

Proceedings of the 2nd Asian International Mobile Computing Conference(AMOC 2002)
14-17 May, 2002
Langkawi, Malaysia

Performance compar ison of implementation mechanisms for e-commerce applications: Towards a
hybr id approach

Rahul Jha, Sridhar Iyer

 KR School of Information Technology,
IIT Bombay, India, 400 076
{ rahul,sri} @it.iitb.ac.in

Abstract:

The acceptance of Internet-scale systems and
applications depends significantly upon their performance
in terms of user-perceived quality of service. While there
has been work in the domain of mobile agent based
applications, there is little work to compare the
performance of these implementations with client-server
approaches. Also, there is a need to identify the application
parameters that influence overall performance.

We have identified several parameters that influence
performance and have carried out a quantitative evaluation
of client-server versus mobile agent implementations.
From our experiments, we conclude that both solutions
need to co-exist. We then propose a hybrid approach using
both these implementation strategies, and present the
design of “MAX”, an implementation of an e-commerce
application. MAX is based on a hybrid MA/CS approach
and chooses an appropriate implementation strategy at
runtime, based on the application parameters.

1. Introduction

As the Internet evolves from an information space to a
market space, electronic commerce is becoming an
important mechanism for conducting business. This has
created a need for new ways of structuring applications to
provide cost-effective and scalable models.

Most existing implementations for structuring online
market places use the traditional client-server (CS) design.
Although extensively used, CS implementations have a
non-intuitive conceptual model for applications involving
mobility. The mapping of marketing actions to a
request/response model, results in drawbacks such as
increased network traffic, long duration connections and
interaction, support for only standard queries and little
support for disconnected operations.

The Mobile Agent (MA) design paradigm has been
used to overcome some of these drawbacks [2,3,15]. A
mobile agent is a program that can autonomously migrate
between various nodes of a network and perform
computations on behalf of a user. Designing MA based e-

commerce applications is an effective conceptualization of
traditional marketing, as it incorporates buyer's mobility
and the notion of agents. MA supports execution of client
specific queries, real time interaction, disconnected
operations, reduced network traffic and faster response
time in an e-market place.

While there has been work in designing MA based
applications, the important issue of their performance
versus traditional CS implementations, has received little
attention. Numerous studies show that the acceptance of
Internet-scale systems and applications depends upon their
performance in terms of user-perceived Quality of Service
[9]. This paper contributes towards identifying the
application parameters that influence the performance (and
thereby the design choices) for an e-commerce application.
Our experiments are an effort towards arriving at
guidelines for “when to use MAs” for a given application.

In the first part of this paper, we discuss some
strategies for implementing e-commerce applications,
using the CS and MA paradigms. We have carried out a
quantitative performance evaluation of these strategies and
have identified performance crossover points, viz. points
at which any one strategy begins to perform better than
another. We have used Java for the CS implementation and
the Voyager framework [7] for the MA implementation.

From our experiments, we believe that there is no
"one-size-fits-all" solution. Both CS and MA approaches
have their own advantages, as well as scenarios under
which one performs better than the other. We argue that
the overall performance of an e-commerce application is
not only dependent on the design choice (MA/CS) but also
on application specific parameters. We claim that a hybrid
model that uses both CS and MA in a complementary
fashion may yield better performance than either CS or
MA in isolation.

In the second part of this paper, we describe our
implementation of such a hybrid MA/CS model, “MAX”.
MAX employs both the MA and CS implementations and
chooses one of them at runtime, depending upon the values

Fig 1: Implementation strategies

of the application specific parameters.

Section 2 discusses some strategies for implementing
e-commerce applications, and Section 3 identifies some
important parameters that affect their performance. Section
4 describes our experiments, and Section 5 the
observations that lead to a hybrid model. Section 6
presents our hybrid model, and Section 7 the conclusions.

2. Implementation strategies

We identify four implementation strategies that may
be adopted by a typical e-commerce application using the
CS and MA design paradigms:

1. Sequential CS
This is based on the traditional client-server
paradigm. The client makes a request to the first
server and after processing the reply, makes a
request to the second server and so on, till the list
of servers to be visited is exhausted. This strategy
is illustrated in figure 1(a).

