
M2MC: Middleware for Many to Many
Communication over broadcast networks

Chaitanya Krishna Bhavanasi and Sridhar Iyer
KR School of Information Technology,
Indian Institute of Technology - Bombay

(email:chaitanya, sri@it.iitb.ac.in)

Abstract— M2MC is a new distributed computing middleware
designed to support collaborative applications running on devices
connected by broadcast networks. Examples of such networks are
wireless ad hoc networks of mobile computing devices, or wired
devices connected by a local area network. M2MC is useful for
building a broad range of multi-user applications like multiplayer
games, conversations, group ware systems.

Unlike existing middleware architectures that rely on central
servers, M2MC is truly distributed protocol. Applications de-
veloped using M2MC do not require central servers for mes-
sage ordering, member synchronization and group management.
Being broadcast oriented, M2MC do not require any resource
consuming routing protocols.

M2MC architecture consists of Message Ordering Protocol,
Member Synchronization Protocol and protocols for processes
to join and leave the groups. In this paper we describe key
components of M2MC and their implementation in Java.

I. INTRODUCTION

Middleware is a set of software facilities that mediates be-
tween an applications programs and communication network.
It manages the interaction between applications across the
computing devices by providing communication support in a
transparent way to the application.

The communication paradigms can be classified into one-
to-one or one-to-many or many-to-many communications. As
shown in Fig1a, in one-to-one communication model only two
processes are involved in communication, one for sending the
message and other receiving it. Examples of applications of
one-to-one paradigms are web browsing, email etc. The Fig1b,
shows one-to-many communication in which one process
sends message and many processes receive it. Web casting
is an example of such application. The Fig1c shows many-to-
many communication paradigm in which a message sent by
any of the processes reach every process present in the network
and is interested in receiving it. The Fig1d shows mulitple
group communication using many-to-many communication.

In this paper we propose M2MC, a middleware for sup-
porting applications requiring group and many-to-many com-
munication patterns. M2MC consists of a set of protocols
for building collaborative applications like mulitplayer games,
chat applications etc. that run in broadcast networks. Some
examples of such networks are: wireless proximal ad hoc net-
works of fixed or mobile devices or hybrid network connecting
wired and wireless devices. The Fig2 shows the relative
position of M2MC protocols with respect to the application
and network protocols. M2MC consists of Message Ordering

Fig. 1. Communication Paradigm

Fig. 2. M2MC

Protocol (Section 4), Group Join /Leave Protocol (Section 5)
and Member Synchronization Protocol (Section 6).

Unlike existing middleware architectures that rely on central
servers, the M2MC is intended for running collaborative
applications without relying on central servers. In wireless ad
hoc network or hybrid network of devices, relying on central
servers is not attractive because the devices are not necessarily
always in the range of wireless access point. Furthermore
relying on any one wireless device to act as a server is
unattractive because devices may come and go without prior
notification. Using M2MC, those devices which are in range
of each other can act in conert to run the application. We
have developed an application using our M2MC APIs called
Threaded Chat application.

II. MOTIVATION

In this section we describe the Threaded Chat application
to motivate the relevance of M2MC. Consider a group of
processes (A,B,C,D) running on distributed devices and im-
plementing a simple chat application that lets the members of
the group interact with each other. The processes communi-
cate with each other by sending messages using a broadcast
medium. Suppose the application is implemented using a

message ordering protocol based on logical timestamps, such
as total ordering [2]. See [9] for a comprehensive survey of
total ordering protocols.

As shown in Fig 3, let process C send messages ’Did you
visit Delhi?’ and ’Did you visit Chennai?’ with timestamps
1 and 2 respectively. After receiving the above messages,
suppose process A replies to the message ’Did you visit
Chennai?’ with the response ’No’ and process B replies to
the message ’Did you visit Delhi?’ with the response ’Yes’.
As per total ordering, both A and B would affix the timestamp
3 to their responses. Now, the message ordering protocol at
process D on receiving these messages orders them according
to their timestamps and displays them on the chat console.
However, since there are two messages having the same
timestamp, they may get displayed on the console at D in
an arbitrary order. This leads to ambiguity because the user
at D may not be able to map the responses ’No’, ’Yes’, to
the messages ’Did you visit Delhi?’, ’Did you visit Chennai?’
appropriately. Hence total ordering protocol is inadequate for
such an application. It can be shown that the ambiguity persists
even when the messages are ordered using vector clocks,
as in causal ordering [6] or even when synchronized global
clocks [5] are assumed.

Fig. 3. Chat Application

Fig. 4. Threaded Chat Application

In contrast to the above, consider a Threaded Chat appli-
cation [7] that lets users communicate in a message-response
form as shown in Fig 4. All chat messages are structured in
the form of a tree. The key feature of this tree structure is
that messages and responses are organized into relationships
called threads. A user explicitly selects a message before
responding to it. As a result, the response is linked directly to

Fig. 5. M2MC architecture

the corresponding message, using threads, and other users can
perceive the semantic relationship among the messages.

Although the paper [7] does not provide the details of the
Message Ordering Protocol used by Threaded Chat applica-
tion, such an application can be easily implemented using the
Message Ordering protocol of M2MC. For the above example,
upon receipt of messages from process C, process A displays
both of them to the user. Now the user at process A would
explicitly select the message ’Did you visit Chennai?’ before
responding with the message ’No’. The Message Ordering Pro-
tocol at process A captures this semantic dependence between
the message and its response and sends this information to the
group, along with the response. Similarly, the Message Order-
ing Protocol at process B captures the semantic dependence
between the message ’Did you visit Delhi?’ and its response
’Yes’ and sends this information to the group. The Message
Ordering Protocol at D, upon receipt of these responses, orders
the messages appropriately and unambiguously, as shown in
Fig 4. If a new process E enters the broadcast domain then it
executes the Group Join and Leave protocol to get the list of
group of applications running in the broadcast domain. After
joining the group, the Member Synchronization Protocol will
ensure that the process E receives all the messages that have
been sent to the group. The Message Ordering Protocol orders
these messages and displays on the screen.

In the next section, we describe the architecture of M2MC
and its various components.

III. MIDDLEWARE ARCHITECTURE

As shown in Fig 5 M2MC comprises of a Message Ordering
Protocol (MOP), Member Synchronization Protocol (MSP),
and protocols for process to join and leave the group called
Group Join Leave Protocol (GJLP).

A. Components of Middleware

The following are components of our middleware.
1) Message Ordering protocol (MOP): When two or more

messages are sent to the group, processes receive them in
arbitrary order depending on the transmission delays between

Fig. 6. Illustrating
���

ordering

senders and receivers. For example, if a group member sends
a message ��� as a response to message ��� , then it is possible
that some of the group members may receive ��� before
�	� (see Fig 6). Hence an ordering protocol is required to
guarantee that every group member will deliver the message
� � before delivering � � to the application. Also if �	
 and ��

are any two semantically unrelated messages, then a member
receiving ��
 before ��
 , should not block delivery of �

 by
waiting for the arrival of �	
 .

Traditional solutions like total ordering protocol [6] or
causal ordering protocol [2] do not take into account the se-
mantic relationship among messages and hence are inadequate
for many distributed group communication applications.

For M2MC, we propose a new message ordering, called���
ordering, and a corresponding protocol, called Message

Ordering Protocol (MOP) , which is implemented by every
member of the group. The primary objective of the MOP is to
order received messages, based on the semantic relationship
among them, irrespective of the chronological order in which
they are received. As a result, the MOP also minimizes the de-
livery delay at a process (the time from the moment a message
is received at a process to the time the message is delivered
to the application consuming it), by blocking delivery of a
message only if it is yet to receive any semantically preceding
message(s).

