Mobile Agents in E-Commerce: A quantitative evaluation

Rahul Jha, Srinath Perur, Vikram Jamwal and Sridhar Tyer
K R School of Information Technology, II'T Bombay.
{rahul, srinath, vikram, sri} @it.iith.ernet.in

Abstract

Mobile Agents (MA) are emerging as a promis-
ing paradigm for the design and implementation of
e-commerce applications. While MAs have gener-
ated considerable excitement in the research com-
munity, they have not translated into a significant
number of real-world applications. One of the main
reasons for this is the lack of work that quanti-
tatively evaluates the effectiveness of MAs versus
traditional approaches. This paper contributes to-
wards such an evaluation.

We first classify the existing MA applications
i e-commerce and identify the underlying mobility
patterns. We discuss possible Client-Server (CS)
and Mobile Agent based implementation strategies
for each of these patterns. We have performed ex-
periments to quantitatively evaluate these different
strategies using the Voyager framework to imple-
ment MAs. We present our observations and dis-
cuss their implications
Keywords mobile agents, client-server, e-
commerce, quantitative evaluation, Voyager frame-
work, implementation issues.

1 Introduction

The emergence of e-commerce applications has
resulted in new net-centric business models. This
has created a need for new ways of structuring
applications to provide cost-effective and scalable
models.

Mobile Agent (MA) systems have for some time
been seen as a promising paradigm for the design
and implementation of distributed applications in-
cluding e-commerce. A mobile agent is a program
that can autonomously migrate between various
nodes of a network and perform computations on
behalf of a user. Some of the benefits provided
by MAs for creating distributed systems include
reduction in network load, overcoming network la-
tency, and disconnected operations [9]. MAs are
also useful in applications requiring distributed in-
formation retrieval since they move the location of
execution closer to the data to be processed.

While MAs have generated considerable excite-
ment among the research community, they have not
translated into a significant number of real appli-
cations. One of the main reasons for this is the

lack of work that tries to quantitatively compare
the performance of MA implementations of specific
applications with other implementations [9)].

In this paper, we first classify existing MA ap-
plications in the domain of e-commerce and iden-
tify patterns of mobility that underly these appli-
cations. We discuss several strategies for imple-
menting each of these patterns using the traditional
Client-Server (CS) and the MA paradigms. We
also identify various application parameters that
influence performance, such as, size of CS mes-
sages, size of MA, number of remote information
sources, etc., and study their effect on application
performance. We have chosen an application rep-
resentative of the domain of e-commerce and have
implemented it using both CS and MA paradigms.
These implementations consist of CS applications
using Java and MA applications using the Voy-
ager framework [7]. We present our observations
and conclusions regarding the choice of appropriate
implementation strategies for different application
characteristics.

Section 2 provides a discussion on MA applica-
tions in e-commerce. Section 3 provides a classifi-
cation of identified mobility patterns, and section
4 discusses various implementation strategies for
these mobility patterns. Section 5 describes our
experiments and presents our results. Section 6
concludes with a discussion on our inferences and
their implications.

While there exist some qualitative studies of
MAs in e-commerce [2], [6], [13] and some quanti-
tative studies of MAs in other application domains
[8], [12], to the best of our knowledge, there is no
literature on the quantitative study of MA appli-
cations in the domain of e-commerce.

2 Mobile Agents in E-Commerce

The number of people buying, selling, and per-
forming transactions on the Internet is expected
to increase at a phenomenal rate. The appli-
cation of MAs to e-commerce provides a new
way to conduct business-to-business, business-to-
consumer, and consumer-to-consumer transactions
[10]. We classify existing MA applications in
e-commerce into three categories, viz., shopping
agents, salesman agents, and auction agents.



2.1 Shopping agents

These MAs make purchases in e-marketplaces
on behalf of their owner according to user-defined
specifications. This model of e-commerce uses a
customer-driven market place. A typical shopping
agent may compare features of different products
by visiting several online stores and report the best
choice to its owner. The MA carries the set of
features to be considered and their ideal values as
specified by its owner. It is given one or more sites
to visit and may dynamically visit other sites based
on subsequent information. Since the MA moves
to the source of information, the overhead of re-
peatedly transferring potentially large amounts of
information over a network is eliminated. One ex-
ample of a system that implements shopping agents
is MAgNET, where agents deal with procurement
of the many components needed to manufacture a
complex product [11].

2.2 Salesman agents

These M As behave like a traveling salesman who
visits customers to sell his wares. This model of e-
commerce uses a supplier driven marketplace and
is particularly attractive for products with a short
shelf-life. A supplier creates and dispatches an MA
to potential buyers by giving it a list of sites to visit.
The MA carries with it information about avail-
able stock and price of the product. Since the MA
moves to the destination, the network and process-
ing latencies that contribute to delays in servicing
orders may be reduced. A system implementing
salesman agents is discussed in [10].