2. Sequential M A

In this case, a single MA moves from its source of
origin (client) to the first site (server) in its
itinerary. It performs the processing at the server
and then moves to the next site and so on, till it
has visited all the sites in its itinerary. This
strategy is illustrated in figure 1(b).

3. Parallel CS

This is also based on the client-server paradigm.
However, instead of sequential requests, the client
initiates several parallel threads of execution,
each of which concurrently makes a request to

one of the servers and processes the reply. This
strategy is illustrated in figure 1(c).

4. Parallel M A

In this case, the client initiates multiple MAs,
each of which visits a subset of the servers in the
itinerary. The MAs then return to the client and
collate their results to complete the task. This
strategy is illustrated in figure 1(d).

It is also possible to use combinations of the above

strategies. The selection of an "ideal'' implementation
strategy from those feasible for a given application, would
depend upon application specific parameters. The
following section identifies some application parameters
that would play a crucial role in the overall performance,
thereby influencing choice of the implementation strategy.

3. Character izing application parameters

The performance of any distributed application
depends upon the computation time at the client and the
server, the network delays during data transfer, and the
queuing/wait time at client/server. These delays depend
upon the implementation strategy, which in turn is affected
by the application parameters. We have identified the
following parameters that influence the choice of an
implementation strategy, for e-commerce applications:

• M obility patterns: The shopping itinerary (the sites

to be visited) is an important parameter that
determines the mobility pattern of the execution. The
itinerary could be either static (fixed at start of
execution) or dynamic (changes during execution).
The sites in the itinerary may need to be visited in a

given order or in any order, thereby imposing
constraints on the suitability of an implementation
strategy.

• Catalog size: Catalog size is the amount of data that is
filtered at a server and sent to the client for
processing. Non-standard queries and/or large server
databases may lead to large catalogs being transferred
over the network, thereby affecting the choice of an
implementation strategy. CS implementations may not
be suitable for large catalog sizes.

• Number of shops: The number of shops in the
itinerary affects the overall data transfer and
processing times. When coupled with large catalog
sizes, this has a major impact on the implementation
strategy. As the number of shops increases, parallel
implementations may be preferred over sequential
ones.

• Network latency: The network latency for an
itinerary plays an important role in the choice of an
implementation strategy. For low bandwidth or
disconnected operations scenarios, MA
implementations may be more suitable compared to
CS.

• Processing time: For high bandwidth scenarios, the
processing time becomes an important factor in the
choice of an implementation strategy. CS
implementations may be more suitable compared to
MA, for some of these cases.

• Product dependencies: Dependencies among
products to be discovered may impose additional
constraints on the suitability of an implementation
strategy. Parallel implementations may not be suitable
when there are many such dependencies.

In following section we present our experiments to

determine the performance of the implementation
strategies discussed earlier, for various values of the above
parameters.

4. Exper imentation and results

We have chosen a typical e-commerce application of
product discovery, viz., that of a single client searching for
information about a particular product from the catalogs of
several on-line shops. We assume that the client requires a
highly customized query, which is not supported by the
standard query interface of the on-line shop. Such a query
would require the client to fetch a relevant subset of the
catalog and implement a search at its end. We have
implemented such an application using all the four
strategies discussed in section 3.

4.1 Exper imental setup

The experiments were carried out on P-III, 450 MHz
workstations connected through a 10 Mbps LAN with
typical student load. We have considered the following
parameters for comparing the performance of these
implementation strategies:

• mobility pattern (a static itinerary of 26 shops)
• catalog size (varies from 100 KB to 1 MB);
• number of shops (varies from 1 to 26);
• size of client-server messages (varies

proportionately with catalog size);
• size of an MA (fixed at 4.6 KB);
• network latency (as per typical academic loads on

10Mbps LAN);
• processing time for servicing each request (varies

from 20 ms to 1000 ms);

We have used the Voyager framework for MA
(parallel and sequential) implementations [16]. Voyager is
an ORB (Object Request Broker) implemented in Java and
provides support for mobile objects and autonomous MAs
[7]. The CS implementation consists of a server that sends
a catalog on request and a multi-threaded client that
requests a catalog from one or more servers. The client and
the server have been implemented in Java.

