
Mobile Agents for effective structuring of
large-scale distributed applications

 Vikram Jamwal Sridhar Iyer
 KR School of IT KR School of IT
 IIT Bombay IIT Bombay
 Mumbai, 400 076, India Mumbai, 400 076, India
 vikram@it.iitb.ac.in sri@it.iitb.ac.in

ABSTRACT
Large scale distributed applications typically involve a
number of nodes, which may be spread over a large
geographical area. The Client-Server(CS) paradigm has
been found useful for designing distributed applications.
However, CS approach does not scale well when the
number of participating nodes increase and build complex
relations with one another. Also, increase in geographical
spread and unreliable network connectivity pose problems
for CS implementations.

Mobile Agents (MA) is emerging as a useful paradigm for
overcoming the above limitations [6] . We have designed
and implemented a large distributed application, viz.
distance evaluation, which uses MA as the underlying
design approach. Our system provides the infrastructure
for conducting computer based testing of students who may
be dispersed around the globe.

In this paper we present the software engineering lessons
learnt from our implementation and put forth the various
issues that emerge. We show that MA paradigm can be
exploited for effective structuring of large-scale distributed
applications. We claim that, compared to other
approaches, MA based approach gives us several
advantages such as: scalability, flexible structuring,
dynamic extensibility, push-pull modes of information
dissemination, transparency to varying communication
channels, application layer multicasting, and dynamic
content delivery.

Keywords
Mobile agents, distributed application architecture

1. INTRODUCTION
Large scale distributed applications are characterized by a
number of nodes, which may be distributed over a large
geographical area. The various components of such an

application may change their relationships with each other
over a period of time; for example, a component which
behaves as a client may subsequently become a server for
some other components. The underlying network
characteristics, such as link bandwidths and delays, may
also vary over a period of time. It is difficult and
cumbersome to model such applications using only
traditional architectures like client-server, peer-to-peer,
master-slave etc.

We argue that the MAs are particularly suitable for these
large-scale applications. A MA is an autonomous software
entity that can migrate between various nodes of the
network and perform computations at these nodes. MA
carries its state information while moving from one node to
another. A MA will usually have an itinerary, which is a
list of nodes it needs to visit, associated with it. [3] and [6]
give several reasons for using mobile agents.[1] and [7]
provide the motivation for using mobility to structure
distributed applications.

We propose to show that software mobility in general and
mobile agents in particular help in effective structuring of
large-scale distributed applications. The gains are in terms
of scalable and flexible architectures, and dynamically
extensible applications. MAs enable both push and pull
modes of information dissemination. They facilitate
application level multicasting and delivery of dynamic
content. Where underlying network architecture is
unpredictable or frequently changing, MA based approach
provides better solutions.

We have implemented Mobile Agents based system for
Distance Evaluation (MADE) for computer based testing of
students distributed over large areas. We have used the MA
approach for designing and implementing our system. We
have found that this approach yields many advantages over
other traditional approaches.

In this paper we detail our experiences and the insights
gained through MADE. Section 2 provides an overview of
MADE. In section 3 we discuss the software engineering
issues that exist in large-scale distributed applications and
how they may be addressed through mobile agents. In
section 4 we conclude our discussion.

2. DESIGN OF MADE
Distance evaluation of students constitutes a crucial factor
for the success of distance education. Traditional Computer
Based Testing (CBT) techniques, which have relied upon
CS design, are now being extended to the Internet based
testing [2]. These systems face drawbacks like
susceptibility to network outages and network latencies.
Moreover, many of these systems do not cover the full
examination process (described below) and concentrate
only on testing and evaluation.

 We have designed and implemented a Mobile Agent based
system for Distance Evaluation (MADE), which provides
an integrated and comprehensive solution to evaluate
students who are connected through the Internet. MADE
provides support not only for testing but also for paper
setting and evaluation.

In MADE, we divide the examination process into three
stages: (i) examination setting, (ii) distribution and testing,
and (iii) evaluation and result compilation

Paper Assembler

Comprehensive Question Paper

To Distribution Center

Cloning

= Paper Setter Nodes

= Install Agent

= Fetch Agent

1

6

4

2

5

Partial Question
Paper

3

Fig 2.1 Examination Setting

2.1 Examination Setting
The examination setting process (Fig 2.1) takes place in a
collaborative manner among the paper-setters who are at
different remote locations. Install Agents are used to install
the paper-setting application on their machines. An Install
Agent does this by moving to a paper-setter node, cloning
itself and then moving to the next node (Steps 1 and 2).
Each setter prepares a partial questionnaire (Step 3). When
it is time to collect these partial question papers, Fetch
Agents are dispatched to these examiners. The itinerary for
Fetch Agents is dynamically decided and they can
repeatedly visit the nodes in any order (Step 4) until they
have gathered all the partial question papers. The Paper
Assembler node creates a final question paper based on the
inputs from different examiners (Step 5). On the due date
and time, this comprehensive question paper is forwarded

to the distribution center.

