
Automated building of domain ontologies from lecture notes in courseware

Neelamadhav Gantayat
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
Mumbai, India

Email: neelamadhavg@cse.iitb.ac.in

Sridhar Iyer
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
Mumbai, India

Email: sri@it.iitb.ac.in

Abstract—Courseware repositories contain large amounts of
lecture videos and text. When searching for lecture material
on a given topic, it would be useful if the repository also
indicates the topics that are pre-requisites. In this paper we
present a technique that automatically constructs the
ontology (dependency graph) from the given lecture notes.
We show how this ontology can be used to identify the pre-
requisites and follow-up modules for a given query (lecture
topic). We also provide the user with a dependency graph
which gives a conceptual view of the domain. Our system
extracts the concepts using term frequency inverse document
frequency (tf-idf) weighting scheme and then determines the
associations among concepts using apriori algorithm. We
have evaluated our system by comparing its results with the
dependencies determined by an expert in the subject area.

Keywords-Tf-idf; Apriori Algorithm; Pre-requisites;
Follow-ups; Dependency Graph.

I. INTRODUCTION
Courseware repositories, such as such as OCW1 and

NPTEL2, contain large amounts of data in the form of
videos and text. A fine-grain (topic-level) search facility
and automatic identification of pre-requisites and follow-
ups for a given topic is desirable and would be useful to
students. Such a feature (identification of pre-requisites of
a given topic) is not available in these repositories. This
feature could be built by manual tagging of the contents,
but it is cumbersome to do so.

In this paper we present a technique that automatically
constructs the ontology (dependency graph) from given
lecture notes. We show how this ontology can be used to
identify the pre-requisites and follow-up modules for a
given query (lecture topic). In domain ontology,
relationships between different concepts of a domain are
identified. In our case, a concept corresponds to a lecture
module and a relationship corresponds to whether it is a
prerequisite or a follow-up of the topic. We also provide
the user with a dependency graph which corresponds to a
concept map and gives a conceptual view of the domain.
People can often grasp ideas much more quickly by
looking into the graphical representation than by reading
them in a book [1].

Our system extracts the concepts using “term
frequency inverse document frequency (tf-idf) weighting
scheme” and then determines the associations among
concepts using apriori algorithm. We have evaluated our

1http://ocw.mit.edu
2http://nptel.iitm.ac.in

system by comparing its results with the dependencies
determined by an expert in the subject area.

Our technique is to extract the topics (keywords) from
the given PDF files using “term frequency inverse
document frequency (tf-idf) weighting scheme” (described
in Section 3). Then we determine the associations among
different concepts (topics) using “apriori algorithm”
(described in Section 3). Then we arrange the relations in a
hierarchical order. The implementation of our system is
described in Section 4. For any user query, our system
provides the link for the topic, and two topics above it as
re-requisites and two topics below it as follow-ups, from
the hierarchy of the ontology. Our experiments to evaluate
the performance of the system are shown in Section 5 and
conclusions in Section 6. To the best of our knowledge,
there is no such system to automatically determine
dependencies of topics from a repository of lecture notes.

II. BACKGROUND
This section describes courseware repositories, gives a

brief overview of domain ontology and defines
dependency graph.

A. Courseware Repositories
 We surveyed OCW and NPTEL repositories and

searched for topics like Threads, TCP/IP and Ethernet.
Although these topics are covered in these repositories, the
search results often gave links to more advanced topics
than our desired topic. We believe that a user not already
familiar with the domain would find it difficult to
determine the sequence of links to follow.

1) OCW: MIT OpenCourseWare is an initiative by
MIT and has over 2,000 courses in 36 academic
disciplines[2]. This content is available from
http://ocw.mit.edu/. A lot of the content is in the form of
PDF documents. We used the existing search facility for
the topic “Operating system Threads”. The first link of the
results was “Micro-kernels”, which is an advanced topic
and does not help a user who is not familiar with the
domain.