Our performance metric is the user turnaround time,
which is the time elapsed between a user initiating a
request and receiving the results. This includes the time
taken for agent creation, time taken to visit/collect catalogs
and the processing time to extract the required information.

4.2 Evaluation of implementation strategies

We have performed experiments to determine:

• Effect of catalog size on turnaround time for

CS and M A
The processing delay at the server was kept
constant and catalog sizes of 100KB, 200KB,
500KB and 1MB were used. This was done for
different scenarios of product discovery from 1 to
26 shops, and the results are shown in figure 2.

• Effect of server processing delay on

turnaround time
The catalog size was kept constant at 1MB and
server delays of 20ms, 500ms and 1000ms were
considered. The user turnaround time was
measured for different scenarios of product
discovery from 1 to 26 shops. The different
results are shown in the graphs of figures 3, 4 and
5.

Fig 2: Effect of catalog size on turnaround time for sequential M A & sequential CS

Fig 3: Turnaround time for a processing delay of 20 ms (catalog size of 1 M B).

Fig 4: Turnaround time for a processing delay of 500 ms (catalog size of 1 M B).

Fig 5: Turnaround time for a processing delay of 1000 ms (catalog size of 1 M B).

4.3 Observations

The results of our performance evaluation experiments

are shown in the graphs of Fig 2 to 5. Some key observations
are:

• The performance of MA remains the same for
different catalog sizes while the performance of CS
degrades with increase in catalog size (Fig. 2).

• CS implementations perform better than MA
implementations for catalog sizes less than 100 KB
(Fig. 2).

• MA performs better than CS when the catalog size is
greater than 200KB and number of shops to visit is
greater than or equal to 3 (Fig. 2).

• MA performs better than all other strategies, for
small processing delays (20 ms) and large (1MB)
catalog size (Fig. 3).

• Parallel implementations perform better than
sequential implementations when the number of
shops to visit is greater than or equal to 6 and the
processing delay is greater than or equal to 500ms
(Fig. 4).

• Parallel MA performs better than parallel CS for
higher processing delays (1000ms) and large (1MB)
catalog size (Fig. 5).

• Performance crossover points i.e. parameter values
for which one implementation starts performing
better than another implementation, for other
combinations of application parameters, may be
determined by inspecting the graphs in Fig 2-5.

5. M otivation for a hybr id model

Our experiments suggest that CS implementations are
suitable for applications where a “small” amount of
information (less than 100 KB) is retrieved from a “ few”

remote servers (less than 4), having “ low” processing delays
(less than 20ms). However, when a “ large” amount of
information (greater than 500KB) is retrieved and for “ large”
number of servers (more than 6), MA implementations are
more effective. The MA approach scales well as the size of
data to be processed and the number of servers to be visited
increases. Parallel implementations are effective when the
processing delay contributes “significantly” (greater than
1000ms) to the turnaround time.

From our experience, we believe that both CS and MA
solutions as well as sequential and parallel implementations
need to co-exist. Neither a pure CS nor a pure MA approach
is effective for all values of the application parameters. For
the same application (product discovery), sometimes CS may
be effective (less than 200KB of catalog size), while at other
times MA may be effective (greater than 200KB of catalog
size).

Since the values of these parameters may depend upon
the type of product, the shop visited etc., they cannot be fixed
a priori. Hence it is necessary to have a hybrid approach
wherein the two paradigms (CS and MA) are used to
complement each other. An ideal implementation would
choose the most suitable approach, depending upon runtime
values of the application parameters.

In the next section we describe the design and
implementation of “MAX”, our hybrid MA/CS model for e-
commerce applications. Depending upon the application
parameters at runtime, MAX uses the most suitable of MA or
CS implementation strategies, for optimal user-level
performance.

6. M AX: A M A/CS hybr id implementation approach

We have implemented “MAX” a complete customer
driven, business-to-customer e-market place that supports

Fig 6: M AX: Architecture of hybr id e-commerce application

trading using both MA and CS implementations. Each
shop in MAX has a static agent (SSA), which is capable of
accepting both an MA as well as a CS request. Each client
in MAX has a static agent (BSA), which is capable of
launching mobile agents as well as initiating a client-server
request-response communication.