2) Group Join Leave protocols (GJLP): When a process
is newly connected to a broadcast network or a process leaves
the network temporarily and later rejoins, it should be aware
of the group applications that are running across the network
so that it can join in any of the interested applications. For
M2MC, we propose Group join protocol to keep a the newly
connected process aware of group applications running across
the network so that it can join them and a Group Leave
Protocol for a process leaving a group application, to informs
its departure to the members of the group. The protocol is also
for creating new groups.

3) Member Synchronization Protocol (MSP): When a
process newly joins a group or it leaves an existing group
and later rejoins it, it misses messages that were sent to
the group during its absence. The process must recover such
lost messages, as soon as it joins the group, such that the
group applications continue running correctly. For M2MC, we
propose Member Synchronization Protocol to recover such lost

messages.
4) Group Manager: The Group Manager regulates the flow

of messages from one component to another. It receives mes-
sages from the network, determines the nature of the message,
routes them to the other components of M2MC appropriately
and finally delivers it to the application. It also receives
messages from application and delivers it to the network
layer for broadcasting. Since M2MC supports applications
over multiple overlapping groups, the group manager maps
group information to the corresponding instances of the MSP,
MOP allocated to the groups.

5) Broadcast Layer: The broadcast layer is assumed to
be reliable and guarantees message delivery to every member
of the group. However it may suffer from nondeterministic
bounded delay in message delivery. Messages in transit need
not follow FIFO order. The Broadcast layer supports functions
for broadcasting a message to the group and for receiving a
message from the group.

6) Applications: The middleware supports group applica-
tions like chat applications, multiplayer games, group ware
systems etc. The application uses the APIs provided by Group-
Manager and ApplGrpMngrInterface for sending and receiving
group messages, for creating new groups or for joining and
leaving existing groups.

B. Middleware operations

1) For creating a new group:: The Application calls (step
A in Fig 5) GroupManager component with group description
parameters. The GroupManager creates an identity and in-
stances of various protocols for the new group and broadcasts
the new group description(step D).

2) For joining an existing group :: Every process main-
tains a groupsInfoList containing the identity and members
information of every group that it is aware of. When a process
newly connects to broadcast network or a process leaves the
network temporarily and later reconnects, it broadcasts its
presence by doing the following. The GroupManager calls
GJLP protocol component, gets the advertisement message
(steps E, 6) containing the attributes of process and broadcasts
by sending it to broadcast layer along step D. Every process
(including the one that sent the advertisement) on receiving
advertisement (along steps 1, 2, 3) gives it to their respective
GroupManager. The GroupManager calls GJLP and gets (steps
E, 6) the groupsInfoList containing identities and members list
of every group that the process is aware of. The GroupManager
broadcasts the groupsInfoList by sending it to broadcast layer
along step D.

At every process, groupsInfoList received by the broadcast
layer reaches GJLP along 1, 2, 3, E. The GJLP checks if
there exists information about any new group in the received
message that is not present in its groupsInfoList. If such
group exists then it presents the details of the new group
to the application along 6,4,5. The user at the application
if decides to join a group, calls GroupManager (step A)
which in turn creates instances of MSP, MOP for the group
and sends joinMsg, containing the identity of the group and

identity of the process, to the broadcast layer (along step D)
for broadcasting. Every member of the group on receiving
the joinMsg updates their groupsInfoList by appending the
identity of the process specified in joinMsg to the members
list of the group.

For leaving the group, application calls GJLP along step A,
E. GJLP creates a leaveMsg with identities of the process and
the group that the process is leaving. The leaveMsg reaches
GroupManager along 6 and it subsequently broadcasts along
E. The GJLP at every member of the group on receiving
leaveMsg along 1,2,3,E updates their groupsInfoList by delet-
ing the identity of the process from the members list of the
group specified in leaveMsg message.

3) For sending a message to group: For sending an
application message M to the group, the application calls
(arrow A) GroupManager which in turn calls MOP. The MOP
adds appropriate headers and returns the message (arrows C, 8)
to GroupManager. The GroupManager broadcasts the message
to the group by calling Broadcast layer.

4) On receiving a message from the broadcast layer: The
GroupManager on receiving the application message M (along
arrows 1,2,3) finds the group that the message belongs to and
calls MSP of the group (along 7,B) for storing the message. It
then calls MOP (along C) of the group. MOP checks whether
the process received all the messages that are semantically
before M. If it has received them then it sends (along 8)
M and any other messages that are waiting for its arrival
(because M is semantically before waiting messages) to the
GroupManager which in turn delivers them to the application
(along 4). Otherwise MOP blocks the delivery of the message.

5) Member synchronization: When a process running on
a mobile device leaves the network temporarily and later
reconnects to the network it misses the messages that were sent
to the group. It executes Member Synchronization Protocols
for each group (in which it has membership) for recovering
the missed messages.

The GroupManager calls MSP and gets (arrows 7, B) a
synchronization request message SyncReqMsg. SyncReqMsg
contains the process identity, group identity, and applica-
tion messages the processes has received before leaving the
network. The GroupManger broadcasts it by sending it to
broadcast layer (along D).

BroadcastReceiver on receiving SyncReqMsg, sends it to
GroupManager (steps 1,2,3). The GroupManager at every
process other than the process that sent SyncReqMsg sends
it to MSP (step 4). MSP finds for any messages that it has
not received from the group, in the application messages of
SyncReqMsg and sends them to the Group Manager (step
B). The Group Manager subsequently delivers them to the
application. MSP creates a temporary applMsgList containing
application messages that it has received from the group. It
waits for random time and sends SyncRespMsg containing
the messages present in applMsgList. While waiting, if MSP
receives SyncRespMsg sent by some other process, then it
deletes the messages from applMsgList that are present in
SyncRespMsg.

Fig. 7. Ordering Tree

The broadcast layer at the process that sent SyncReqMsg
on receiving SyncRespMsg, sends it to GroupManager (steps
1,2,3). The GroupManager subsequently delivers the appli-
cation messages present in SyncRespMsg after sending to
MSP,MOP for storing and ordering purposes.

Hence the process that missed the messages gets updated
with the application messages and also every other process
gets the application messages from the process that requested
synchronization.

IV. MESSAGE ORDERING PROTOCOL

In this section we present the specification and implementa-
tion details of Message Ordering Protocol. Group Join/Leave
Protocol and Member Synchronization Protocols are presented
in next sections.

The primary objective of the Message Ordering Protocol
called MOP is to identify the semantic relationship among
received messages and delivering them to the application in
a semantically consistent order. Guaranteeing such ordering
involves:

1) Capturing the semantic relationship between a message
and its response, from the application at the sender.

2) Representing these semantic relationships in an appro-
priate form and conveying them to the receivers.

3) Maintaining the relationship at each member of the
group with minimum overhead.

A.
���

Ordering

We represent the semantic relationship among the messages
using

� �
order relationship defined as follows:

Two messages X and Y are said to be related in
���

order
if and only if Y is produced semantically in response to a
unique message X. This is represented as X

������ Y. Also if X
and Y are not semantically related then it is represented
as X �

� ������ Y.
For a group of messages, we conceptually represent the

semantic relationship among them in the form of a tree,
called the Ordering Tree (OT), as shown in Fig 7. The OT
has the following structure:

� The vertices of the OT are identities of the messages;
each message has a unique system-wide identity.� The directed edges of the OT represent the semantic
message-response relationships among messages. There
is an edge between any two vertices in the OT, if and

only if and the corresponding messages are related in
���

order.� The root of the OT is a virtual node, denoted by ��� � .
��� � is assumed to be semantically before all the mes-
sages sent to the group. If a message is not a response
to any other message in the OT, it is considered to be a
response to ��� � .

