
1

Architecting Protocol Stack Optimizations
on Mobile Devices

Vijay T. Raisinghani∗

Tata Infotech Ltd.(ATG) and
School of Information Technology

IIT Bombay
rvijay@it.iitb.ac.in

Sridhar Iyer
School of Information Technology

IIT Bombay
sri@it.iitb.ac.in

Abstract— Applications using traditional protocol stacks (e.g
TCP/IP) from wired networks do not function ef£ciently in
mobile wireless scenarios. This is primarily due to the layered
architecture and implementation of protocol stacks.

Cross layer feedback is one of the mechanisms to improve the
performance of a layered stack, in mobile wireless environments.
For example, transport layer retransmissions could be reduced
by making it aware of network disconnections or handoff events.
However, since the protocol stack is an integral part of the
operating system, any such cross layer modi£cation to the stack
should not impact its ef£ciency, correctness and maintainability.
An appropriate architecture would help ensure that cross layer
modi£cations con£rm to this requirement.

In this paper, we present an architecture ECLAIR for cross
layer feedback. As compared to other approaches, ECLAIR
requires minimal or no modi£cation to the stack.

To evaluate the ef£ciency of cross layer architectures, we
identify time/space complexity, design complexity, user-kernel
crossing and data path delay as performance metrics. We validate
and evaluate ECLAIR through a prototype implementation and
experiments. Our results and analysis show that ECLAIR is an
ef£cient cross layer architecture. To enhance the ef£ciency of
ECLAIR, we propose a sub-architecture to reduce the runtime
overheads.

We also present a design guide for cross layer optimizations
using ECLAIR.

I. INTRODUCTION

To ensure interoperability with the existing Internet,
standard protocol stacks (e.g. Transmission Control Proto-
col(TCP)/Internet Protocol(IP) [14]) are being deployed even
in mobile wireless setups i.e. on mobile devices and interme-
diate nodes in the wireless network. However, these standard
protocol stacks function inef£ciently in mobile wireless en-
vironments. This is primarily due to the layered architecture
[6] and implementation of protocol stacks. For example, TCP
reduces its throughput in wireless environments since it mis-
interprets wireless packet losses as congestion losses [1], [19].

It is evident from above that adapting TCP behavior, based
on wireless channel information from lower layers, would
improve its throughput. In a similar manner the performance of
other layers in the protocol stack can be improved by enabling
such cross layer optimizations [11]. The cross layer feedback
to a layer could be from layers above or below it. Cross layer

∗This author is a Ph.D student at IIT Bombay, sponsored by Tata Infotech
Ltd.

optimizations may implemented at the intermediate nodes [1],
[17] or mobile devices. We focus on cross layer feedback in
the mobile device since we believe that it would be easier to
implement changes on end-devices than in the network.

As new wireless networks are deployed, various cross layer
optimizations would be required to enhance the performance
of existing protocol stacks. However, if these optimizations
are implemented in an ad hoc manner it could lead to (1)
decreased throughput of the stack, (2) dif£culties in ensuring
protocol correctness and (3) substantial effort in maintenance
of the cross layer optimizations. By ad hoc we mean intro-
duction of additional code in a layer’s code, to implement a
cross layer optimization. For example, to allow TCP to get
hand-off information from the link layer, additional code will
be introduced in TCP and link layer. This would reduce the
protocol layer throughput since it will now have to execute
the cross layer code also. Further, it would be dif£cult to
ensure protocol correctness as additional cross layer code is
introduced. An appropriate architecture would help ensure
that cross layer modi£cations do not impact the ef£ciency,
correctness and maintainability of the protocol stack.

In this paper we present the internal details of our ar-
chitecture ECLAIR (section II). ECLAIR [12] exploits the
fact that protocol behavior is determined by the values stored
in the protocol data-structures. In ECLAIR, a Tuning Layer
(TL), one for each layer, provides an interface to manipulate
and monitor these protocol data-structures. The TLs are used
by the Protocol Optimizers (POs) which contain the cross
layer feedback algorithms. The POs constitute the Optimizing
SubSystem (OSS). The POs take input from various layers and
determine appropriate adaptations. A PO uses one or more TLs
for collecting information and effecting adaptation. The key
bene£ts of ECLAIR are as follows: enables rapid prototyping
of new cross layer algorithms, ensures minimum intrusion
into the existing stack, facilitates easy portability to different
systems, and imposes minimal overhead on the existing stack
[12].

We validate ECLAIR by implementing RWC [13] and
running experiments over wireless LAN (section III). We
compare this ECLAIR implementation with a non-ECLAIR
RWC implementation [10] (section IV). Through this com-
parison we show that ECLAIR is an ef£cient cross layer
architecture. For comparing the implementations we select the

2

following metrics: time/space complexity1, design complexity2,
user-kernel crossing3 and data path delay4.

To minimize the overhead of an ECLAIR cross layer
implementation we propose a sub-architecture (section V). The
idea is to create a separate set – core – of selected high utility
cross layer information.

To ensure correct and ef£cient cross layer feedback, the
type of cross layer feedback should be known. We present a
design guide for cross layer design using ECLAIR in section
VI. We broadly classify cross layer feedback into synchronous
or asynchronous i.e. the adaptive action at a layer based on
cross layer feedback from another layer may be synchronous or
asynchronous. In synchronous cross layer feedback, whenever
a layer receives some cross layer information, it proceeds
with its regular execution only after executing the cross layer
adaptation required. For example, assume there is network
disconnection event sent to TCP from the link layer. In the
synchronous case, TCP’s regular execution is stopped, appro-
priate adaptation is carried out in TCP and then regular TCP
execution proceeds. In the asynchronous case, the control data
structures of TCP would be updated while TCP’s execution
is in progress. We discuss the application of ECLAIR to
asynchronous and synchronous cross layer feedback. We also
provide guidelines for ECLAIR implementations of single and
multiple cross layer optimizations.