The BSA chooses the implementation mechanism
(MA/CS) at runtime, based on the parameter values. The
observations of our performance evaluation experiments
are used as training data and the performance crossover
points as the guideline for choice of the appropriate
strategy, based on the number of shops to be visited, and
the estimated catalog size. The BSA also takes the network
delay into account by performing a ping to one of the
shops. If the available bandwidth is high, i.e., the ping
round trip time is below a threshold, CS is chosen as the
implementation strategy. If the available bandwidth is low,
i.e., ping round trip time is above a threshold, MA is used
to support asynchronous operations. For simplicity of
implementation, these values are supplied by the user at
the start of each product discovery. Although incorporation
of learning and estimation algorithms into the BSA is a
natural extension, these are beyond the scope of this paper.

6.1 MAX Architecture

The main entities in MAX are the buyer and
shops. Each of these entities is composed of several
components, as shown in Figure 6, and are described
below:
6.1.1 Buyer side components

The buyer side implementation in MAX has the
following components:

• Buyer 's Static Agent (BSA)
The BSA is the local agent at the buyer's site and is
responsible for managing local resources, services and
agents. As described earlier, it dynamically chooses the
implementation mechanism (MA/CS) at runtime. It
interacts with the buyer to identify the list of shops, the
nature of the product to be discovered, and creates a
product request template. The user may also supply a
product evaluation logic for rating products that match a
request.

• Product Request Template (PRT)
The PRT is the representation of product parameters
specified by the buyer. It is stored in an XML data format
structure. For complex product requests involving sub-
components, the BSA may split the PRT into smaller sub-
graphs to enable parallel implementations.

• Product Evaluation Logic (PEL)
The PEL evaluates and rates products that match user's
specification and appends chosen products to a candidate
product list, which is returned to the user. The PEL
provides for customized operations on the product
catalogs, so that a buyer is not restricted to the standard
query processing provided by a shop.

6.1.2 Shop's components

The shop side implementation in MAX has the
following components:

• Shop's Static Agent (SSA)
The SSA is the local agent at the shopkeeper's site and
handles all product purchase requests. It also maintains

the product catalog as an XML data format structure. The
SSA is capable of accepting and servicing both client-
server requests and mobile agents. It interacts with a
shop’s salesman agent to service each individual request.

• Shop's Salesman Agent (SM A)
Each SMA maintains the specific catalogs for a given
product category. It handles all the information related to
the product category such as logging of transactions etc. It
provides the services such as filtering, searching, ordering,
for each client's request.

6.2 M AX: M A implementation

The MA implementation in MAX is as follows:

1. The BSA creates a mobile agent with a list of shops,
the product request template and the product
evaluation logic.

2. At each shop, the MA interacts with the SSA. Based
on MA's request, the SSA identifies a specific SMA
for handling the request and informs the MA of the
SMA.

3. The MA interacts with the specified SMA. The MA
passes its product request template XML data tree to
the SMA, which in turn does the product filtering
from the product catalog XML data tree. The SMA
passes the filtered catalog to the MA.

4. The MA uses its product evaluation logic to rate the
filtered catalog supplied by the SMA and appends the
chosen products to its candidate product list.

5. Upon completion of its itinerary, the MA returns to
the BSA with the candidate product list and other
information.

6.3 M AX: CS implementation

The CS implementation in MAX is as follows:

1. The list of shops to visit, product request template and
the product evaluation logic are all retained in the
BSA.

2. For each shop to be visited, the BSA creates a client
request message and sends it to the appropriate SSA.

3. The SSA identifies an appropriate SMA for handling
the request. The SMA carries out the necessary
filtering and returns the filtered catalog.

4. The SSA returns the filtered catalog to the BSA in a
server response message.

5. The BSA uses the product evaluation logic to rate the
filtered catalog and appends chosen products to its
candidate product list.

6. The BSA repeats steps 2-5 until all shops in the
itinerary are visited.

We have implemented MAX in an experimental setup
and are in the process of enhancing the application as well
as carrying out further performance studies.