B. Properties of
� �

order

Some salient properties of
���

order are as follows:

1) Response semantics :
If X

� ���� Y then P(Y) = X, i.e., X is said to be parent of
Y.
The OT represents this relationship in the form of a
directed edge between a parent node X and a child node
Y. For example in the Fig 7, node A1 is the root of the
tree. A4 is produced in response to C1 (C1

������ A4) and
P(A4) = C1. Hence there is a directed edge from node
C1 to node A4 in the OT.

2) Uniqueness:
If X

� ���� Y then P(Y) !" Z (# Z, Z !" X), i.e., X is unique.
The OT represents this by allowing a node to have
multiple number of child nodes but a child node can
have exactly one parent node. In other words, a message
sent to the group may generate multiple responses from
various members of the group but any given response is
associated with one and only one message and not with
multiple messages.

3) Transitivity:
X
� ���� Y $ Y

� ���� Z "�% X
� ����& Z.

The OT represents this as having a path from X to Z,
if there is an edge from X to Y and an edge from Y to
Z. We use the notation

� ����& to represent such transitive
closure. It can be easily seen that the following also
hold:
� X

� ����& Y $ Y
� ���� Z "�% X

� ����& Z

� X
�'���� Y $ Y

������& Z "�% X
������& Z

� X
� ����& Y $ Y

� ����& Z "�% X
� ����& Z

C. Message Ordering Protocol

Here we present the Message Ordering Protocol that in-
cludes:

1) At the sender: Captures the
���

order between a message
and its response and includes this information while
broadcasting the response.

2) At the receiver: Maintains the
� �

order information
and determines the action to be taken for each received
message. A message is delivered immediately to the
application either if its parent in the

� �
order has been

delivered or if it is not a response to any other message,
i.e., it has the root of the OT (��� �)as its parent.

Otherwise the delivery of the message is deferred, until
the receipt and delivery of its parent.

We now describe the data structures and state diagram of MOP.
1) Notations, Message Format and Data Structures:

1) Notations:

�)(+*-,/.	0 : denotes the unique identity of the group.�)(213,4.�065 denotes the unique identity of the process
in the broadcast network.�)(87�9�:�;�<>=?065 denotes sequence counter value at
process i.�)(A@�,4. = 065 denotes message identity of message i
and (B@�,4. = 0 is (C1D,/. =FE 7�9�:�;�< = 0

2) Message Format:
A message format is: (G@H,/.JI E @H,/.�K E *-,/. E .�L�MFL�0 where@H,4.�I is the message identity, @�,4.'K is the identity of its

parent (@�,4.�K
� ���� @�,4.-I), *�,4. is the identity of the group

and .�L�MFL is the application information. If a message
(@H,/. I) is not a response to any other message then the
identity of its parent (@H,4. K) is set to ��� � .

3) Data Structures :
Every process maintains two data structures for every
group:

a) Ordering Tree (OT): As discussed earlier, the OT
represents the

���
order among the messages of a

group. Each process constructs its OT dynamically
by recording the identities of those messages that
have been received in

���
order.

b) Out of Sequence Messages Store (OSMS):
OSMS saves messages that have arrived out of� �

order. For every such message in the form(B@H,4. I E @H,4. K E *-,4. E .�L�MFL�0 , @H,4. I , @H,4. K , .�L�MFL are
are saved in the OSMS in the format (ONA7P*	065Q(@�,4.-I E @�,4.�K E .�L�MFL�0 .

2) Protocol Actions :: The state diagram of the MOP
is as shown in Fig 8. In the INITIAL state all the data
structures are initialized to NULL and the process then waits
in the LISTEN state. When the application wants to send a
message to the group, the process goes to the RESPOND state,
where it augments the message with the

� �
order information,

broadcasts the message and returns to the LISTEN state.
When a message is received from the group, the process

goes to the RECEIVE state, where it checks the
� �

order
information of the message with the OT (Ordering Tree).
If it has delivered the parent of the current message, it
goes to the RCVDeliverableMSG state, else it goes to the
RCVOutSequenceMSG state. In the RCVOutSequenceMSG
state, the process simply saves the message in the OSMS and
returns to the LISTEN state. In the RCVDeliverableMSG state,
the process delivers the message to the application as well as
any of its

���
order children that may be saved in the OSMS

and returns to the LISTEN state.
A more detailed description of the protocol actions in each

state, for a group of ; processes, is as follows:

Fig. 8. State Diagram of the protocol

1) INITIAL STATE:
At every process, set seqno to zero, set root of OT to
OTR and go to LISTEN STATE.

2) LISTEN STATE:
Listen until a message is received or application wants
to respond to a message.

if message is received then
go to RECEIVE state

else if application sends a message to the group then
go to RESPOND state.

end if
3) RECEIVE STATE: Process , on receiving a messageN " (R@H,/. I E @H,/. K E *-,/. E .�L�MFL	0 ,

if @H,4.>K = ��� � or @H,4.>KTS ��� then
go to RCVDeliverableMSG STATE.

else
go to RCVOutSequenceMSG STATE

end if
4) RCVDeliverableMSG STATE:

a) Call the UpdateOT operation described below with
received message M as its parameter.

b) UpdateOT(N)

i) Append N8UV@H,4.-I into ��� = as a child node ofNWUP@H,/.�K .
ii) Deliver the NWUX.�L�MFL to the application.

iii) /* Let NA7P* represents a message in � � N � =
and NA7P*YU�@H,/. K , NA7P*ZU�@H,4. I represent the@�,4. K , @H,/. I values of the message Msg
respectively. */
for each message NA7P*[S � � N � = havingNA7V*\UV@�,4.�K == N]UX@�,4.-I do

UpdateOT(NA7P*)
Remove message NA7P* from � � N � =

end for

c) go to LISTEN state.

5) RCVOutSequenceMSG STATE:

Insert (^@H,4.�I E @H,4.>K E .�L�MFL_0 in � � N � = and go to
LISTEN state.

6) RESPOND STATE: When application at process ,
responds to a message with identity @H,4.'K , then,

a) 7X9�:�;�<>= " 7�9�:�;�<>=�`Oa
b) @H,4.�= " (C1D,/.�= E 7�9�:�;�<>=b0
c) ced <>L�.�fVLJ7XMg765h(B@H,4.�= E @H,4. K E .�L�MFL	0
d) go to LISTEN state.

If message is not related to prior messages then @�,4.�K
is OTR.

D. Java Implementation

The class diagram of the protocol and the java implemen-
tation of data structures are described Appendix.

V. GROUP JOIN AND LEAVE PROTOCOLS

In this section we present GJLP protocol, for processes
that have newly entered the network, to become aware of the
various group applications currently operating in the broadcast
network and to join in any of these groups. The GJLP protocol
is also for processes, that rejoined the network after leaving
it temporarily, to know the list of new group applications
currently operating in the network and also to update the
membership list of the groups that it is already member of.
� At Sender: The process sends advertisement message

to inform its presence to the processes present in the
network.� At every process on receiving advertisement : Every
process, including the process that sent the advertisement,
on receiving advertisement message sends information
about the groups, that they are member of, in the form
of a list of group identities and their members identities.� At every process on receiving information about
groups: Every process on receiving them, if finds any
new group that they are not aware of, then they send it
to the application. If application wants to join a group,
the process broadcasts its identity and the identity of the
group that it is joining. Every member of the group on
receiving it updates the members list of the group.� For a process to leave a group: The process, for leaving
a group, broadcasts its identity and the identity of the
group that it is leaving. Every member of the group on
receiving it updates the members list of the group.