2) NPTEL: The National Programme on Technology
Enhanced Learning (NPTEL) is a project from the
Ministry of Human Resource Development (MHRD),
India, initiated in 1999 [3]. There are more than 260
courses, available in two modes: Some courses have video
lectures, while others have lectures notes in the form of
PDF files.

2011 International Conference on Technology for Education

978-0-7695-4534-9/11 $26.00 © 2011 IEEE

DOI 10.1109/T4E.2011.22

89

2011 IEEE International Conference on Technology for Education

978-0-7695-4534-9/11 $26.00 © 2011 IEEE

DOI 10.1109/T4E.2011.22

89

We used the existing search facility at NPTEL and
found that it is course-grain and limited to only course
titles. Currently it does not support topic-level search.

Hence we believe that a facility to not only support
accurate topic-level search but also to identify pre-
requisites and follow-ups of a topic would be useful. In
the next section we provide the background on domain
ontology that forms the basis of the techniques used in our
system.

B. Ontology
Ontology provides a mechanism to capture information

about the ideas, concepts, and the relationships between
them in some domain [4]. The aim of ontology is to
develop knowledge representations that can be shared and
reused. Guber [5] defined ontology as

“A formal explicit specification of a shared
conceptualization.”

Domain ontology provides particular meanings of
terms as they apply to that domain. For example the word
thread has many different meanings. An ontology for the
domain of operating system would model process threads,
while an ontology for the domain of textiles would model
thread as “long object resembling a thin line”. Main
application areas of ontology are knowledge management,
web commerce, electronic business, and e-learning [6].

The key difficulties in developing ontology are: (i)
extensive knowledge about a subject is required and (ii) it
is time-consuming. We have automated this process, in the
context of lecture notes. We use domain ontology to
represent relations between topics for a given course. Here
we consider only one relation, which is “follows”. Topic- 2
follows Topic-1 means that Topic-1 is a pre-requisite for
Topic-2 and Topic-2 is a follow-up of Topic-1. In our
system we first develop the domain ontology from the
given set of notes. Then we refer the node which
represents the user’s desired topic and also provide two of
its ancestor nodes as pre-requisites and two descendants as
follow-ups.

The domain ontology developed by our system is also
presented to the user by a graphical representation called
dependency graph.

C. Dependency graph
A dependency graph is a directed graph which represents
dependencies of several objects towards each other.
“Given a set of objects S and a transitive relation

 with modeling a dependency ‘a
needs b evaluated first’, the dependency graph is a graph

 with and R being the transitive closure
of T.”[7]

Dependency graphs are represented in hierarchical
order, i.e., most general concepts are at the top of the graph
and the more specific and less general concepts in lower
orders. Using dependency graphs we can represent the
dependencies between different concepts as shown in
Figure 1; concepts are shown by ellipses and dependencies
by arrows.

A dependency graph being similar to a concept-
map[1], enhances the learner’s understanding of a

given

Figure 1. Dependency Graph

subject and is useful for providing summary of various
interconnected and dependent topics. The key difference
between a dependency graph and a concept-map is that: a
concept-map can have any relation between two concepts,
whereas in a dependency graph there is only one relation,
that is, depends.

III. SYSTEM OVERVIEW

A. Courseware Repositories
 Given a repository of lecture notes for a particular

subject (or the soft-copy of a text book), our aim is to build
a system that provides the user with: (i) a mechanism to
query for a desired topic, (ii) identify the pre-requisites and
follow-ups for the topic and (iii) a dependency graph of the
pre-requisites and follow-ups of all topics in the subject.

B. Solution Outline
The steps for our solution are as follows and also shown
in Figure 2:

1) Convert the given PDF files into text, and index the
text files.

2) Extract the keywords from the text files.
3) For each keyword: Identify its relation with other

keywords. If there is a relation, then determine whether it
is a pre-requisite or a follow-up.

4) Construct and store the ontology with the identified
relations, in the form of a dependency graph in a
hierarchical order.