In section VII we present related work. We conclude the
paper and discuss future work in section VIII.

II. ECLAIR DETAILS

A. ECLAIR Overview

ECLAIR is split into two subsystems – Tuning Layers
and Optimizing SubSystem (£gure 1). ECLAIR enables rapid
prototyping of new cross layer feedback algorithms since its
components are outside the existing protocol stack.

Tuning Layers (TLs): The purpose of a tuning layer is to
provide an interface to the protocol data-structures. For exam-
ple, TCP tuning layer (TCPTL) is provided for TCP. Since the
functionality for manipulating protocol data-structures is built
in to the TLs, minimal modi£cation is required to the existing
protocol stack. This facilitates incorporation of new cross layer
feedback algorithms with minimum intrusion. Further, for the
purpose of portability each TL is subdivided in to a generic
and an implementation speci£c sublayer. This subdivision is
essential since the implementation of protocols is different
across systems, even though they con£rm to the protocol
standards. For example, the TCP data-structure names are
different in NetBSD and Linux. For ease of reference we group
the tuning layers according to their function. For example,
Transport Tuning Layer refers to the collection of transport
protocol tuning layers such as TCPTL for TCP, UDPTL for
UDP, etc.

1Time/space complexity is a measure of the computing resources required
by the system.

2Design complexity is a measure of the design effort.
3User-kernel crossing is a measure of the time delay due to function calls

from user space to kernel space.
4Data path delay is the delay introduced in stack’s existing call ¤ow.

Optimizing SubSystem (OSS): The optimizing subsystem
contains the algorithms and data-structures for cross layer
optimizations. The OSS contains many Protocol Optimizers
(POs). A PO contains the algorithm for a particular cross layer
optimization. The OSS interaction with the TLs is shown in
£gure 1. The solid line with a solid arrow head indicates an
optimizing action by a PO i.e. a PO invokes a function in
the TL for modifying protocol behavior. The dashed line with
hollow arrow head indicates that a PO registers for events
with a TL and that TL noti£es the registered PO whenever an
event occurs. For example, a TCP-handoff PO would register
with the MAC-TL for hand-off events such as handoff-start,
handoff-end, etc. This PO would contain the algorithm to
appropriately manipulate TCP behavior whenever hand-off
events occur.

The OSS executes concurrently with the existing protocol
stack and does not increase the stack processing overhead.

Existing stack

IPTL

leIPTL

App1 TL

App2 TL

TCPTL

UDPTL

Mobi−

optimizing action

ECLAIR

User TL

M
A

C
 T

L

T
ra

ns
po

rt
 T

L

Network TL

Mobility
Support TL

U
se

r
T

L
A

pp
lic

at
io

n
T

L

Tuning Layers Optimizing
SubSystem

register notify

Protocol
Optimizer−1

Protocol
Optimizer−2

Protocol
Optimizer−n

Implementation
specific Generic

802.11

802.11

MAC TL

GPRS
PHY TL

GPRS
MAC TL

PHY TL

P
hy

 T
L

Application

Transport

Network

MAC

PHY

User

Protocol
Optimizer−3

Im
p1

Im
p3

Li
nu

x

U
ni

x

N
et

B
S

D

Im
p2

Fig. 1. ECLAIR: Cross Layer Feedback Architecture

Besides the bene£ts indicated earlier, other salient features
of ECLAIR are as follows:

(a) Cross layer feedback switch: Since the cross layer system
is separate, it can be easily/dynamically enabled or dis-
abled. Also, individual POs may be enabled or disabled.

(b) Enables seamless mobility: A seamless mobility PO could
monitor multiple wireless interfaces and dynamically
switch to the interface that has a better signal strength.

(c) User Tuning Layer: Besides the layer speci£c TLs,
ECLAIR also has a User Tuning Layer (UTL). UTL al-
lows a device user or an external entity (e.g.: a distributed
algorithm or a base station) to tune the device behavior.

3

B. ECLAIR Details

TL interface to protocol stack:
A tuning layer reads from / writes to the data-structures of
a protocol. A protocol implementation typically has data-
structures for control and data. A protocol’s behavior is de-
termined by its control data-structures. For example, in Linux,
TCP control information is stored in a data-structure struct
tcp opt embedded within the socket data-structure struct
sock [4]. Some of the £elds in tcp opt are retransmission
time out rto, smoothed round trip time srtt, maximal
window to advertise window clamp and slow start threshold
snd ssthresh. These £elds are read and written to at
various points in the TCP code. The values in these and
other £elds determines TCP behavior. For example, TCP
retransmits packets when the rto timer expires. The value
in tcp opt.rto is used for setting TCP’s retransmission
time out. Tuning layers are aware of such implementation
details of protocol data-structures. TLs manipulate the values
in the protocol’s control data-structures for modifying protocol
behavior. TLs also monitor the protocol data-structures for
monitoring events within a layer.

TL and OSS interface:
Tuning layers export an application programming interface
(API) to the protocol optimizers (POs) in the Optimizing
SubSystem. A PO uses a TL’s register API to register with
the TL, for information about events at a layer. Multiple POs
can register for the same event with a TL. A PO decides the
optimizing action to be taken based on the event information
it receives from the TLs with which it has registered. The
PO also uses TL APIs for querying the current state of the
protocol layer which is to be modi£ed (e.g.: TCP’s state could
be congestion avoidance or slow start phase). The PO modi£es
the target protocol’s behavior by invoking the appropriate API
of the protocol’s TL with the necessary parameters. The TL
ensures that the correct £eld in the protocol’s data-structure is
updated or the appropriate function in the operating system is
invoked such that the target protocol’s behavior is modi£ed.