A. Notations, Message Format and Data Structures

1) Notations:
�i(jfPNk9�@Tlm,F7XMn0 : denotes list of identities of the pro-

cesses that are current members of a group.�i(poqNk9�@Hlr,47XMT0 : denotes list of identities of the pro-
cesses that have left the group.�i(G* d 1Ds�;�t
<�0 : denotes the information of a group. It is
of the format (B*�,4. , .�9>7Xf , fPNk9�@Tlm,F7XM , Nk9X@Tou,F7XMr0 and
desc denotes the description about the group.

Fig. 9. Group Join/Leave Protocol state diagram

2) Messages Format:
�)(_L-.�v-NA7P*O0 : denotes advertisement message sent by

process. It contains the identity of the process in the
format (C1D,/.	0�)(+* d 1�7�s�;�t
<>lm,F7XMr0 : denotes information about the vari-
ous groups. It is of the format: (wou,F7XM�<�t�(R* d 1Ds�;�t
<\060 .�)(_x�<�,/;�NA7V*[0 : It is of the format (y13,4. E *-,/.i0 and
denotes message sent by process whose identity is 13,4. to
inform the members of the group *-,/. that it is joining
the group.�)(zo{9�L�v-9>NA7P*|0 : It is of the format (}13,4. E *-,4.|0
and denotes message sent by process 13,4. to inform the
members of the group *�,4. that it is leaving the group.

3) Data Structures: Every process maintains the following
data structure:
�G~ d 1�7�s�;�t
<>s';�.�9�� � L c o{9�=��{~6s�s � ={� .Each row of the table~6s�s � = at process i contains * d 1Ds�;�t
< of a group and the

row is indexed by the identity of the corresponding group* d 1�s';�t
<�U>*-,/. (i.e. row ~6s�s � =�� * d 1Ds�;�t
<�U>*-,4.�� contains* d 1�s';�t
<). If the process , is not member of group whose
identity is *-,4. then the row of ~6s�s � = indexed by *�,4.
contains N/A value. (i.e. if i is not member of group gid
then ~6s�s � =�� *-,4.�� is N/A)

B. Protocol Actions

The state diagram of the protocol at process i is as shown
in the Fig 9. Brief explanation of protocol action is as follows:
The process for advertising its presence to the group goes from
the Intial state to SendAdv state. In this state, it creates adver-
tisement message L�.-NA7P* and broadcasts it. After broadcast-
ing, it returns to the Initial state. Every process including the
process that sent the advertisement on receiving advertisement
goes to SendGrpInfoList state, creates * d 1�7�s�;�t
<>lm,F7XM from
the * d 1Ds�;�t
< present in the rows of their GIIT and broadcasts
it.

Every process present in the broadcast network on receiving* d 1�7�s�;�t
<>lm,F7XM , goes to RecvGrpsInfoList state. In this state,

if process i finds any * d 1�s';�t
< in * d 1�7�s�;�t
<>lm,F7XM that do not
have an entry in its ~6s�s � = , then it delivers * d 1Ds�;�t
<�Ue.�9�7�f to
its application. If the application at this process is interested
in joining any of these groups then the process goes to
SendJoinMsg state. In this state it creates a x�<�,/;�NA7P* for
each group and broadcasts them. On receiving x�<�,/;�NA7P*
sent by the process for joining a group, every member of
the group goes to UpdateGrpInfo state. In this state every
member of the group gets * d 1�s';�t
< of the group from its~6s�s � � x�<�,/;�NA7V*6Ue*-,4.�� (by indexing operation) and updates it
by appending the x�<�,q;�NA7P*�UQ1D,4. to the * d 1�s';�t
<bU/fPNk9�@Hlr,F7PM .

If process i is leaving a group, the process goes to
SendLeaveMsg state and broadcasts (�o�9�L�v�9>NA7P*B0 . Each
member of the group on receiving (yo{9�L�v-9>NA7P*B0 goes to
UpdateGrpInfo state. In this state a process i gets * d 1�s';�t
<
from its ~6s�s � =�� o{9�L�v-9>NA7V*�U3*�,4.'� and updates * d 1Ds�;�t
< by
transferring o�9�L�v�9>NA7P*�U�13,4. from * d 1Ds�;�t
<ZUJfPNk9�@Hlr,47XM to* d 1�s';�t
<�UXoqNk9�@Hlr,47XM .

A more detailed description of the protocol actions in each
state at process i is as follows:

1) Initial STATE:

if process newly enters network or rejoined network after
leaving it temporarily then

go to SendAdv state for sending its advertisement.
else if process receives (�L�.�vJNA7V*�0 sent by any process
then

go to SendGrpsInfoList state.
else if process receives * d 1�7�s�;�t
<>lm,F7XM from any process
then

go to RecvGrpsInfoList state.
else if process receives x�<�,/;�NA7P* or o{9�L�v-9>NA7V* then

go to UpdateGrpInfo state.
else if process wants to leave a group then

go to SendLeaveMsg state.
else if process wants to create a new group then

go to CreateNewGrp state.
end if
2) SendAdv STATE:� Delete row of ~6s�s � = containing the entry N/A� For process , to advertise its presence to the group,

creates (|L�.�vJNA7V* = 0 = (�13,4.A0 , broadcasts it and
goes back to Intial state.

3) SendGrpInfoList STATE: Process i and every other
processes including the process that sent (�L-.�v-NA7P*i0 on
receiving (GL-.�v-NA7P*n0 does the following,

/*Create * d 1�7�s';�t
<>lr,F7PM by doing the following.*/
for each * d 1�s';�t
< present in ~6s�s � = do

add * d 1�s';�t
< to (B* d 1
7�s';�t
<>lr,47XM�0 .
end for
Broadcast * d 1�7�s�;�t
<>lm,F7XM
4) RecvGrpsInfoList STATE: Process i on receiving* d 1
7�s';�t
<>lr,47XM :
for each * d 1�s';�t
< present in * d 1
7�s';�t
<>lr,47XM do

if there is an entry in ~6s�s � = indexed by * d 1�s';�t
<�U�*-,/.
then

if entry is N/A then
Discard the * d 1�s';�t
<

else if entry is group information *Js';�t
< then
Update the *Js';�t
< by doing the following.
Insert every 1D,4. present in * d 1Ds�;�t
<�UeoqNk9�@Hlr,47XM in*Js';�t
<�U�o{Nk9�@Hlr,F7PM if 13,4. does not exist in it and
remove 1D,/. from *Js�;�t
<�U�fPNk9�@Tlm,F7XM if 13,4. exists.
Similarly insert every 1D,4. present in * d 1�s';�t
<�UfPNk9�@Tlm,F7XM in *-s�;�t
<�UQfPNk9�@Tlm,F7XM if it does not exist
in *-s�;�t
<�U�fPNk9�@Hlr,F7PM and *Js';�t
<�UPoqNk9X@Tlm,F7XM .

end if
else

Deliver * d 1�s';�t
<bU/.�9�7�f of the group to the application.
if application wants to join the group then

Process i creates a new row in ~6s�s � = , inserts in it* d 1�s';�t
< and sets index key value to * d 1Ds�;�t
< UP*�,4. .
go to SendJoinMsg state.