5) Given a user query, lookup the ontology and
provide the pre-requisites (ancestors) and follow-ups
(descendants), as a reply to the query.

IV. IMPLEMENTATION DETAILS
The implementation of our system has the following five
phases:

1) Parsing: Parse the PDF files of the course to get the
corpus text files, using PDFBox [8]

2) Indexing: Index the Text files, using Lucene [9].
3) Keyword Extraction: Extract the keywords, using

tf-idf weighting scheme [10].
4) Ontology Construction: Find the relations between

the keywords, using the apriori algorithm [11].

9090

Figure 2. System overview

5) Dependency Graph Generation: Generate the

dependency graph for the whole course, using DOT [12].

The flow of input to output is shown in Figure 3 and the
details are described in the subsequent sections.

Figure 3. System Design

A. Parsing
We made use of a Nutch utility called PDFbox [8] to

parse the PDF files and to convert them into text (as
required by our indexing utility, Lucene). In case there is
only one big PDF file containing all the topics (such as
soft-copy of a book), we used PDFBox also to divide it
into multiple PDF files, since our algorithm requires
multiple PDF files for identifying relations.

B. Indexing
Lucene[9] is embedded in our system to index and

search the given text documents. It lets one add indexing
and searching capabilities to the application. Lucene can
index any data that can be converted to textual format, and
make it searchable. We used Lucene index to search and to
calculate the tf-idf weight of each term (as described
below), and also to identify the relationship between two
keywords, i.e., whether one is a pre-requisite for other or a
follow-up to the other.

C. Keyword Extraction
Keyword extraction is the process of extracting

important phrases which can summarize the meaning of a
document. Keywords can be extracted using linguistic
techniques or machine learning techniques. Linguistic
techniques make use of part-of-speech tagging or phrase
chunking [13]. On the other hand, machine learning
techniques use statistical or probabilistic data for keyword
extraction. Machine learning based keyword extraction is
once again divided into supervised and unsupervised
techniques. Supervised techniques require some data for
which the keywords are known (this is called training
data) for its operation, while unsupervised techniques do
not require any training data.

We used tf-idf (an unsupervised technique), to identify
terms with high relevance to the document. We used
“topia” [14] (Which makes use of part-of-speech (POS)
tagging technique), to find other keywords which are
missed by tf-idf algorithm, if any.

1) Term Frequency Inverse Document Frequency (tf-
idf)[10]: Term frequency inverse document frequency (tf-
idf) is defined as the number of occurrences of a term in a
given document multiplied by the inverse of the number
of documents where the term appears. Given a document
collection , a word , and an individual document

where
• equals the number of times appears in ,
• is the size of the corpus (number of

documents), and
• equals the number of documents in which

appears in .
Logarithm of document frequency in the above

formula is used for smoothing purpose. The tf-idf value is
• High when a term occurs many times within a

small number of documents,
• Low when the term occurs fewer times in a

document, or occurs in many documents,
• Lower when the term occurs in virtually all

documents.

Using tf-idf weighting scheme, we scored each word
(unigram, bigram, trigram, and fourgram) in the given text
corpus. Then we found out the top unigrams, bigrams,
trigrams, and fourgrams according to the tf-idf weights.
Ngrams are groups of written letters, syllables, or
words. In this way, we extracted top keywords for the
given text.

We defined our own set of stop words in order to
increase the accuracy of the extracted keywords. Stop
words are common words like numbers, digits,
articulations, conjunctions etc. We did not allow any stop
words in bigrams. We allowed stop words as a second
word for conjunction purpose in trigrams. In fourgrams,
the third and the fourth words can be stop words but the
first and the last words cannot be stop words. All the
keywords extracted are stored in a file called
tfidf.txt.

9191

We performed experiments to determine the optimal
number of unigrams, bigrams, trigrams, fourgrams, and
total number of keywords to include. These are discussed
in the evaluation section.

D. Ontology Construction
To identify the relation between different keywords

and to construct the ontology, we used apriori algorithm, a
classical algorithm for learning association rules.