The POs invoke the generic sublayer within a TL. The
generic sublayer in turn invokes the implementation speci£c
sublayer APIs for system speci£c actions. For example, for
tuning TCP receiver window, the generic tuning sublayer
API is set recv win(). The corresponding implementation
speci£c API for Linux is linux set recv win(). Some
additional APIs are presented in [12].

In this section we presented the internal details of ECLAIR.
In the next section we validate ECLAIR through a prototype
implementation.

III. ECLAIR VALIDATION

To validate ECLAIR we choose Receiver Window Control
(RWC) [13] as the candidate cross layer optimization.

A. Receiver Window Control

Users can provide useful feedback to improve the perfor-
mance of the stack or the user experience[13]. For example, a
user may want a £le download to complete faster than another
simultaneous download on the device.

One method of controlling an application’s bandwidth share,
on a receiving device, is through manipulation of the receiver
window of its TCP connection i.e. Receiver Window Control
[10], [13]. TCP uses congestion and ¤ow control mechanisms
to avoid swamping the network or the receiver [9], [14]. The
receiver re¤ects its receive buffer status by the advertised
window £eld in the acknowledgments to the sender. If the
advertised window decreases, the sender also reduces its
send rate. This TCP behavior can be exploited to reduce the
throughput of some applications and consequently increase
throughput of rest of the applications, on the receiver.

B. Receiver Window Control Design

The design of Receiver Window Control (RWC) using
ECLAIR is shown in £gure 2. The RWC PO contains the
algorithm. This PO calculates an application’s receiver window
based on the priority assigned to it by the user [13].

The explanation of the sequence shown in £gure 2 is as
follows: (1) TCPTL gets TCP’s control data-structure memory
location information, at system start. (2a) PO registers for user
events. (2b) User changes priorities for running applications.
(3) Application identi£cation and respective priority informa-
tion is passed to the RWC PO. (4a),(4b) RWC PO collects
current receiver window/buffer information via TCPTL. It uses
this information to recalculate the new receiver window values
for the various applications. We assume that the applications
can be identi£ed by their sockets. (5a),(5b) RWC PO sets the
receiver window values for each application via TCPTL.

TCP data structures

tcp_opt{}

sock{}

User (device user)

TCP

5b

4b 4a

5a

2b
3

1

On event 3

{

}

Existing stack
modules

Cross layer feedback
modules

UTL

User Tuning Layer

(OSS)

Optimizing
Subsystem

TCPTL

2a

ECLAIR

RWC PO

Fig. 2. ECLAIR architecture: Receiver Window Control

C. Receiver Window Control Implementation (Linux)

First we present some internal details of the Linux TCP/IP
kernel which are relevant for Receiver Window Control
implementation. The relevant TCP data-structures are in
the header £le sock.h. tcp opt is TCP’s control data-
structure. sock is the socket data-structure. window clamp
and rcv ssthresh are used for controlling the advertised
window in TCP. For browsing the Linux kernel code, we used
source code browsing tools such as cscope [22], cbrowser [20]
and the Linux Cross Reference website [21].

4

}

}

tcp_opt{}

sock{}

Input parameters
from command prompt:

<Receive_window_value>
<IP address> of sender

us
er

 p
ro

gr
am

ch
ar

ac
te

rd
ev

ic
e

dr
iv

er
 (

ke
rn

el
 m

od
ul

e)

USER space
KERNEL space

ioctl(<characterdevice>,
 <param>,rwc_struct);

read params into rwc_struct;

RWCIOctl {
receive rwc_struct from user space;
linux_set_rcv_win {

// tcp socket list head from tcp.h

rcv_ssthresh
window_clamp

// write to socket struct fields
tp−>window_clamp = rcvwin;
tp−>rcv_ssthresh = rcvwin;

locate specific socket;
traverse socket list;

Fig. 3. Call ¤ow: RWC using ECLAIR

Figure 3 shows the call ¤ow of the RWC prototype im-
plementation using ECLAIR. Our current implementation has
largely TL functionality only. In this prototype the RWC
calculation is done by the user. The user runs a program
in user space with the parameters: IP address of the sender
(to identify the application) and the receiver window value.
These parameters are passed to the TL, in rwc struct via
ioctl, to change the control parameters (receiver window)
in the socket. The IP address parameter is used to identify the
application’s TCP socket within which the receiver window
value is to be changed. We implemented the receiver window
control TL as a Linux kernel loadable module [3]. No modi-
£cation was required to the TCP code in the kernel.

Using the above implementation we conducted the experi-
ments over WLAN.

D. Receiver Window Control Experiments

Fixed host 1 (FH1)

Fixed host 2 (FH2)

KReSIT department LAN
100 Mbps

WLAN 802.11b

Desktop with WLAN card
with RWC implementation

(MH)

RTT ~ 3 ms

(typical ~ 8Mbps)

Access point
Managed mode

Fig. 4. RWC: Experiment setup

Figure 4 shows the experimental setup. For our experiments
we used a Air Premier D-Link Enterprise 2.4GHz Wireless
Access Point – DWL-1000AP+ (managed mode), and D-
link 520+ Wireless PCI Adapter (2.4 GHz) on the desktop
(Redhat Linux Kernel 2.4.x, Pentium4, 1.9 GHz, 256 MB

RAM) which had the RWC implementation. To match the
environment characteristics (noise on the wireless channel),
we set the sensitivity threshold of the WLAN card to 60 using
the script available with the driver package [23]. We used the
default MTU of 1500.

We ran two simultaneous http £le download sessions. FH1
and FH2 were the senders and MH was the receiver (£gure
4). The downloaded £les were 2MB each. We invoked RWC,
on MH, from the command prompt during the http transfers.
For the experimental setup the approximate bandwidth-delay
product was 3KB. (8000/8 KBps * 3/1000 sec, see £gure 4).
Thus to throttle a sender the receiver window was kept below
3KB. Since in a WLAN network packet losses reduce the
throughput, we started with a receiver window of 2KB to
ensure that the sender throughput is bound by the receiver
window. The results of our experiments are shown in £gure
5.