else
Discard the * d 1�s';�t
<

end if
end if

end for
5) SendJoinMsg STATE: To join group *-,/. process ,

creates x�<�,/;�NA7P* with (C1D,4. E *�,4.Z0 and broadcast it.
6) UpdateGrpInfo STATE: Process , on receivingx�<�,/;�NA7P* or o�9�L�v�9>NA7P* ,

if received message is x�<�,/;�NA7P* then
if process , is member of group x�<�,q;�NA7P*�UP*�,4. then

Get the * d 1Ds�;�t
< from ~6s�s � =�� x�<�,/;�NA7P*�U{*-,4.�� and add
the x�<�,/;�NA7P*�UF13,4. to * d 1Ds�;�t
< UXfPNk9�@Hs�;�t
<

end if
else if received message is o�9�L�v-9�NA7P* then

if process , is member of group o�9�L�v�9>NA7P*6UV*-,4. then
Get the * d 1�s';�t
< from ~6s�s � =�� x�<�,/;�NA7P*�U
*-,4.�� and
remove the o{9�L�v-9>NA7P*bU 1D,/. from * d 1Ds�;�t
<�U�fPNk9�@Tlm,F7XM
and add it * d 1Ds�;�t
<�UXo{Nk9�@Tlm,F7XM .

end if
end if
7) SendLeaveMsg STATE: For process to leave group

whose identity is gid, it destroys MOP, MSP instances of
the group, creates leaveMsg in the format (pid,gid 0 and
broadcasts it.

8) CreateNewGrp STATE: The process creates a unique
identity *�,4. for the new group, creates * d 1Ds�;�t
< and
sets * d 1�s';�t
<2U
*�,4. to *-,4. . It appends its identity 13,4. to* d 1Ds�;�t
<DU�fPNk9�@Hlr,F7PM and broadcasts * d 1�s';�t
<>lr,47XM containing* d 1Ds�;�t
< .
C. Java Implementation Details

We have implemented the protocol in Java. The class
diagram of the protocol and its methods are described in
Appendix.

VI. MEMBER SYNCHRONIZATION PROTOCOL (MSP)

A process that newly joins a group or process that rejoins
the group after leaving the group temporarily executes MSP

to recover the messages that were sent to the group during its
absence. We assume that every member of the group logs the
messages that it has received from the group. MSP protocol
is as follows:
� At the sender: The process sends synchronization re-

quest message SyncReqMsg that contains the list of the
messages that it has so far received from the group.� At the receivers: On receiving a SyncReqMsg from
a process, every process (excluding the process that
sent SyncReqMsg) in the group creates a repository of
message identities. The repository contains the identities
of messages that it has received from the group excluding
the messages present in SyncReqMsg. It starts a counter
with a random value. When the counter expires, it broad-
casts a synchronization response message SyncRespMsg,
containing the messages whose identities are present in
repository, to the group and deletes the repository. While
counting, for every SyncRespMsg that it receives from any
member of the group, it deletes the identities of those
messages from repository that are present in received
SyncRespMsg. The process that sent SyncReqMsg on
receiving SyncRespMsg, sends the messages present in
message list of SyncRespMsg to the GroupManager which
will be subsequently delivered to application.

A. Notations, Message Format and Data Structures

1) Notations:
�i(�b� ;�f � 9�:�;�<�0 : denotes a sequence counter. It is

initialized to zero and incremented before SyncReqMsg.�i(�b� ;�fPNA7P*Js�.�0 : denotes the identity of SyncRe-
qMsg or SyncRespMsg and it is in the format (
1D,4. E 7 � ;�f � 9�:�;�< E *�,4.\0

�i(�b� ;�fPNA7P*-lr,F7PMr0 : denotes list of messages. Each mes-
sage (�NA7P*20 is in the format ([@�,4. I E @�,4. K E .�L�MFL�0
where @H,/.-I , @�,4.�K , .�L�MFL are identity of message, identity
of its parent message and application .�L�MFL as described
in Section 4.

2) Message Format:
�i(�b� ;�f � 9�:�NA7V*'=�0 denotes SyncReqMsg sent by process ,

and it is in the format (�b� ;�fPNA7P*-s�.�= E �b� ;�fPNA7P*-lr,F7PMr0 .�i(�b� ;�f � 9>7�1�NA7P*'=��k0 denotes SyncRespMsg sent by
process x in response to (�b� ;�f � 9�:�NA7P*�=�0 and it is in
the format (C13,4.�� E �b� ;�fPNA7P*Js�.�= E �b� ;�fPNA7P*-lr,47XM�0 .

3) Data Structure: Every process maintains following data
structures:
� Group Messages List ��~ d 1�NA7P*Jlm,F7XM4� = � � The data struc-

ture stores every message that is sent to group with
gid in the list so that when a new member requires
synchronization, messages present in this list will be
transferred to it. Each message stored in the list is
of format (W@H,4. I E @�,4. K E .�L�MFL�0 . If the process has
memory constraints and if the application .�L�MFL is not
very significant than it stores only @�,4.JI E @H,4.>K because
these identities are used by MOP for ordering purpose.

Fig. 10. Member Synchronization Protocol

� Message Identities Repository (Nks �): The data struc-
ture Nks � stores identities of messages. It is created
for temporary period on receiving

�b� ;�f � 9�:�NA7P* and
deleted after the process responds to it by sending�b� ;�f � 9>7�1�NA7P* .� Process Sync Status Index Table (¡ �m� s � =): The rows
of index table ¡ �m� s � = at process i stores for every
process the latest SyncSeqno of SyncReqMsg among the
SyncReqMsg messages that it has so far received from the
process. Each entry

�b� ;�f � 9�:�;�< of ¡ �m� s � = is indexed
by pid of the process.� MIRIndexTable: The index table entry points to Nks �
indexed by

�b� ;�fPNA7P*-s�. .
B. State Diagram

The state diagram of the protocol at process i is as shown
in fig10.

The process i in the Initial state goes to SendSyn-
cReq state and sends

�b� ;�f � 9�:�NA7P*�= . If process i re-
ceives

�b� ;�f � 9�:�NA7P*�� from process j it goes to SyncRe-
qRecv state. Checks if the received

�b� ;�f � 9�:�NA7V*�� is lat-
est request message from process j(because network layer
may not follow FIFO order in message delivery) by com-
paring the

�b� ;�f � 9�:�NA7P* � U ��� ;�f � 9�:�;�< with
�b� ;�f � 9�:�;�<

present in ¡ �r� s � =F� ��� ;�f � 9�:�NA7P* � U ��� ;�fXNA7V*Js�.�U�13,4.'�
and updates this entry in ¡ �m� s � = with

�b� ;�f � 9�:�NA7P* � U�b� ;�f � 9�:�;�< if the request message is latest message. If the
received message is latest message, it creates Nks � (if it
does not exist in Nks � s';�.�9�� � L c o{9 when indexed by key�b� ;�f � 9�:�NA7P* �>¢ ��� ;�fXNA7V*Js�.), stores in Nks � the identities
of those messages present in �{~ d 1
NA7P*-lr,47XMg� = � � (where gid is�b� ;�fPNA7P*-s�.mU�*�,4.) and not in

�b� ;�f � 9�:�NA7P*���U �b� ;�fPNA7P*Jlm,F7XM
and goes to Counting state. In this state it starts a counter with
random initial value and keeps decrementing. If the counting
reaches zero it goes to SendSyncResp state and creates�b� ;�f � 9�7�1
NA7V*���= containing the list of messages whose iden-
tities are present in Nks � . It broadcasts

�b� ;�f � 9>7�1�NA7P* ��= and
deletes Nks � . While counting if it receives

�b� ;�f � 9�7�1
NA7V* ��£

it goes to UpdateMIR state deletes the identities of those
messages from Nks � that are present in