1) Apriori Algorithm: “Given a set of documents,
generate all association rules that have support and
confidence greater than the user-specified minimum
support and minimum confidence respectively”[11].
Where Association Rule: means, “if a
document contains all of then it is likely to
contain ”. Support is the number of documents
containing all the words and Confidence of
this association rule is the probability of given .
We modified the apriori algorithm according to our
requirement. Our modified version is as follows:

• Step 1: Read documents and count the
occurrences of each item. It requires only memory
proportional to the number of words in the
documents. This step was modified by using tf-idf
weight.

• Step 2: Read documents again and count only
those pairs which were found in Step 1 to be
frequent. So if we find frequent keywords, then
we will have pairs. Now, find out the
frequent wordsets with the given confidence. The
frequent wordsets establish an Association
between the two words.

The support is a configurable parameter. If the support

is less (minimum number of documents in which the pair
of words should be repeated), then the algorithm will find
more number of relations. On the other hand, if the
support is more then, the algorithm will identify less
number of relations. We considered the confidence as .
That is, if the support is satisfied, then we consider it as a
relation, though other documents may contain only word-
1 but not word-2.

For each pair of keywords in tfidf.txt, we
calculated the frequency among different documents, and
listed the pair of words having greater frequency than the
support provided as relations. All the relations are stored in
a file called relation.dot in a form which can be read
by DOT language.

E. Generating the Dependency Graph
Having found the relations between the keywords, we

show them in a graphical representation, i.e., the
dependency graph. The purpose of creating the
dependency graph is to let the users decide what they
should know before learning any specific topic. Using
DOT language, we constructed a directed acyclic graph
for the relations that we identified above, and converted
the file relation.dot into dag.pdf which is the
dependency graph.

V. EVALUATION
We used Computer Networks and Operating Systems

courses of NPTEL courseware repository for our testing
purpose. The dependency graph for Computer Networks
course is shown in the Figure 4. It has been generated
using DOT language. DOT language orders the nodes in
such a way that, node with less number of incoming edges
comes at the top levels, and nodes with more number of
incoming edges in the next levels. So, the order shown in
the graph is not the exact output of our system, it is a
graphical simulation of the output. In the dependency
graph shown in Figure 4, concepts like tcp, ospf, rip are
the keywords identified by our system. For a particular
node the ancestors are pre-requisites and descendants are
follow-ups. For example, the pre-requisites of the concept
tcp is topology and the follow-up topic is congestion
control.

We evaluated our system by manually comparing its
results with the results given by an expert. We compared
the keywords generated by our program with the expert
generated keywords. Similarly we compared the relations
generated by our system with those of the expert
generated relations. We modeled a goodness metric as
shown in the following equations. Here,

 denotes Expert Positive, Self Positive,
Expert Negative, and Self Negative, respectively, for the
keywords identified. Whereas, denote
Expert Positive, Self Positive, Expert Negative, and Self
Negative, respectively, for the relations determined.
Expert positive is, the correct keywords given by system
with respect to the expert results. On the other hand, self
positive is, the correct keywords given by system with
respect to keywords given by the system. Similarly,
Expert Negative is the items given by expert but missed
out by the system, and Self Negative is the spurious items
reported by the system.

A. Goodness Metric
Let

• and denote the total number of keywords
and relations suggested by the expert, respectively,

• and denote the total number of keywords
and relations generated by our system,
respectively, and

• and denote the common keywords and
relations in both expert given and system
generated, respectively, then

Expert Positive ()

Self Positive ()

Expert Negative ()

9292

Figure 4. DAG for Computer Networks

9393

Self Negative ()

For example, for a given subject as shown in the
following Figure 5, let and be the keywords
identified by an expert, and let , and be the
keywords identified by our system. In this case, True
Positive is , so the Expert Positive is

, whereas the Self
Positive is . False
Positive is , so the Self Negative is

, and False Negative
is , so the Expert Negative
is .