RWC experiment observations:
Scenario 1 - No RWC (£gure 5(a)): The default bandwidth
available to the ¤ows is shared unequally. The ¤ow that starts
£rst (Flow-1) gets most of the bandwidth.
Scenario 2 - RWC: We reduced the receive window of Flow-1.
There was no need to increase the receive window of the other
¤ow (Flow-2), since the default (system) receive window is
64KB which is much larger than the bandwidth-delay product
of 3KB.

• Receive Window 2KB (£gure 5(b)): As expected, Flow-1
is throttled due to the reduced receive window.

• Receive Window 1KB/0.5KB (£gures 5(c) - 5(d)): Due to
further reduction in the receive window, the bandwidth
available to Flow-1 is lesser than in the above case.

The above results validate our user feedback (RWC) imple-
mentation.

In this section we validated ECLAIR through a prototype
implementation of Receiver Window Control. In the next
section we use the above implementation to evaluate the
performance of ECLAIR.

IV. ECLAIR PERFORMANCE EVALUATION

We £rst select the metrics for evaluating cross layer feed-
back architectures. We use [10] as the non-ECLAIR Receiver
Window Control implementation for comparison with the
ECLAIR implementation.

A. Evaluation Metrics

Cross layer feedback is essentially a modi£cation to the
protocol stack. The intent is to enhance performance of the
stack by reading information from a layer, interpreting that
information and effecting a change at another layer. However,
cross layer feedback entails the overhead of running additional
instructions or programs, in the kernel or user space. In light
of this, we believe that the primary performance measure for
cross layer feedback should be the time and space overhead.
Further, it is essential that any cross layer feedback idea is
easy to implement and maintain. Thus, design complexity is
the second important criteria. Lastly, even if the time/space
overhead or design complexity of a cross layer feedback

5

200

300

400

500

600

700

800

00:00 00:01 00:02 00:03 00:04 00:05 00:06 00:07 00:08 00:09

th
ru

pu
t (

kb
yt

es
/s

ec
)

time

Flow 1 (no RWC)
Flow 2 (no RWC)

(a) No RWC

0

100

200

300

400

500

600

700

800

00:00 00:01 00:02 00:03 00:04 00:05 00:06 00:07 00:08 00:09

th
ru

pu
t (

kb
yt

es
/s

ec
)

time

Flow 1 (RWC)
Flow 2 (no RWC)

(b) RWC: Receiver Window value = 2KB, invoke time =
5 sec

0

100

200

300

400

500

600

700

800

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30 01:40

th
ru

pu
t (

kb
yt

es
/s

ec
)

time

Flow 1 (RWC)
Flow 2 (no RWC)

(c) RWC: Receiver Window value = 1KB, invoke time =
5 sec

0

100

200

300

400

500

600

700

800

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

th
ru

pu
t (

kb
yt

es
/s

ec
)

time

Flow 1 (RWC)
Flow 2 (no RWC)

(d) RWC: Receiver Window value = 0.5KB, invoke time =
5 sec

Fig. 5. Receiver Window Control experiments over WLAN (802.11)

implementation is low, user-kernel crossing could signi£cantly
add to the run-time overhead of cross layer feedback. Hence,
we also consider user-kernel crossing as an important per-
formance metric. Besides the above metrics which highlight
the overhead imposed by a cross layer feedback mechanism,
another important metric is data path delay. Data path is
the sequence of functions within the protocol stack which
are concerned only with sending and/or receiving packets.
Data path delay means the time delay on the data path.
Data path delay may form a part of the time/space overhead
or user-kernel crossing overhead of a cross layer feedback
mechanism. However, it is important enough to be considered
as an independent performance metric since it directly impacts
the throughput of the stack.

We believe that these four performance metrics i.e.
time/space overhead, design complexity, user-kernel crossing
overhead and data path delay are suf£cient to assess the
overheads of any implementation of cross layer feedback.

We use the above metrics to compare the ECLAIR imple-
mentation of RWC (section III) with the non-ECLAIR [10]
implementation. For this paper, we assume that the time-space
and design complexity of both the implementations is similar.

Hence we focus only on the user-kernel crossing impact and
data path delay. For comparison we analyze the design of both
the implementations of receiver window control. We use the
standard software engineering design techniques like structure
chart and sequence diagram[7] for our analysis.

B. User Kernel Crossing Comparison

Figure 6 shows the structure chart for the non-ECLAIR
implementation of RWC. No speci£c architecture has been
explicitly stated in [10]. It is essentially a user space imple-
mentation. We call this non-ECLAIR for convenience.

Applications register with the RWC module. This RWC
module is invoked on every read() of registered applica-
tions. To modify the receiver window values, the operating sys-
tem calls getsockopt() and setsockopt() are invoked
from within read(). This is implemented by modifying the
standard C library – libc. From £gure 6 it can be deduced that
for this non-ECLAIR implementation the user-kernel crossing
is:

O(m× n)

where, n is the number of applications and m is the number
of reads per application.

6

tcpsetsockopt

Receiver
Window
Control

Register
Application

application

Calculate
Parameters

Calculate
Bandwidth Update

setsockoptgetsockopt

tcpgetsockopt

n applications

m calls per app

n applications
m calls per app
O(m*n) crossings

user space
kernel space

Fig. 6. Receiver Window Control: Structure chart – non-ECLAIR

Register
Application

Receiver
Window
Control

Calculate
Parameters

Calculate
Bandwidth Update

application

user space

kernel space

n applications
O(n) crossings

n applications

Receiver

Control Timer
Window

TCP_TL_get_rtt TCP_TL_set_win

Fig. 7. Receiver Window Control: Structure chart – ECLAIR

In the ECLAIR implementation (£gure 7), the application
registers for RWC and passes the required parameters to
the RWC module, using ioctl(). This is the only user-
kernel crossing. From £gure 7 we can see that the user-kernel
crossing is:

O(n)

where, n is the number of applications. RWC is invoked
at regular intervals by a timer within the kernel. Since this
invocation is from within the kernel, the overhead on the
system is quite less. The tuning layer has access to the
TCP data structures and updates the receiver window values
directly.