�b� ;�f � 9>7�1�NA7P* ��£ U�b� ;�fPNA7P*Jlm,F7XM .
If process i receives the

�b� ;�f � 9>7g1
NA7P* ��£ before�b� ;�f � 9�:�NA7P* � because the network layer may not follow
FIFO order in delivering messages then it goes to Syn-
cRespRecv state. If the received message is latest message
then it does the following. Creates MIR if one does not
exist in MIRIndexTable, stores in MIR the identities of those
messages that are present in ~ d 1�NA7P*Jlm,F7XM � =h� and not in
received

��� ;�f � 9>7�1�NA7P*>��£ message. If Nks � already exists
in MIRIndexTable then it deletes identities of messages from
MIR that are present in

��� ;�f � 9>7�1�NA7P* ��£ U �b� ;�fPNA7P*Jlm,F7XM .
If process i receives

�b� ;�f � 9>7�1�NA7P* =h£ in response to its
request message

�b� ;�f � 9�:�NA7V* = it goes to Deliver state
and delivers the messages present in

�b� ;�f � 9>7�1�NA7P* =Q£ U�b� ;�fPNA7P*Jlm,F7XM to GroupManager.
A more detailed description of the protocol at process , is

given below:

1) Initial STATE:

Contents of ¡ �r� s � = are made empty and SyncSeqno is set to zero.
if process wants to sync with rest of group members of
group gid then

Go to SendSyncReq state
else if a

�b� ;�f � 9�:�NA7P*�� is received then
Go to SyncReqRecv state

else if
�b� ;�f � 9>7�1�NA7P*'= ¤ is received then

Go to DeliverMsg state
else if

�b� ;�f � 9>7�1�NA7P* ��¤ is received then
Go to SyncResRecv state

end if
2) SendSyncReq STATE:� Increments SyncSeqno.� Creates a (�b� ;�fPNA7P*Js�.�=�0 with (A13,4.+0 , (¥*-,4.+0

and (��� ;�f � 9�:�;�<�0 .� Creates (�b� ;�fPNA7P*-lr,F7PM�0 with the list of the messages
present in ~ d 1
NA7V*Jlm,F7XM4� = � .� Creates (��� ;�f � 9�:�NA7P* = 0 in format(�b� ;�fPNA7P*-s�. =4E �b� ;�fPNA7P*Jlm,F7XMm0 and broadcast it.

3) SyncReqRecv STATE:
On receiving

��� ;�f � 9�:�NA7P* � , let @�7P*-s�. , @�7P*-lr,F7PM ,*-,/. represent
�b� ;�f � 9�:�NA7P* � U ��� ;�fXNA7V*Js�. ,�b� ;�f � 9�:�NA7P* � U �b� ;�fPNA7P*Jlm,F7XM and�b� ;�f � 9�:�NA7P* � U �b� ;�fPNA7P*Js�.�UP*�,4. respectively.

if ¡ �m� s � =g� @�7P*-s�.6Ug1D,4.��r(k@�7P*-s�.6U ��� ;�f � 9�:�;�< then
Create MIR with identities of messages present
in ~ d 1�NA7P*-lr,F7PM4� = � and not in @�7P*-lr,47XM and setNks � s';�.�9�� � L c o{9 � @�7V*Js�.�� to MIR
Set ¡ �m� s � =F� @T7P*Js�.�Ug13,4.'� to @T7P*Js�.�U �b� ;�f � 9�:�;�<
Go to Counting state

else if ¡ �m� s � =F� @T7P*Js�. U�1D,/.'� " @�7P*-s�.¦U ��� ;�f � 9�:�;�< then
Get MIR from MIRIndexTable[@T7P*Js�.]
Delete message identities from MIR whose messages
present in @�7P*-lr,47XM

Go to Counting state
else

Discard
�b� ;�f � 9�:�NA7V* ��¤

end if
4) Counting STATE:

Choose a random counter value.
while counter does not reach zero do

Decrement the counter by one.
if the process receives

�b� ;�fPNA7P* � 9>7 ��£ from some
process x then

Get MIR fromNks � s';�.�9�� � L c o{9 � �b� ;�fPNA7P* � 9�7 ��£ U �b� ;�fPNA7P*-s�.��
go to UpdateMIR State

end if
end while
if counter reached zero then

Go to SendSyncResp state
end if

5) UpdateMIR STATE:
� Deletes the identities from Nks � whose messages are

present in
�b� ;�f � 9>7�1�NA7P* ��£ U �b� ;�fPNA7P*Jlm,F7XM .� Go to while loop at statement 2 of Counting state.

6) SendSyncResp STATE:
� Create

�b� ;�fPNA7P*-lr,F7PM with the list of messages from~ d 1�NA7P*Jlm,F7XM � = � whose identities are present in MIR.� Create
��� ;�f � 9>7�1�NA7P*���= in the format(��� ;�fXNA7V*Js�. E �b� ;�fPNA7P*-lr,47XMb0 .� Delete MIR and its reference from MIRIndexTable.� Broadcast the
�b� ;�f � 9�7�1
NA7V*>��= .

7) Deliver STATE: On receiving
�b� ;�f � 9>7�1�NA7P* =§� ,deliver

the messages present in
�b� ;�fPNA7P*-lr,47XM of the received�b� ;�f � 9�7�1
NA7V* =§� to the GroupManager which will subse-

quently deliver them to the application.
8) SyncRespRecv STATE:

On receiving
�b� ;�f � 9>7�1�NA7P* ��£ , let @T7P*Js�. , @T7P*Jlm,F7XM ,*�,4. represent
�b� ;�f � 9�7�1
NA7V* ��£ U �b� ;�fPNA7P*-s�. ,�b� ;�f � 9�7�1
NA7V* ��£ U ��� ;�fXNA7V*Jlm,F7XM and�b� ;�f � 9�7�1
NA7V*���£�U ��� ;�fXNA7V*Js�.�U¨*�,4. respectively.

if ¡ �m� s � � @�7V*Js�.3U 13,4.'�m()@�7P*-s�.3U �b� ;�f � 9�:�;�< then
Create MIR with identities of messages present
in ~ d 1
NA7V*Jlm,F7XM4� =h� and not in @T7P*Jlm,F7XM and set
MIRIndexTable[msgId] to MIR
Set ¡ �m� s � � @T7P*Js�.�UF1D,4.�� to @�7V*Js�.�U �b� ;�f � 9�:�;�<

else if ¡ �m� s � � @�7P*-s�.�Ug1D,/.'� = @�7P*-s�.�U �b� ;�f � 9�:�;�< then
Get MIR from MIRIndexTable[msgId] if exists
Delete message identities from MIR whose messages
present in @�7V*Jlm,F7XM

else
Discard

�b� ;�f � 9>7g1
NA7P* ��£
end if

C. Java Implementation

The class diagram of the protocol and the java implemen-
tation of data structures are described Appendix.

VII. RELATED WORK: ANHINGA PROJECT

The Anhinga Project [1] is an infrastructure for building dis-
tributed applications involving many-to-many communication
in an ad hoc network of proximal mobile wireless devices.
Its architecture consists of Many2Many Invocation (M2MI)
mechanism and Many2Many Protocol(M2MP).

1) M2MI: Remote method Invocation(RMI) can be viewed
as an object oriented abstraction of point-to-point commu-
nication: what looks like a method call in fact a message
sent and a response sent back. In contrast to RMI ,M2MI
provides an object oriented method call abstraction based on
broadcasting. An M2MI-based application broadcasts method
invocation, which are received and performed by many objects
in many target devices simultaneously. The paper [1] describes
it in detail.