Figure 5. Classification Diagram

B. Performance Analysis
We manually identified the keywords for both the

subjects Computer Networks and Operating Systems, then
compared them with those of the results generated by our
system. The results are given in the following tables.
Table II shows the results for Computer Networks and
Figure 6 is the graph for Computer Networks with respect
to the results. In the same way, Table III and Figure 7
show the results for Operating Systems.

From the graph, we can observe that with increase in
the number of system generated keywords, Expert
Positive () increases. This is because, the expert given
keywords () are fixed. At the same time with increase
in number of keywords, Self Positive () increases up to
a certain value. After this value if we further increase the
number of keywords, it will result in more number of
spurious keywords, than the number of legitimate
keywords. So, it will start decreasing with increase in
number of system generated keywords after this
maximum value. We considered the value where Self
Positive () is maximum as the optimum number of
keywords. In the domain of “Computer Networks” the
optimum value for number of keywords is . At this
point () of system answers are correct which

happens to be finding () of all correct answers.
Similarly for “Operating System” domain the optimum
value of keywords is .

The number of relevant keywords found was
“fairly good”. We have observed “some conflicts” when

we compared the system results and the expert answers.
“Some” relations which were generated by our system
were not valid. And “some” important relations, which
should have been obtained, were not generated by the
system.

TABLE I. RESULTS FOR COMPUTER NETWORKS

 Expert
Positive(%)

Self
Positive(%)

Expert
Negative(%)

Self
Negative(%)

keywords

69 18.02 14.09 44.92 40.82 81.97 18.03 55.06 59.18
92 22.09 18.02 41.3 37.1 77.9 22.1 58.69 62.9
101 26.74 21.14 45.54 41.39 73.25 26.75 54.44 58.61
114 30.23 23.21 45.61 41.09 69.76 30.24 54.38 58.91
127 30.23 25.09 40.94 37.18 69.76 30.24 59.05 62.82
140 36.04 28.03 44.28 40.97 63.95 36.05 55.70 59.03
143 34.3 28.03 41.25 36.95 65.69 34.31 58.70 63.05
148 34.3 29.4 39.86 36.02 65.69 34.31 60.08 63.98
153 38.37 31.57 43.13 39.18 61.62 38.38 56.86 60.82
167 38.95 32.19 40.11 36.51 61.04 38.96 59.87 63.49
174 38.95 32.19 38.5 34.51 61.04 38.96 61.49 65.49
183 38.95 32.19 36.61 33.41 61.04 38.96 63.35 66.59
195 39.53 32.93 34.87 31.27 60.46 39.54 65.12 68.73

Figure 6. Computer Networks

TABLE II. RESULTS FOR OPERATING SYSTEM

 Expert
Positive(%)

Self
Positive(%)

Expert
Negative(%)

Self
Negative(%)

keywords

58 15.88 11.58 29.31 25.21 84.11 74.79 70.68 74.79
78 18.69 13.49 25.64 21.13 81.3 78.87 74.35 78.87
87 21.49 21.39 26.43 22.41 78.5 77.59 73.56 77.59

101 28.03 23.23 29.7 22.17 71.96 77.83 70.29 77.83
103 28.97 23.07 30.09 26.39 71.02 73.61 69.89 73.61
124 36.44 32.14 31.45 27.15 63.55 72.85 68.54 72.85
129 40.18 37.28 33.33 29.03 59.81 70.97 66.66 70.97
133 40.18 37.28 32.33 28.31 59.81 71.69 67.67 71.69
144 42.99 38.19 31.94 27.51 57 72.49 68.05 72.49
156 44.86 42.76 30.76 27.16 55.14 72.84 69.23 72.84
168 45.79 43.39 29.16 26.16 54.2 73.84 70.83 73.84
179 44.85 41.85 26.81 22.11 55.14 77.89 73.18 77.89
195 44.85 41.45 24.61 21.1 55.14 78.9 75.38 78.9

9494

Figure 7. Operating System.