C. Data Path Delay Comparison

To understand the concept of data path delay, we £rst
present the sequence diagram of send and receive data paths
of an unmodi£ed protocol stack in £gure 8.

Figure 9(a) shows the modi£ed data path for the non-
ECLAIR [10] implementation. The data-a return shows the
actual return path if read() was not modi£ed. It can be seen
from the £gure that the data return from the modi£ed read()
is delayed till the RWC algorithm completes its run. This is
the data path delay. Considering all the registered applications
together, excluding other overheads, the overall data path delay
is O(m× n) (see £gure 6).

Figure 9(b) shows the data path for the ECLAIR implemen-
tation of receiver window control. The ECLAIR implementa-
tion is asynchronous and hence does not impact the data path
of the application.

synchronous_function()

ca
lli

ng
 o

bj
ec

t

asynchronous_function()

return_value_data ca
lle

d
ob

je
ct CLASS:instance

elapsed time in synchronous_function

:application

send()send()send()
send(data)

read()

data

read()

data

receive()

:socket TCP: IP:

Fig. 8. Sequence diagram of data send and receive paths for an unmodi£ed
protocol stack

:application

register()

send(data)

read() read()

rwc()

read()

send() send()

receive()

send()

IP:TCP::socket

data path
delay

data

register()

send(data)

read()

data

send()

receive()

send()

(b)

(a)

:application :socket TCP: IP:

setsockopt() tcpsetsock()

tcpgetsock()getsockopt()

timer()
measure()

rwc()
data

read()

send()

works in parallel
ECLAIR: RWC is not on the data path

setvalues()

RWC:

RWC:

data−a data−a

Fig. 9. Data send and receive with RWC: (a) non-ECLAIR (b) ECLAIR

D. ECLAIR Evaluation Summary

ECLAIR pro£ling: The ECLAIR implementation uses
ioctl() for communicating user inputs to the stack. Table
I shows the time measurements for ECLAIR.

ECLAIR
function

User kernel crossing

ioctl() 82

TABLE I

ECLAIR PROFILING (TIME IN µSECS)

non-ECLAIR pro£ling: Since the non-ECLAIR implementa-
tion uses getsockopt() and setsockopt(), we pro£led
the time taken by getsockopt() and setsockopt().
Table II shows the time measurements for these system calls.

Table III shows the comparative performance summary
of ECLAIR and non-ECLAIR implementations of receiver
window control.

As seen earlier, that the total user kernel crossing impact for
ECLAIR implementation is O(n) while that for non-ECLAIR
its O(m×n). Hence for ECLAIR, since the ioctl() delay
is 82 µsec (table I), the overall impact due to user-kernel

7

System call User kernel crossing
getsockopt() 21
setsockopt() 20

TABLE II

NON-ECLAIR PROFILING (TIME IN µSECS)

crossing is 82×O(n). For the non-ECLAIR case, the overall
impact is (20 + 21)×O(m× n). There is no data path delay
for ECLAIR while there is a data path delay of O(m × n)
for the non-ECLAIR implementation. This is summarized in
table III.

Performance
metric

ECLAIR non-ECLAIR

User-kernel
crossing (µsec)

82 × O(n) (20+21) × O(n×m)

Data path delay
(µsec)

- (20+21) × O(n×m)

TABLE III

ECLAIR AND NON-ECLAIR QUANTITATIVE COMPARISON

In this section we selected metrics for evaluating any cross
layer feedback mechanism. We compared ECLAIR and non-
ECLAIR implementations of receiver window control using
user-kernel crossing overhead and data path delay metrics. The
evaluation results highlight the ef£ciency of ECLAIR.

In the next section we present the sub-architecture to
minimize ECLAIR overheads.

V. ECLAIR SUB-ARCHITECTURE

To maximize the bene£t from cross layer feedback a well-
de£ned methodology is required for (a) identifying critical
cross layer data items and (b) minimizing overhead for cross
layer feedback. A cross layer data item is information that
is available at a layer which can be used for cross layer
feedback to other layers. For e.g. bit-error-rate information
at the physical layer is a data item.

In this section we present: (a) a method for quantifying the
contribution of a data item and using this to identify the critical
data items and (b) a sub-architecture for cross layer feedback
which complements ECLAIR.

A. Identifying critical data items

Each data item used in cross layer feedback could provide
a certain utility whenever it is used by a layer. This utility
could be reduction of CPU cycles or power consumption and
reduction of memory. On the other hand, the cost of a data
item is the CPU cycles or power and memory required to
enable cross layer feedback for that data item. The £rst step
in cross layer optimization is identifying those elements which
have high utility. These data items are the critical data items
for cross layer optimization.

To quantify the utility of a data item the exact saving
achieved by using the data item needs to be found. The saving
could be determined either by precise models, simulations or

actual measurements. At the design stage, we feel that the
estimated frequency of use of the data item, for cross layer
feedback, can serve as an indicator of its utility.

Let, di be a data item at a layer j. i is an index of the set
of data items available for cross layer feedback throughout the
stack. The total number of times, ωi, the data item is accessed
by various layers, other than j, is an indicator of the utility of
the data item. Critical data items are the ones for which ωi is
high. The designer may choose to de£ne a threshold or cutoff
value for ωi.

After the critical data items have been identi£ed the next
step is de£ning the sub-architecture for cross layer feedback,
within ECLAIR.

B. Sub-architecture for cross layer feedback

The highlight of our sub-architecture is the creation of a
special subset of data items from the critical data items. We
call this subset the core. A data item is placed in the core
if the cost of cross layer feedback for the data item is lower
when it is placed in the core. Figure 10 illustrates the concept
of core.