2) M2MP: The M2MP is similar to our GJLP protocol.
If more than one group application exists then M2MP lets
application join a group and leave group. It also regulates the
received packets from the broadcast layer to appropriate group
application.

Although Anhinga project provides Object oriented method
call abstraction for developing many to many communication
applications, it does not provide support for message ordering
and recovery of lost messages.

VIII. CONCLUSION

We have presented M2MC, a new distributive computing
middleware designed to support collaborative applications
running on devices connected by broadcast networks. M2MC
is useful for building a broad range of multi-user applications
like multiplayer games, conversations, group ware systems.
M2MC does not rely on central servers and its component
protocols MOP,MSP,GJLP act together for communicating in a
distributed manner. We have described the specification details
and Java implementation details of these protocols. We have
discussed Threaded Chat Application developed using M2MC.

REFERENCES

[1] H.Bischof. A.Kaminsky. Many-to-many invocation: A new framework
for building collaborative applications in ad hoc networks. CSCW 2002
Workshop on Ad Hoc Communication and Collaboration in Ubiquitous
Computing Environments, New Orleans, Louisiana, USA,, 2002.

[2] D.R.Cheriton and D.Skeen. Understanding the limitations of causally
and totally ordered communication. In the Preceedings of 14th ACM
Symposium on Operating System Principles, pages 44–57, 1993.

[3] R.Vitenberg. G.Chockler, I.Keidar. Group communication specifications:a
comprehensive study. ACM Computing Surv. 9,2(Feb.), 427-469, 2001.

[4] F. Viegas J. Donath, K. Karahalios. Visualizing conversation. Proceedings
of HICSS-32, 1999.

[5] L.Lamport. Using time instead of time-outs in fault-tolerant systems.
ACM Trans. Program. Lang. Syst. 6,256-280, 1984.

[6] L.Lamport. Time,clocks, and the ordering of events in a distributed
system. Communication of ACM, July 1978.

[7] B.Burkhalter M.Smith, JJ. Cadiz. Conversion trees and threaded chats.
ACM Magazine, 2000.

[8] P.Urban X.Defago, A.Schiper. Comparitive performance analysis of
ordering strategies in atomic broadcast algorithms. IEICE Trans. Inf.
Syst. E86-D,12, 2003.

[9] P.Urban. X.Defago, A.Schiper. Total order broadcast and multicast
algorithms: Taxonomy and survery. ACM Computing Surveys,Vol. 36,No.
4 pp.372-421, December 2004.

IX. APPENDIX: JAVA IMPLEMENTATION OF M2MC
MIDDLEWARE LAYER

A. System Environment

We have implemented the middleware protocols in Java
language. We have used the Multicast socket provided by the
Java.io package for multicasting over IP address. We discuss
the implementation details of each protocol using their class
diagrams.

B. Message Ordering Protocol

We have implemented the protocol as Java APIs. The class
diagram of the protocol is as shown in Fig.11.

1) classOutSeqMsgList: implements the data structure
(OSMS) in the form of linked list called OsmMsgList with
each node of the list pointing to object of Msg that stores@�,4. K , @H,4. I , .�L�MFL of application message. The insertI-
nOsml(midc,midp,data) creates object of Msg and inserts in
OsmMsgList. The getInSeqMsgList(midc) retrieves all the mes-
sages (Msg) from osmMsgList for which midc is semantically
before them either directly or transitively and returns them to
the called function in the form of linked list of messages in���

order.
2) classOrderingList: implements the data structure Or-

deringTree as collection of linked lists called seqnoList. One
seqnoList is maintained for every member of the group to store
the sequence numbers of the messages sent by the member. If
sequence numbers are continous only the first and last value
are stored to save space. A java.util. HashMap called pidMap
maps the identity of a process (pid) to the linked list seqnoList
corresponding to the process. The isPresent(midp) returns true
if midp.seqno is present in seqnoList of process midp.pid and
the insert(midc) inserts midc.seqno in seqnoList of process
midc.pid.

3) class MessageOrderingProtocol: is called by Group-
Manger before sending message to the group. It is also called
after receiving a message from the group for ordering message
in
� �

order before sending it to the application. The send(midp,
data) creates identity midc for application data and sends it to
the GroupManager in the form of DataPacket object contain-
ing attributes midc, midp, gid, data. The receive(DataPacket
dpkt) calls isPresent(dpkt.midp) of OrderingList class, if it
receives true then calls getInSeqMsgList(midc) and gets the
linked list of messages. It calls insert(mid) of OrderingList
class and inserts the identities of these messages in Or-
deringList. It delivers these messages to the GroupManager
in
� �

order. If isPresent(dpkt.midp) returns false then calls
insertInOsml(dpkt.midc,dpkt.midp,dpkt.data) to insert the out
of sequence message in OSMS.

C. Group Join/Leave Protocol

The class diagram of the protocol in the Fig12 shows salient
attributes and methods of the class GrpJLProtocol.

class: GrpJLProtocol
The class implements the data structure GIIT as object of

java.util.HashMap called GrpInfoMap. The key of the GrpIn-
foMap is the object of group identity class Gid containing

Fig. 11. Message Ordering Protocol class diagram

unique identity for each group and entry of the map is object
of GrpInfo containing information about the group in its
attributes gid, desc and java.util.LinkedList objects cMemList,
lMemList.

1) sendAdMsg(): deletes all entries containing value N/A
in grpMsgList and sends an object of AdMsg class containing
attribute pid.

2) LinkedList getGrpInfoList(): returns linked list called
GrpsInfoList whose nodes contain objects of GrpInfo which
are present in GrpInfoMap.

3) adMsgReceived(AdMsg adMsg): at every process (in-
cluding the process that sent the message) on receiving adMsg
calls getGrpInfoList() , gets the linked list of the GrpInfoList
and broadcasts it.

4) updateGrpInfoMap(GrpInfo recvGrpInfo): gets the gr-
pInfo from GrpInfoMap by indexing with key value recv-
GrpInfo.gid. The method updates grpInfo.lMemList and gr-
pInfo.cMemList by doing the following. The process in-
serts each pid present in recvGrpInfo.lMemList, in gr-
pInfo.lMemList. Also if pid is present in grpInfo.cMemList
then process removes pid from grpInfo.cMemList. The process
inserts each pid present in recvGrpInfo.cMemList, in gr-
pInfo.cMemList if it does not exist either in grpInfo.cMemList
or in grpInfo.lMemList.

5) void grpInfoListRecv(grpInfoList): For each grpInfo
object present in grpInfoList, it does the following. If there
is an entry in GrpInfoMap with key value grpInfo.gid, then
it calls updateGrpInfoMap(grpInfo). Otherwise it informs the
user about the new group by delivering the grpInfo to the ap-
plication through GroupManager. If application wants to join
the group then calls joinThisGroup(grpInfo) of GroupManager
which calls joinGroup(grpInfo) else it calls rejectGrp(grpInfo)

6) void joinGrp(grpInfo): updates GrpInfoMap by adding
the entry grpInfo, its key grpInfo.gid and calls sendJoin-
Msg(grpInfo.gid).

7) void rejectGrp(grpInfo): updates GrpInfoMap by
adding the entry N/A, its key grpInfo.gid.

Fig. 12. Group Join/Leave Protocol

Fig. 13. Member Synchronization Protocol

8) sendJoinMsg(): creates an object of JoinMsg class con-
taining attributes pid, gid and broadcasts it.

9) sendLeaveMsg(gid): creates an object of LeaveMsg
class with fields pid, gid and broadcasts it. It also calls
GroupManager for destroying the objects of MSP, MOP of
the group.