2.3 Auction agents

These MAs can bid for and sell items in an on-
line auction on behalf of their owners. Each MA
carries along with it information about its own-
ers bidding range, time within which the item is
to be procured, bidding pattern, and other rele-
vant attributes. In the presence of multiple auction
houses, MAs can be used for collecting information
across them. An agent can make a decision to mi-
grate to one of them dynamically, depending on the
amount of information transmitted, latency, etc.
Some advantages of using MAs include allowing
disconnected operation of auction agents, reducing
network traffic, and facilitating quicker response
during auction. One example of a system that im-
plements mobile auction agents is Nomad[14].

From the above classification, it may be observed
that mobility in MAs can be characterized by the
set of destinations that an MA visits, and the order
in which it visits them.

3 Mobility Patterns

We have identified the following parameters to
characterize the mobility of an MA:

1. Itinerary: the set of sites that an MA has to
visit. This could either be statically fixed at

the time of agent initialization, or dynamically
determined by the MA.

2. Order: the order in which an MA visits sites
in its itinerary. This may also be determined
statically or dynamically.

Based on these parameters, we distinguish MA ap-
plications in e-commerce as possessing one of the
following mobility patterns:

e Static Itinerary (SI)
The itinerary of the MA used in the applica-
tion is known a priori and does not change.
We further distinguish such applications based
on order as:

— Static Itinerary Static Order (SISO)
The order in which an MA completes its
itinerary is static and known a priori.
An example application is an auction MA
which is required to visit a set of auction
houses in a specified order.

— Static Itinerary Dynamic Order
(SIDO)
The order in which an MA completes its
itinerary is decided dynamically by the
MA. An example application is a shop-
ping MA which finds the minimum price
for a product from a set of on-line shops.
The order in which the shops are visited
may be irrelevant and could be dynami-
cally determined by the MA.

e DI (Dynamic Itinerary)

The itinerary of the MA used in the applica-
tion is determined dynamically by the agent
itself. However, at least the first site in the
itinerary should be known a priori. An ex-
ample application is a shopping MA that is
required to find a particular product. A shop
that does not contain the product may rec-
ommend an alternative shop, and this recom-
mended shop is included in the MAs itinerary
dynamically.

It may be noted that dynamic itinerary im-
plies dynamic order and the distinction be-
tween static order and dynamic order is not
meaningful in this case.

4 TImplementation Issues
4.1 Implementation Strategies

We have identified four implementation strate-
gies that may be adopted by e-commerce applica-
tions:



¢« ¥ »
5 % @ Client
1 4
. Server

. Mobile Agent

(a) Sequential Client Server (b) Sequential Mohile Agent » Message exchange

(¢) Parallel Client Server (d) Parallel Mobile Agent

123456 Numbers along the arrows
indicate the sequence of
messages ./ MA mavement

Figure 1: Implementation strategies

. Sequential CS

This is based on the traditional client-server
paradigm. The client makes a request to
the first server and after processing the reply,
makes a request to the second server and so on,
till the list of servers to be visited is exhausted.
This strategy is illustrated in figurel(a).

. Sequential MA

In this case a single MA moves from its source
of origin (client) to the first site (server) in
its itinerary. It then moves to the next site
and so on, till it has visited all the sites in its
itinerary. This strategy is illustrated in figure

1(b).

. Parallel CS

This also based on the client-server paradigm.
However, instead of sequential requests, the
client initiates parallel threads of execution
where each thread concurrently makes a re-
quest to one of the servers and processes the
reply. This strategy is illustrated in figure

1(c).

. Parallel M A

In this case the client initiates multiple MAs,
each of which visits a subset of the servers in
the itinerary. The MAs then return to the
client and collate their results to complete the
task. This strategy is illustrated in figure 1(d).

4.2 Implementation for different mobility
patterns

The feasible implementation strategies for differ-
ent mobility patterns identified in section 3 are as
follows:

1. SISO: Since the order of visit is fixed stat-
ically, the possible implementation strategies
in this case are:

e Sequential CS
e Sequential MA

Parallel CS and parallel MA strategies cannot
be used for SISO applications since the order
in which the MA visits servers may be impor-
tant to the application being implemented.