(e.g.
IP)

(e.g.
TCP)

(e.g.
802.11)

(e.g.
802.11)

User

Application

Network

MAC

PHY

ATL

TTL

MTL

PTL

UTL

NTL

Transport

TL = Tuning Layer

O
pt

im
iz

in
g

S
ub

sy
st

em

C
or

e

Fig. 10. ECLAIR with core

Core:
Let the critical set of data items available for cross layer

feedback be D = {di : ωi > υ}, where υ is a threshold on
utility for identifying the critical data items. With reference
to core, writing a data item into the core means copying the
value of the data item into core. Similarly, reading a data item
from core means reading the value of the data item from core
by other layers.

Costs related to a data item di: Let,

• the cost of writing the data item into the core:

φ′i = cw × ω′i (1)

where,
cw = cost of a single write of the value of the data item
into the core. Assumed to be constant for all data items.
ω′i = estimated frequency of writing the value of the data
item into the core

• the cost of reading a data item from the core:

φi = cr × ωi (2)

where,
cr = cost of a single read of the data item if it is in core.
Assumed constant for all data items.

8

ωi = sum of estimated frequency of access of the data
item by all layers, other than the layer generating the data
item value.

• c̄r = cost of a single read of the data item if it is not in
core. Assumed constant for all data items.

The values of the various costs (cr, c̄r, cw) would depend
on the system characteristics.

Def. 5.1 (Core Interaction Cost (CIC)): CIC (Υi) of a
data item di is de£ned as sum of the cost of writing and
reading the data item from the core. From equations (1) and
(2)

Υi = φ′i + φi (3)
The total cost of core Ψ of core C is the sum CIC of all

elements in C

Ψ =
∑

Υi for all di ∈ C (4)

Similarly, the total utility of core Θ is the sum of the utilities
of all the data items in C

Θ =
∑

ωi for all di ∈ C (5)

Next, it is to be decided whether an item is suitable for the
core or not. For this, the power saving obtained by putting an
item in core needs to be evaluated.

Def. 5.2 (Core Potential Score (CPS)): CPS (κi) of a data
item di is de£ned as the reduction in power obtained by
placing the item in core.

κi = (c̄r × ωi)−Υi (6)
An item di is suitable for the core C only if κi > 0.
Rearranging the terms of equation (6) and from equations

(1), (2), (3), we get
κi > 0, if and only if

1−
cr
c̄r
−
cw
c̄r
×
ω′i
ωi

> 0 (7)

Since all the terms in equation (7) are positive, it can be
easily seen that:

(a) If cr ≥ c̄r then κi < 0 i.e. the data item is not suitable
for core

(b) If cr ¿ c̄r, cw ¿ c̄r and ω′i ¿ ωi then κi À 0 i.e. the
data item is most suitable for core

(c) If cr ¿ c̄r, cw ¿ c̄r and ω′i ≈ ωi then κi > 0
(d) If cr ¿ c̄r, cw ≈ c̄r and ω′i ¿ ωi then κi > 0

In the above two cases also the data item is suitable for
the core

(e) If cr ¿ c̄r, cw ≈ c̄r and ω′i ≈ ωi then κi ≈ 0 i.e. the
data item is not suitable for core.

Algorithm for selecting the elements for core:
Initially C is empty. Let τ be some threshold (design criteria)

for the core de£ned by the designer. The ordering of the data
items ensures that £rst the high utility data items are picked
for the core. The algorithm is presented in £gure 11.

1.
Sort the elements in D based on their CPS’ i.e. the element(s) with the
maximum saving is £rst in the set. Let, D

′ be the sorted set of data items.
2.
{Check each element}
for all di ∈ D

′ do
{Check net utility if item in core}
if Θ−Ψ < τ then
C = C ∪ {di}

else
break

end if
end for

Fig. 11. Core algorithm

C. Usage Scenario

We show the use of the sub-architecture through an example.
We assume certain cross layer feedback items.

Our example assumes the following c̄r = 1, cr = 0.5, cw =
0.5.
Cross layer data items:
For the sake of simplicity, we consider only four data items:

• d1 = Retransmission information at link layer
• d2 = Losses acceptable to an application (application

layer)
• d3 = User de£ned application priority
• d4 = Wireless channel bit-error rate

Next, we assume some frequency of write and access for
the data items.

• d1: Write frequency ω′
1 = 50 per second. The layers

that could use this information are (1) TCP, for adapting
its retransmission timeout value and (2) application layer
to get an estimate of the channel condition and adapt
its sending rate. We assume TCP uses this 10 times per
sec, while the application uses this information once per
second. Thus, ω1 = 10 + 1 = 11.

• d2: Write frequency: ω′
2 = 1/600 per second (i.e. appli-

cation may change its requirements once in ten minutes).
The layers that may read this information are link layer
and IP layer. Link layer could use this information to
adapt its error control mechanisms according to applica-
tion requirements and channel conditions. IP layer would
read this information to determine the interface on which
to send the packets. We assume that link layer reads
this information 50 times per sec and IP layer reads this
information 10 times per second. Thus ω2 = 50 + 10 =
60.

• d3: Write frequency: ω′
3 = 1/600 per second (i.e. user

may update application priority once in ten minutes). This
information may be used by RWC (see section III) to
manipulate the receiver window for current applications.
We assume that RWC reads this once every ten minutes.
Thus ω3 = 1/600.

• d4: Write frequency: ω′
4 = 10 per second (bit-error

information from physical layer). MAC, IP, TCP, and
application layers may read this information for adap-
tation. We assume each reads this information 10 times
per second. Thus ω4 = 40.