10) joinMsgReceived(joinMsg): gets the grpInfo from Gr-
pInfoMap by indexing with joinMsg.gid if exists, and inserts
joinMsg.pid in grpInfo.cMemList.

11) leaveMsgReceived(leaveMsg): gets the grpInfo object
from GrpInfoMap by indexing with leaveMsg.gid if exists
and inserts leaveMsg.pid in grpInfo.lMemList. It also deletes
leaveMsg.pid from grpInfo.cMemList

12) createNewGroup(desc): creates new group by doing
the following. It creates unique identity gid for the group
by incrementing grpSeqno and appending process identity
pid to it. It creates object grpInfo of GrpInfo class sets
grpInfo.gid, grpInfo.desc to gid, desc respectively. It inserts
process identity pid in grpInfo.cMemList linked list and up-
dates GrpInfoMap by adding the entry grpInfo and its key gid.
It creates grpInfoList containing grpInfo and broadcasts it.

D. Member Synchronization Protocol

The class diagram of the protocol in Fig13 shows the salient
methods and attributes of each class.

1) class:MemberSyncProtocol: The MemberSyncProtocol
implements the data structure GrpMsgList as a
java.util.LinkedList object called grpMsgList with
each node of the linked list pointing to object of
Msg. (Msg has fields midc,midp,data). HashMap
(ProcessSyncStatusMap(PSSM)) implements the data
structure ProcessSyncStatusIndexTable(PSSIT) with each
entry of the map is indexed by key value pid of process and
each entry contains the SyncSeqno of latest SyncReqMsg
sent by process with identity pid. MIR is implemented as
LinkedList called MIRList. Another HashMap MIRMap
implements MIRIndexTable for storing the objects of
MIRList indexed by key value

�b� ;�fPNA7P*-s�. .
� sendSyncReq() increments its syncSeqno and creates

object of SyncMsgId class with fields pid, syncSeqno,
gid. It creates object of SyncMsgList containing the
linked list of messages that are present in grpMsgList
and broadcasts the object of SyncReqMsg containing
objects of SyncMsgId and SyncMsgList.� updateGrpMsgList(SyncMsgList syncMsgList) up-
dates the grpMsgList by appending messages to grpMs-
gList that are present in syncMsgList and not in grpMs-
gList. These messages are subsequently delivered to
application.� receiveSyncReq(syncReqMsg) at every process (ex-
cept process that sent syncReqMsg) calls update-
GrpMsgList(syncReqMsg.syncMsgList). It gets the sync-
Seqno of latest syncReqMsg sent by process syn-
cReqMsg.syncMsgId.pid from PSSM and if syncRe-
qMsg.syncMsgId.syncSeqno is less than syncSeqno then
it discards syncReqMsg, if greater than syncSeqno
then creates object of MIRList (with identities of
messages present in grpMsgList and not in syncRe-
qMsg.syncMsgList). If syncSeqno is equal to syn-
cReqMsg.syncMsgId.syncSeqno then get the object of
MIRList from MIRMap by indexing with key value syn-
cReqMsg.syncMsgId and update it by removing the iden-
tities of those messages from MIRList that are present
in syncReqMsg.syncMsgList. It creates object of counter
class and starts the counter thread.� receiveSyncResp(syncRespMsg) at process i
checks if syncRespMsg.syncMsgId.pid is 13,4. = and
calls updateGrpMsgList(syncResMsg.syncMsgList).
Otherwise gets syncSeqno from PSSM and if
syncRespmsg.syncMsgId.syncSeqno is less than
syncSeqno then it discards syncReqMsg, if greater
than syncSeqno then creates object of MIRList (with
identities of messages present in grpMsgList and not
in syncReqMsg.syncMsgList). If syncSeqno is equal to
syncReqMsg.syncMsgId.syncSeqno then get the object
of MIRList if one exists from MIRMap by indexing
with key value syncReqMsg.syncMsgId and update it by
removing the identities of those messages from MIRList
that are present in syncReqMsg.syncMsgList.� sendSyncResp(syncMsgId) gets the MIRList object

Fig. 14. Threaded Chat Application Architecture

from MIRMap by indexing with key syncMsgId and
creates syncMsgList with the list of messages present
in MIRList. It creates syncRespMsg with syncMsgList,
syncMsgId and broadcasts syncRespMsg to the group. It
destroys MIRList and updates MIRMap.

2) class:Counter: inherits Thread class. Its only method is
startCounter(syncMsgId). The method takes random value and
keeps decrementing. If reaches counter value reaches zero it
calls sendSyncResp(syncMsgId).

3) class: MIR : maintains LinkedList MIRList. It contains
methods like putMsgId(mid), removeMsgId(mid), getMsgIds()
for putting, removing, sending identities respectively.

E. Application development using M2MC APIs

For developing application, the application developer uses
the APIs provided by GroupManager class and implements the
methods of interface ApplGrpManagerInterface.

The class GroupManager (Fig.15) of the M2MC provides
the following method interfaces for the application develop-
ers.It maintains object of java.util.HashMap called grpProto-
colMap for mapping identity of a group gid to its instances
of classes MsgOrderProtocol and MemSyncProtocol.

1) void CreateGroup(String desc): is for the application
developer for creating a new group. The argument desc is
description about the group. It gets identity for the new group
from object of GrpJLProtocol method, creates instances of
classes MsgOrderProtocol and MemSyncProtocol, and updates
grpProtocolMap to map the identity of the group to the
instances of classes. It calls getGrpInfoList() of GrpJLProtocol
class, gets grpsInfoList that includes grpInfo of new group and
broadcasts it.

2) void joinThisGroup(grpInfo): is called for joining
an existing group whose identity is grpInfo.gid. It creates
instances of MsgOrderProtocol, MemSyncProtocol, updates
grpProtocolMap and calls joinGrp(grpInfo) of GrpJLProtocol
class.

3) void leaveThisGroup(gid): is called if the process
wants to leave from group whose identity is gid. It calls
sendLeaveMsg(gid) method of GrpJLProtocol.

Fig. 15. Group Manager class

Fig. 16. Interface for application developer

4) void receiveMsgfrmAppl(midp, data, gid): is called
when the user at group application wants to broadcast applica-
tion .�L�MFL to the group in response to a message with identity@H,/.�K . It calls send(midp,data) object of class MsgOrderPro-
tocol corresponding to group with identity gid.

5) void sendAdvMsg(): for advertising the presence of
process in the network. The method calls sendAdMsg() of
GrpJLProtocol.

The interface ApplGrpMgnrInterface provides the following
APIs. These APIs are called by the methods of GroupMan-
ager and other classes of M2MC. The application developer
implements the methods provided in the interface based on
application logic.

6) void sendMsg2Appl(LinkedList msgList, String gid):
The method is called by GroupManager methods for giving the
application the list of messages that the process has received
from the group of group identity gid.

7) void displayNewGroupInfo(GrpInfo grpInfo): is called
by GroupManager, for sending identity and description of new
group to application.

8) void createdNewGroup(String gid): is called by Group-
Manager, for sending the identity of newly created group. The
application developer can write the application specific code
(that has to be performed when a new application group has
been created) by implementing this method.

The class diagram of the Threaded Chat application
is shown in the Fig 14. The classes ApplGrpMngrClass,
GroupInfoWindow, ChatConsole, DynaTreeNode, DynaTree,
represent the application logic. The classes ChatConsole, Dy-
naTreeNode, DynaTree, GroupInfoWindow provide GUI. The
discussion of these classes is beyond the scope of the paper.