Exam Center
Distribution

Server

Courier Agent brings
Single copy of paper

c9611060

Separate Copy per user

List of
enrolled students

…
…

Each Candidate get a Copy

1a

4

3

2

Answered and Returned

5
Answer Agents to
Evaluation Center

1b

Courier Agent to next
Examination Center

 Fig 2.2 Distribution and Testing

2.2 Distribution and Testing
This stage (Fig 2.2) involves distributing the question paper
to different centers, supplying the question paper to each of
the enrolled students and then collecting back their
answers. The question paper is dispatched to the different
examination centers with the help of Courier Agents (Step
1a, 1b). Having finished their distribution work, the Courier
Agents either get terminated or they return to their place of
origin. The distribution servers at these centers have a list
of candidates enrolled for that center. The distribution
server creates Question Agents, which contain the
examination paper (Step 2), and dispatches them to each
student machine in the center (Step 3). The Question
Agents can time themselves out after a fixed interval of
time. When a student finishes answering a question paper
or is timed out, the answers are given back to the
distribution server of the center (Step 4). Distribution
server launches an Answer Agent for each student answer-
paper. We have segregated the Question Agents from the
Answer Agents to minimize the risk of a student node
tampering with the Question Agent and finding out the
evaluation process details. Finally, the Answer Agents
make their way to the Evaluation Center (Step 5).

2.3 Evaluation and Result Compilation
In this stage students’ answers are evaluated, and the results
are compiled and published (Fig 2.3). Once an Answer
Agent reaches the evaluation center (Step 1), it is supplied
with an itinerary of the examiners. The Answer Agent can
also move to an Objective Question Evaluator (Step 2), if it
possesses answers to objective questions, to get its answers
evaluated. The Answer Agents move from one examiner to
other, until all of the questions are evaluated (Step 3). They
then move to the Publishing Center where they supply their
results and where the final comprehensive results are

compiled (Step 4) and published (Step 5).

c9611060 Examiner B

Examiner A

Examiner D

Examiner C

Results
…
…

Agents collaborate to produce the final result

Objective Questions Evaluator

 Evaluation Server

1
3

5

4

2

= Subjective Question Evaluators
Answer Agents

 Fig 2. 3 Evaluation & Result Compilation

We have implemented the above system using Voyager
ORB[4] framework and have successfully tested it in an
experimental setup on a campus network. In the next
section we present the software engineering lessons that we
learnt from our experience with MADE.

3. SOFTWARE ENGINEERING USING MOBILE
AGENTS
Our experience with the MADE gave rise to the following
insights on the use of MAs for effective structuring of
large-scale distributed applications:

3.1 Scalable applications
MA based design enables efficient addition (or even
deletion) of nodes participating in an application.

In MADE, the itinerary of various agents can be
dynamically decided and new distribution center, paper-
setter, examiner and student nodes can be added to the
system without affecting the performance of the system.
Since each of these nodes is autonomous, its addition does
not unduly load any single component of the system.

3.2 Flexible structuring of applications
If the components of an application are MAs (or mobile
objects), they can be placed anywhere on the network
effortlessly and during run time. They are placed where
they are best utilized. New components and relations can be
added to or removed from the system easily.

For example, in MADE, during the paper-setting process,
we use Install Agents to set up the whole collaborating
infrastructure. Thus a change in system architecture will
just involve supplying the new installation rules and
components to the Install Agents.

Distributed applications that are based on MAs can thus be
re-organized easily. This leads to improvement in crash

recovery times and dynamically controlling the size and
spread of application. This is in contrast to other distributed
computing mechanisms, say CORBA, which are based on
the traditional client-server approach, and hence possess no
explicit mechanism to achieve the above.

3.3 Dynamic extensibility
MAs can be used to upgrade an application dynamically.
Functionality can be thus added to or removed form the
system at run-time.