7. Conclusion

Performance of Internet-scale application being a
critical factor for their acceptance, we have carried out
experiments to compare the performance of CS versus MA
implementations of an e-commerce application. We
identified some application parameters, such as, mobility
pattern, catalog size, number of shops, network latency,
processing time etc. and found that the overall
performance is not only dependent on the design choice
(MA/CS) but also on the application parameters. Our
experiments lead us to believe that a "one-size-fits-all"
solution is unlikely to be effective.

We then proposed a hybrid approach that employs
both MA and CS strategies and presented the design of
“MAX”, which is based on this hybrid approach. The use
of a hybrid approach with the ability to choose the
implementation strategy at runtime, makes it an attractive
model for applications like e-commerce. We are in the
process of incorporating learning and estimation
algorithms into MAX and carrying out further performance
studies.

ACKNOWLEDGM ENTS

Authors are thankful to Vikram Jamwal and Srinath Perur
for their suggestions and support during the development
of MAX.

REFERENCES

[1] Jonathan Bredin, David Kotz and Daniela Rus, "Market-
based Resource Control for Mobile Agents", Proceedings of
Autonomous Agents, May 1998.

[2] P. Dasgupta, N. Narasimhan, L.E. Moser and P.M. Melliar-
Smith, "A Supplier Driven Electronic Marketplace Using Mobile
Agents", Proceedings of the First International Conference on
Telecommunications and E-Commerce, Nashville, TN, Nov.
1998.

[3] P. Dasgupta, N. Narasimhan, L.E. Moser and P.M. Melliar-
Smith, "MAgNET: Mobile Agents for Networked Electronic
Trading ", IEEE Transactions on Knowledge and Data
Engineering, Special Issue on Web Applications, July-August
1999.

[4] Alfonso Fuggetta, Gian Pietro Picco and Giovanni Vigna ,
"Understanding Code Mobility ", IEEE Transactions on
Software Engineering , vol. 24(5), 1998.

[7] G. Glass, "ObjectSpace Voyager Core Package Technical
Overview ", Mobility: process, computers and agents, Addison-
Wesley, Feb. 1999.

[8] Dag Johansen, "Mobile Agent Applicability ", Proceedings of
the Workshop on Mobile Agents, Springer-Verlag, LNCS; vol.
1477, pp. 9-11 September 1998.

[9] B.Krishnamurthy and C.E. Wills. Analyzing factors that
influence end-to-end Web performance. In Proceedings of the 9th
International WWW conference, pp. 17-32, May 2000.

[10] David Kotz and Robert S. Gray. "Mobile code: The future of
the Internet.", In Proceedings of the Workshop on Mobile Agents
in the Context of Competition and Cooperation (MAC3)" at
Autonomous Agents '99, Seattle, USA, May 1999.

[11] Danny B. Lange and Mitsuru Oshima, "Seven Good
Reasons for Mobile Agents ", Communications of ACM, vol. 42,
no. 3, March 1999.

[12] Pattie Maes, Robert H. Guttman and Alexandros G. Moukas,
"Agents That Buy and Sell ", Communications of ACM, vol. 42,
no. 3, pp. 81 - 91, March 1999.

[13] Stavros Papastavrou, George Samaras and Evaggelia
Pitoura, "Mobile Agents for WWW Distributed Database Access
", Proceedings of IEEE International Conference on Data
Engineering (ICDE99), 1999.

[14] G. Samaras, M. Dikaiakos, C. Spyrou, and A. Liverdos.,
"Mobile agent platforms for webdatabases: A qualitative and
quantitative assessment.", In Proc. of the 1st Int'l Symp. on Agent
Systems and Applications and Third Int'l Symp. on Mobile
Agents (ASA/MA'99), pages 50--64. IEEE Computer Society
Press, October 1999.

[15] Thomas Sandholm and Qianbo Huai, "Nomad: Mobile
Agent System for an Internet-Based Auction House ", IEEE
Internet Computing, vol. 4, no.2, March-April 2000.

[16] Rahul Jha and Sridhar Iyer, “Performance evaluation of
mobile agents for e-commerce applications” , International
Conference on High Performance Computing, Hyderabad, India,
Dec 2001.