Based on ωi the critical data items can be determined. If
the cut-off for ωi was 10, then d1, d2 and d4 would be the

9

critical data items.
Core:
Using this information and the equations (1),(2),(6) we get:
κ1 = 11× 1− (50× 0.5 + 11× 0.5) = −19.5
κ2 = 60× 1− (1

600
× 0.5 + 60× 0.5) ≈ 30

κ4 = 40× 1− (10× 0.5 + 40× 0.5) = 15

From the values of κi we can see that d1 is not suitable for
the core since κ1 < 0.

Using the core algorithm in £gure 11, if τ = 35 then d2
will be in the core.

In this section, we presented a sub-architecture for ECLAIR
which reduces the cross layer feedback overheads. In the next
section we present a guideline for applying ECLAIR to cross
layer feedback implementations.

VI. CROSS LAYER FEEDBACK DESIGN GUIDE

We believe that the primary criteria for selecting a cross
layer feedback architecture is the type of cross layer feedback.

A. Asynchronous v/s Synchronous Cross Layer Feedback

The adaptive action at a layer based on cross layer feedback
from another layer may be synchronous or asynchronous. In
synchronous cross layer feedback, whenever a layer receives
some cross layer information, it proceeds with its regular
execution only after executing the cross layer adaptation
required. For example, assume there is network disconnection
event sent to TCP from the link layer. In the synchronous case,
TCP’s regular execution is stopped, appropriate adaptation is
carried out in TCP and then regular TCP execution proceeds.
In the asynchronous case, the control data structures of TCP
would be updated while TCP’s execution is in progress.

To ensure correct and ef£cient cross layer feedback appro-
priate architecture is required suited to the type of cross layer
feedback.

As an example, we consider receiver window control ex-
plained earlier (section III). In this case, the primary require-
ment is to apportion application bandwidth. It may not be
essential to tune application bandwidth synchronously with
each read() of an application, as proposed in [10]. Thus the
architecture proposed in [10] reduces the application through-
put. However, as shown in section IV, if an asynchronous
architecture e.g. ECLAIR is used, the data path delay and
hence application throughput is not reduced.

Further, the cross layer feedback behavior would be in-
correct, if an architecture suitable for asynchronous feedback
is used for synchronous feedback. For example, cross layer
feedback adaptation which is to be triggered by information
contained in each packet would fail if an asynchronous archi-
tecture like ECLAIR is used.

Subsequent to the architecture choice based on the type of
cross layer feedback, it is essential to minimize the overheads
of the cross layer feedback implementation. In the following
sections we discuss the design guide for ECLAIR implementa-
tions for single and multiple PO (protocol optimization) cases.

B. Single Cross Layer Optimization

Separating the Protocol Optimizers and Tuning Layers into
a separate cross layer system, outside the stack, introduces the
overhead of additional function calls. Hence, in case only a
single cross layer optimization is planned and the cross layer
system is not to be ported / deployed on multiple operating
systems then it is better to incorporate the protocol optimizer
(PO) and tuning layers (TLs) within the existing stack itself.
This would reduce the overhead of multiple function calls
between PO and TL and hence would increase the ef£ciency
of the implementation. However, if additional cross layer
feedback optimizations are to be introduced later, PO and TL
should be implemented as separate modules. This is to avoid
the maintainability and portability issues later.

C. Multiple Cross Layer Optimizations

In case of multiple cross layer optimizations, POs and
TLs should be implemented as indicated in the ECLAIR
architecture.

If multiple cross layer optimizations or POs directly access
the layers, then the dependency of the POs is high on the
layer’s code. Any change to the layer code will lead to a
change in all the POs interacting with that layer. Reducing
such coupling is useful for ease of maintenance and evolution
of the cross layer system. Introduction of a tuning layer, leads
to reduction in the coupling between the layer code and POs.
Further, core should be introduced for reducing the cross layer
overheads.

In summary, ECLAIR should be used if the cross layer
type is asynchronous. Further, POs and TLs should be im-
plemented, as proposed in ECLAIR, if multiple cross layer
optimizations are to be implemented or if the cross layer
system is to be ported to multiple operating systems. Core
should be introduced to reduce the cross layer overheads.

VII. RELATED WORK

For cross layer feedback on the device [15] propose that the
network layer monitors lower layers for events and generates
Internet Control Message Protocol (ICMP) messages within
the protocol stack. A special handler traps these messages
and adapts protocols based on adaptations de£ned by the
application developer. This is essentially an architecture that
passes lower layer information to higher layers. There is no
mechanism to pass information from higher to lower layers
e.g. TCP cannot pass information to the MAC layer. Another
disadvantage is that all events are wrapped in ICMP packets,
which increases the cross layer feedback overhead.

In [18] cross layer information is exchanged through packet
headers. Hence, this is suitable for selected types of syn-
chronous cross layer feedback e.g. adaptation at lower layers
based on information in each packet from higher layers.
However this requires that lower layers be able to read higher
layer headers. Further substantial modi£cation is required to
the layer code where adaptation is required. For information
from lower to higher layers, the lower layers would need to
change the packet header, which could lead to packet errors.

10

The framework in [2] proposes a cross layer manager
that corrects the behavior of a protocol based on events it
receives from other protocols in the stack. This too seems to
be suitable for asynchronous cross layer feedback. However,
internal details, implementation and performance issues have
not been discussed.

Cross layer signaling shortcuts (CLASS) are proposed in
[16]. A representative survey is also presented. However, the
CLASS mechanism would have drawbacks similar to that of
ad hoc implementations.

The aforementioned cross layer mechanisms would require
substantial modi£cations to the stack as compared to ECLAIR.
Further, they do not address in detail the issue of cross layer
feedback overheads and evaluation and metrics.

Additional research useful for cross layer feedback design
is as follows: Useful caveats and principles related to cross
layer feedback design are presented in [8]. Therein the issue of
cross layer feedback con¤ict is also highlighted. Power aware
protocols in ad hoc networks are discussed in [5]. References
therein provide insight into the various power aware protocol
proposals and design issues. A survey of cross layer feedback
optimizations is presented in [11].