In MADE, during the paper-setting stage, the Fetch Agents
attach an agent object to the paper-setter’s application when
they move there. This attached object becomes an integral
part of the paper-setter’s application. We even enhance the
graphical user interface of the applications using this
mechanism at runtime. The paper-setter is then able to
manipulate this interface object directly. After the
interactions are over, the object can be detached from the
application.

Dynamic extensibility , thus, can help in version control and
propagation, protocol replacement, and automatic software
upgrades.

3.4 Push-Pull modes
MAs use general execution environments and thus can be
used to support both the push and pull modes of
information dissemination.

For example, in MADE, the question papers are delivered
(or pushed) to the students just-in-time and all the students
taking a particular test are evaluated simultaneously. For
examination setting and evaluation, a combination of both
the approaches, viz. push and pull, is used.

Client-server operates principally in pull mode while MAs,
depending upon the requirements, can be either summoned
or dispatched by the user.

3.5 Adapting to varying communication channels
When we use MAs, the interactions become local and
dependency on the network is reduced. The network does
not take part in the computation process; it only helps in
transfer of process and resources. Cases, where processes
can work autonomously for large intervals of time, are
good candidates for MA solution.

In MADE continuous connections are not required.
Message exchanges are required mostly during agent
transfers and rarely otherwise. In fact, student terminals can
be disconnected from the main network during the period
the students are being examined.

Additionally, an application that is optimized for a
particular set of network characteristics will find it difficult
to adjust if the network changes its configuration.

3.6 Application layer multicasting
Content carrying MAs can route themselves through the
networks nodes. They cause the information to be

duplicated and forwarded only at the points where it is so
required.

For example, in MADE, the courier agents carry only a
single copy of the question paper. The distribution servers
then duplicate them depending upon the number of students
enrolled.

3.7 Variety of delivered content
By using MAs to deliver the content, information content
can be dynamically varied since the execution logic is
coupled with the data. MADE provides for inclusion of
dynamic content in question papers in the form of audio-
video clips or multimedia.

We believe that the above gains in structuring applications
arise mainly due to the “mobile agent based design” . It
would be extremely intricate and cumbersome to provide
these advantages using traditional client-server paradigms.

4. CONCLUSIONS
Most applications of mobile agents center on using MA as
the representative of a user; where the MA travels around
the network performing tasks on the user’s behalf. We
claim that the MA paradigm is much more powerful than
this and is extremely well suited for designing large-scale
applications. Applications whose components have
complex changing relationships and are geographically
distributed would most benefit from using MA design.

We designed and implemented one such application, viz.
MADE, and found that this approach gave us a clear
advantage in terms of scalability , flexible structuring,
dynamic extensibility , and reduced dependency on the
characteristics of the underlying network. Other advantages
gained were in the form of application layer multicasting,
support for dynamic content, and provision for both push
and pull mode of information dissemination. Additionally,
we found that mobile agents readily map onto many of the
real life mobile entities, resulting in more effective designs
of those systems.

We are now in the process of extending MADE to support
other aspects in the distance education domain such as
lecture content delivery and collaborative works.

ACKNOWLEDGMENTS
Authors are thankful to Rahul Jha and Srinath Perur for
their suggestions and discussions during the development
of MADE.

REFERENCES
1. Alfonso Fuggetta, Gian Pietro Picco and Giovanni

Vigna. "Understanding Code Mobility ", IEEE
Transactions on Software Engineering , vol. 24(5),
1998

2. Chien Chou. Constructing a Computer-Assisted Testing
and Evaluation System on the World Wide Web-The

CATES Experience, in IEEE Transactions on
Education, Vol 43, No 3, Pages 266-272, August 2000

3. Danny B. Lange. Mobile Objects and Mobile Agents:
The Future of Distributed Computing, In Proceedings
of The European Conference on Object-Oriented
Programming '98, 1998

4. G. Glass, "ObjectSpace Voyager Core Package
Technical Overview ", Mobility: process, computers
and agents , Addison-Wesley, Feb. 1999

5. Jakob Hummes, Arnd Kohrs, and Bernard Merialdo.
Questionnaires: a framework using mobile code for
component-based tele-exams. In Proceedings of IEEE
7th Intl. Workshops on Enabling Technologies:
Infrastructure for Collaborating Enterprises (WET
ICE), Stanford, CA, USA, June 1998

6. J. White. Mobile Agents, in Software Agents, J.
Bradshaw (ed.), AAAI Press / The MIT Press, 1996

7. Todd Papaioannou. On Structuring of Distributed
Systems, The argument for mobility , PhD Thesis,
Loughborough University University, 2000

 5

