivity. ATCP assumes
that the network layer sends a connection event signal to TCP
when MH gets connected to the network and a disconnection event
signal when the MH gets disconnected from the network. It uses
this information along with the RTO information to enhance TCP
throughput.

The working of ATCP is summarized in tables I and II.
For MH to FH transfer, the corresponding actions enable ATCP

to quickly regain the cwnd value prior to disconnection, thus re-
ducing under utilization of the available link capacity.

For FH to MH transfer, the corresponding actions prevent TCP
at FH from taking congestion control measures when packets are
lost due to MH being disconnected.

A. ATCP Simulations and Observations

Figure 5 shows the simulation setup. Only RTT � 5ms graphs
are being presented for illustration. Detailed simulation results for
other values may be found in [1], [2]

For MH to FH data transfer (figure 6) having short RTT con-
nections, ATCP shows a throughput improvement of upto 40% as
compared to TCP Reno. TCP Reno performance degrades due to
its halving of ssthresh and exponentially increasing the retrans-
mission timer, at each RTO. 3DA [6] and Freeze-TCP [16] do not



Event State ATCP action

Disconnection Sending window
open

Do not wait for
ACK for pack-
ets sent, cancel
retransmission
timer

Sending window
closed and wait-
ing for acks

Do not cancel
RTX; wait for
RTO event

Connection Sending window
open

Send data and set
new RTX. ACK
for new data ac-
knowledges data
sent before dis-
connection

Sending window
closed and RTO

Retransmit

Sending window
closed and no
RTO

Wait for RTO

RTO Disconnected set ssthresh =
cwnd at discon-
nection and set
cwnd = 1

Connected and
Disconnec-
tionOccurred =
true

Retransmit lost
packet with-
out modifying
ssthresh or cwnd

TABLE I

ATCP: MH IS TCP SENDER

Event ATCP action

ATCP delays the ACK for the last two bytes by �
milliseconds (at most 500 ms)
Disconnection Update network connectivity status
Connection Send ACK for first pending byte

with zero window advertisement
Send ACK for second pending byte
with full window advertisement

TABLE II

ATCP: MH IS TCP RECEIVER

mention any actions when the MH is the sender, hence ATCP not
compared with these approaches in this case.

For FH to MH data transfer (figure 7), ATCP shows improve-
ment in throughput over TCP Reno and 3DA [6]. In WLAN en-
vironments, the performance of ATCP is similar to that of Freeze-
TCP and both show an improvement of upto 40% over TCP Reno.
This is because both ATCP and Freeze-TCP reduce the idle period
on reconnection which occurs after a mobility induced disconnec-
tion.

c capacity

 FH BS MH

d msec delay
c capacity

d msec delay

For Simulating WLAN

d = 150 msec 
c = 100 Kbps For Simulating WWAN

c = 10 Mbps 
d = 1 msec 

Fig. 5. ATCP simulation setup
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We have done additional simulations, details of which are avail-
able in [1], [2]. These simulations show ATCP throughput im-
provement of upto 150% as compared to TCP Reno, in WLAN
environments.

VI. CONCLUSION

We have presented cross layer feedback and discussed its ben-
efits. Based on the mechanism of cross layer feedback, we pro-
posed two new approaches RWC and ATCP. RWC manipulates
the advertised window of the applications running on a MH. There
are other schemes which propose using advertised window to in-
crease the overall throughput of the applications[8], [10], [11],
[15]. However RWC, differs from these schemes by dynami-
cally incorporating user specified application priorities. Based on
the user input, RWC increases the advertised window and thus
throughput for higher priority applications and decreases it for the
lower priority applications. Our other scheme, ATCP uses con-
nection and disconnection feedback from the network layer at the
MH, to improve TCP performance. There have been proposals in
the past to improve TCP performance in mobile wireless environ-
ments, but most focus on improving the FH to MH transfer. ATCP
enhances TCP throughput in both directions of data transfer. Fur-
ther ATCP, is not dependent on the prediction of the disconnec-
tions as in [16].

Our future research shall focus on exploring new mechanisms
for cross layer feedback and other aspects of user feedback.
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