2. SIDO: Since the order of visit is determined
dynamically, all the strategies outlined in sec-
tion 4.1 are possible, namely:

e Sequential CS
e Sequential MA
e Parallel CS
e Parallel MA

3. DI: Since the itinerary is determined dynam-
ically, the possible implementation strategies

It is also possible to use combinations of the above in this case are:

strategies. In our experiments, we restrict our- .
selves to these four strategies only. * Sequential CS

e Sequential MA



Turnaround time (sec)
\

’ — MA

-—-—-C5 ofcatalog size 100K
CS ofcatalog size 200k
CS of catalog size 500K
CS ofcatalog size 1MB

No. of shops visited

Figure 2: Effect of catalog size on turnaround time for sequential MA & sequential CS

Parallel CS and parallel MA strategies cannot
be used for DI applications since information
about the servers to be visited is not known a
PTLOTI.

The selection of the “ideal” implementation strat-
egy from those feasible for a given application could
be based on several criteria such as ease of imple-
mentation, performance, availability of technology,
etc. The following section describes the details of
implementing an application using different strate-
gies.

5 Experimentation and Results
5.1 Experimentation

We have chosen a typical e-commerce applica-
tion, viz., that of a single client searching for infor-
mation about a particular product from the cata-
logs of several on-line stores. We assume that the
client requires a highly customized search which the
on-line store does not support. This would require
the client to fetch a relevant subset of the catalog
and implement a search at its end. We have imple-
mented such an application using all four strategies
mentioned in section 4.1.

We have used the Voyager Framework for MA
implementations. Voyager is an ORB (Object
Request Broker) implemented in Java and pro-
vides support for mobile objects and autonomous
MAs [7]. The CS implementation consists of a
server that sends a catalog on request and a multi-
threaded client that requests a catalog from one or
more servers. The client and the server have been
implemented in Java.

The experiments were carried out on P-III, 450
MHz workstations connected through a 10 Mbps

LAN with typical student load. We have consid-
ered the following parameters for comparing the
performance of these implementations:

1. number of stores (varies from 1 to 26);
2. size of catalog (varies from 20 KB to 1 MB);

3. size of client-server messages (varies propor-
tionately with catalog size);

4. size of an MA (fixed at 4.6 KB);

5. processing time for servicing each request
(varies from 10 ms to 1000 ms);

6. network latencies on different links (assumed

constant since all workstations were on the
same LAN);

Our performance metric is the user turnaround
time, which is the time elapsed between a user ini-
tiating a request and receiving the results. This
includes the time taken for agent creation, time
taken to visit/collect catalogs and the processing
time to extract the required information.

5.2 Results

The results of our experiments are shown in the
graphs of figures 2, 3, 4, and 5. Some of our obser-
vations are:



14 4 _
E- 12 e
o ——— —— Sequential MA
e 104 il S
E > >
= e o - - —~- Parallel MA,
2 &1 " _/_,
§ PN --- Sequential CS
& B gawrr gt
£ = e -.=.-Parallel C3
- - = S
- s o e B R

2 4 BT meem T

B
O T T T T T T T T T T T T 1

0 2 4 6 8 M 12 14 16 18 20 22 24 26
No. of shops visited

Figure 3: Turnaround time for different implementation strategies for a processing time of 20 ms (catalog
size of 1 MB).

45 -
40 +

20 1

30 A Sequential MA
25 - e ~ = =~ Parallell MA
--Sequential CS

15 4 ' ~-~--Pardlel CS

Turn around time (sec)
(=]
o

0 2 4 B 8 10 12 14 16 489 20 22 M B
No. of shops visited

Figure 4: Turnaround time for different implementation strategies for a processing time of 1000 ms (catalog
size of 1 MB).



L] L] (]
o L8] o
L 1 i

Tumaround time (sec)
= o

Sequential MA
— = = - Parallel MA
Sequential CS

e ~-—--Parallel CS

0 2 +4 6 B 10 12 4

No. of shops visited

Figure 5: Turnaround time for different implementation strategies for a processing time of 500 ms (catalog

size of 1 MB).

e The performance of sequential MA remains
the same for different catalog sizes while per-
formance of sequential CS degrades with in-
crease in catalog size (Fig.2).

e Sequential CS implementation in our case per-
forms better than sequential MA for a catalog
size less than 100 KB (Fig.2).

e With a catalog size of 200 KB, sequential MA
starts to perform better than sequential CS
when the number of shops to visit is 4 (Fig.2).

e For small processing delays (20 ms), sequential
MA performs better than all other strategies
(Fig.3).

e For higher processing delays (1000 ms), paral-
lel implementations show better performance
than sequential implementations. Also, par-
allel MA performs better than parallel CS in
this case (Fig.4).

e With a processing time of 500 ms, parallel
MA and parallel CS implementations begin to
perform better than sequential MA when the
number of shops to visit is 6 (Fig.5).