C. Configuring the system
After conducting different experiments, we observed

that Self Positive was maximum when the number of
keywords was nearly equivalent to . The optimum
value of Self Positive was obtained when the number of
unigrams was , number of bigrams was , number of
trigrams was , and number of fourgrams was . This
is because most of the keywords in any subject are
unigrams, there are very few fourgrams, and there may be
hardly any fivegrams. However, more experiments with
lecture notes in various subjects are required before these
results can be generalized. Moreover, the goodness metric
can be improved by considering a higher number of
keywords, at the cost of increase in execution time.

VI. CONCLUSION
We have developed an automatic ontology generator to

get a dependency graph of topics in an area from a set of
lecture notes. We evaluated our system by defining
goodness metric and found that its performance is
comparable to the keywords and relations generated
manually by an expert in the area. In our experiments we
found of our answers are correct, which happens to
be finding of all correct answers. We have used free
and open source components for building our system and
believe that such a system will be of use to courseware
repositories.

REFERENCES
[1] J. D. Novak and A. J. C. nas, “The theory underlying concept maps

and how to construct and use them,” in Technical Report IHMC
CmapTools 2006-01 Rev 01-2008. Florida Institute for Human and
Machine Cognition, 2008.

[2] MIT, “Mit open courseware - monthly reports,” accessed 16-
February-2011. [Online]. Available: http://ocw.mit.edu/about/site-
statistics/monthly-reports/

[3] NPTEL, “Nptel — project document,” Department of Secondary
and Higher Education, Ministry of Human Resource Development,
Government of India, New Delhi.,July 2007. [Online]. Available:
http://nptel.iitm.ac.in/pdf/NPTEL%20Document.pdf

[4] W. M.-j. YUN Hong-yan, XU Jian-liang and X. Jing,
“Development of domain ontology for e-learning course,” in
ITIME-09IEEE international symposium, 2009.

[5] T.R.Guber, “Towards principles for the design of ontologies used
for knowledge sharing,” in Int..J.Human-Computer Studies. Florida
Institute for Human and Machine Cognition,43(5-6), p.p 9.7-928,
1993.

[6] D. Fensel, I. Horrocks, F. van Harmelen, D. L. McGuinness, and P.
Patel-Schneider, “Oil: An ontology infrastructure for the semantic
web,” IEEE Intelligent Systems, vol. 16, no. 2, 2001.

[7] Wikipedia, “Dependency graph — wikipedia, the free
encyclopedia,” 2011, [Online; accessed 16-February-2011].
[Online]. Available:
http://en.wikipedia.org/w/index.php?title=Dependency_graph&oldi
d=408804604

[8] Apache, “The apache software foundation — pdfbox,” accessed
16-February-2011. [Online]. Available: http:
//pdfbox.apache.org/download.html

[9] Wikipedia, “Lucene — wikipedia, the free encyclopedia,” 2011,
[Online; accessed 16-February-2011]. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Lucene&oldid=4140722
15

[10] J. Ramos, “Using tf-idf to determine word relevance in doc ument
queries,” Department of Computer Science, Rutgers University,
23515 BPO Way, Piscataway, NJ, 08855., 2002.

[11] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules in large databases,” in Proceedings of the 20th International
Conference on Very Large Data Bases, ser. VLDB ’94. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1994, pp.
487–499. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645920.672836

[12] E. Gansner, E. Koutsofios, and S. North, “Drawing graphs with
dot,” Jan 2006. [Online]. Available: www.graphviz.
org/Documentation/dotguide.pdf

[13] Wikipedia, “Terminology extraction — wikipedia, the free
encyclopedia,” 2011, [Online; accessed 16-February-2011].
[Online]. Available: http://en.wikipedia.org/w/index.
php?title=Terminology extraction&oldid=406585677

[14] Python, “package index — topia.termextract 1.1.0,” accessed 16-
February-2011. [Online]. Available:
http://pypi.python.org/pypi/topia.termextract/

9595