VIII. CONCLUSION

The performance of layered protocol stacks can be improved
by cross layer feedback. In this paper we highlighted the
problems associated with ad hoc cross layer implementations.
Ad hoc cross layer implementations can affect the ef£ciency,
correctness and maintainability of the protocol stack. This
highlights the need for a appropriate cross layer feedback
architecture.

We presented the internal details of our cross layer architec-
ture ECLAIR. ECLAIR provides the bene£ts of rapid proto-
typing, minimum intrusion, portability and minimal overheads.
ECLAIR also enables (a) dynamic control (switch on/off) of
cross layer algorithms, (b) seamless mobility and (c) user
feedback.

We validated ECLAIR through a prototype implementation
of Receiver Window Control (RWC), on a Linux desktop and
experiments over WLAN. To evaluate cross layer feedback
architectures we selected the metrics of time/space complexity,
design complexity, user-kernel crossing and data path delay.
We used these metrics to compare ECLAIR with another
implementation of RWC. Our results and analysis show that
ECLAIR is an ef£cient architecture, since it minimizes the
user-kernel crossing and data path delay. We also proposed
a sub-architecture core which is a set of cross layer items
which provide high performance gains. Core helps reduce the
overheads of cross layer feedback in ECLAIR.

ECLAIR is suited for asynchronous cross layer optimiza-
tions. For single protocol optimizations ECLAIR overheads
may be too high. However, ECLAIR is bene£cial when there
are multiple protocol optimizations to be implemented. With
suitable modi£cations it may be possible to use ECLAIR for
synchronous cross layer feedback also, however, this would
require substantial modi£cations to the stack could lead to
increased delay on the data path.

ECLAIR also allows a distributed implementation of cross
layer feedback. For example, in case of a laptop connected
to the network through a wireless modem, the tuning layers
of the link and physical layers could reside on the wireless
modem and the rest of ECLAIR TLs and OSS could reside
on the laptop.

REFERENCES

[1] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz.
A Comparison of Mechanisms for Improving TCP Performance over
Wireless Links. IEEE/ACM Transactions on Networking, 5(6):756–769,
December 1997.

[2] G. Carneiro, J. Ruela, and M. Ricardo. Cross Layer Design in 4G
Wireless Terminals. IEEE Wireless Communications, 11(2):7–13, April
2004.

[3] Jonathan Corbet, Alessandro Rubini, and Greg Kroah Hartman. Linux
Device Drivers. O’Reilly, February 2005. Third edition.

[4] J. Crowcroft and I. Phillips. TCP/IP & Linux Protocol Implementation:
Systems Code for the Linux Internet. John Wiley & Sons, October 2001.
1st edition.

[5] A.J. Goldsmith and S.B. Wicker. Design Challenges for Energy-
constrained Ad hoc Wireless Networks. IEEE Wireless Communications,
9(4):8–27, August 2002.

[6] ITU. Information technology - OSI - Basic Reference Model, July 1994.
X.200.

[7] P. Jalote. An Integrated Approach to Software Engineering. Springer
Verlag New York, 1997. Second Edition.

[8] V. Kawadia and P. R. Kumar. A Cautionary Perspective on Cross Layer
Design. IEEE Wireless Communications, 12(1):3–11, February 2005.

[9] M. Allman and V. Paxson and W. Stevens. RFC2581: TCP Congestion
Control, April 1999.

[10] P. Mehra, A. Zakhor, and C. Vleeschouwer. Receiver-Driven Bandwidth
Sharing for TCP. In IEEE INFOCOM, SF, USA, April 2003.

[11] V. T. Raisinghani and S. Iyer. Cross-layer Design Optimizations
in Wireless Protocol Stacks. Computer Communications (Elsevier),
27(8):720–724, May 2004.

[12] V. T. Raisinghani and S. Iyer. ECLAIR: An Ef£cient Cross Layer
Architecture for Wireless Protocol Stacks. In World Wireless Congress,
SF, USA, May 2004.

[13] V. T. Raisinghani, A. K. Singh, and S. Iyer. Improving TCP Performance
over Mobile Wireless Environments using Cross Layer Feedback. In
IEEE ICPWC, New Delhi, India, December 2002.

[14] W. Richard Stevens. TCP/IP Illustrated, Volume I, The Protocols. AWL,
1994.

[15] P. Sudame and B. R. Badrinath. On Providing Support for Protocol
Adaptation in Mobile Networks. Mobile Networks and Applications,
6(1):43–55, 2001.

[16] Qi Wang and M.A. Abu-Rgheff. Cross-layer Signalling for Next-
Generation Wireless Systems. In Wireless Communications and Net-
working (WCNC), volume 2, pages 1084–1089. IEEE, March 2003.

[17] C. Wijting and Ramjee Prasad. A Generic Framework for Cross-Layer
Optimisation in Wireless Personal Area Networks. Wireless Personal
Communications, 29(1–2):135–49, April 2004.

[18] Gang Wu, Yong Bai, Jie Lai, and A. Ogielski. Interactions between
TCP and RLP in Wireless Internet. In IEEE GLOBECOM, volume 1B,
pages 661–666, Rio de Janeireo, Brazil, December 1999. IEEE.

[19] G. Xylomenos and G. C. Polyzos. Internet Protocol Performance over
Networks with Wireless Links. IEEE Network, 13(4):55 – 63, July/
August 1999.

[20] Cbrowser. http://cscope.sourceforge.net/.
[21] Cross referencing linux. http://lxr.linux.no/source/.
[22] Cscope. http://cscope.sourceforge.net/.
[23] The ACX100/ACX111 Wireless Network Driver Project.

http://www.linuxforum.com/linux-kernel-programming/index.html,
2004. version 0.20pre8.