6 Conclusions

We have classified existing MA applications in e-
commerce, identified underlying mobility patterns
for these applications and discussed possible im-
plementation strategies for these patterns using the
client-server and mobile agent paradigms. We have
performed experiments to quantitatively evaluate

these different strategies using the Voyager frame-
work for MA implementations and Java for CS im-
plementations.

Sequential CS implementations are most suit-
able for applications where a small amount of in-
formation has to be retrieved from few remote in-
formation sources (servers), and the degree of pro-
cessing required is low (our experiments provide a
good quantitative indication of these parameters).
However, these conditions do not hold for most
real-world e-commerce applications. MAs scale ef-
fectively across the above parameters, and with
scalability being one of the needs of net-centric
computing, we find that MAs are an appropriate
technology for implementing e-commerce applica-
tions. Parallel implementations are effective when
processing information contributes significantly to
the turnaround time.

We are in the process of carrying out further
experiments towards identifying the “ideal” im-
plementation strategy given an application’s char-
acteristics. Efforts to conduct these performance
comparison experiments on an Internet-wide scale
are underway. We are also investigating the extent
to which latencies introduced by MA frameworks
influence performance.

References
[1] Jonathan Bredin, David Kotz and Daniela
Rus, ”Market-based Resource Control for

Mobile Agents”, Proceedings of Autonomous
Agents, May 1998.

[2] Antonio Carzaniga, Gian Pietro Picco and Gi-
aovanni Vigna, ” Designing Distributed Appli-



[10]

[11]

[12]

cations with Mobile Code Paradigms”, Pro-
ceedings of the 19th International Conference
on Software Engineering(ICSE ’97), pp. 22 -
32, ACM Press, 1997.

P. Dasgupta, N. Narasimhan, L.E. Moser and
P.M. Melliar-Smith, ” A Supplier Driven Elec-
tronic Marketplace Us-
ing Mobile Agents”, Proceedings of the First
International Conference on Telecommunica-
tions and E-Commerce, Nashville, TN, Nov.
1998.

P. Dasgupta, N. Narasimhan, L.E. Moser
and P.M. Melliar-Smith, "MAgNET: Mobile
Agents for Networked Electronic Trading”,
IEEE Transactions on Knowledge and Data
Engineering, Special Issue on Web Applica-
tions, July-August 1999.

Alfonso Fuggetta, Gian Pietro Picco and Gio-
vanni Vigna , "Understanding Code Mobil-
ity”, IEEE Transactions on Software Engi-
neering, vol. 24(5), 1998.

Carlo Ghezzi and Giovanni Vigna, ”"Mobile
code paradigms and technologies: A case
study”, Proceedings of the First International
Workshop on Mobile Agents, Berlin, Ger-
many, vol. 1219 of Lecture Notes on Computer
Science, Springer, April 1997.

G. Glass, ”ObjectSpace Voyager Core Package
Technical Overview”, Mobility: process, com-
puters and agents, Addison-Wesley, Feb. 1999.

Dag Johansen, ”Mobile Agent Applicabil-
ity”, Proceedings of the Mobile Agents 1998,
Berlin, Springer-Verlag, Lecture notes in com-
puter science; vol. 1477, ISBN 3-540-64959-X,
(1998), pp. 9-11 September, 1998.

Danny B. Lange and Mitsuru Oshima, ”Seven
Good Reasons for Mobile Agents”, Communi-
cations of ACM, vol. 42, no. 3, March 1999.

Pattie Maes, Robert H. Guttman and Alexan-
dros G. Moukas, ” Agents That Buy and Sell”,
Communications of ACM, vol. 42, no. 3, pp.
81 - 91, March 1999.

Todd Papaioannou, ”Mobile Information
Agents for CyberSpace - State of the Art and
Visions”, To appear in Proc. of Cooperative
Information Agents (CIA - 2000), 2000.

Stavros Papastavrou, George Samaras and
Evaggelia Pitoura, "Mobile Agents for WWW
Distributed Database Access”, Proceedings of
IEEFE International Conference on Data En-
gineering (ICDE99), 1999.

[13]

[14]

Gian Pietro Picco and Mario Baldi, "Eval-
uating Tradeoffs of Mobile Code Design
Paradigms in Network Management Applica-
tions”, Proceedings of 20th International Con-
ference on Software Engineering, ICSE98, Ky-
oto, Japan, IEEE CS Press, 1998.

Thomas Sandholm and Qianbo Huai, ”No-
mad: Mobile Agent System for an Internet-
Based Auction House”, IEEE Internet Com-
puting, vol. 4, no.2, March-April 2000.



