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Abstract—Courseware repositories contain large amounts of 
lecture videos and text. When searching for lecture material 
on a given topic, it would be useful if the repository also 
indicates the topics that are pre-requisites. In this paper we 
present a technique that automatically constructs the 
ontology (dependency graph) from the given lecture notes. 
We show how this ontology can be used to identify the pre-
requisites and follow-up modules for a given query (lecture 
topic). We also provide the user with a dependency graph 
which gives a conceptual view of the domain. Our system 
extracts the concepts using term frequency inverse document 
frequency (tf-idf) weighting scheme and then determines the 
associations among concepts using apriori algorithm. We 
have evaluated our system by comparing its results with the 
dependencies determined by an expert in the subject area. 

Keywords-Tf-idf; Apriori Algorithm; Pre-requisites; 
Follow-ups; Dependency Graph. 

I.  INTRODUCTION  
Courseware repositories, such as such as OCW1 and 

NPTEL2, contain large amounts of data in the form of 
videos and text. A fine-grain (topic-level) search facility 
and automatic identification of pre-requisites and follow-
ups for a given topic is desirable and would be useful to 
students. Such a feature (identification of pre-requisites of 
a given topic) is not available in these repositories. This 
feature could be built by manual tagging of the contents, 
but it is cumbersome to do so. 

In this paper we present a technique that automatically 
constructs the ontology (dependency graph) from given 
lecture notes. We show how this ontology can be used to 
identify the pre-requisites and follow-up modules for a 
given query (lecture topic). In domain ontology, 
relationships between different concepts of a domain are 
identified. In our case, a concept corresponds to a lecture 
module and a relationship corresponds to whether it is a 
prerequisite or a follow-up of the topic. We also provide 
the user with a dependency graph which corresponds to a 
concept map and gives a conceptual view of the domain. 
People can often grasp ideas much more quickly by 
looking into the graphical representation than by reading 
them in a book [1]. 

Our system extracts the concepts using “term 
frequency inverse document frequency (tf-idf) weighting 
scheme” and then determines the associations among 
concepts using apriori algorithm. We have evaluated our 

                                                            
1http://ocw.mit.edu 
2http://nptel.iitm.ac.in 

system by comparing its results with the dependencies 
determined by an expert in the subject area. 

Our technique is to extract the topics (keywords) from 
the given PDF files using “term frequency inverse 
document frequency (tf-idf) weighting scheme” (described 
in Section 3). Then we determine the associations among 
different concepts (topics) using “apriori algorithm” 
(described in Section 3). Then we arrange the relations in a 
hierarchical order. The implementation of our system is 
described in Section 4. For any user query, our system 
provides the link for the topic, and two topics above it as 
re-requisites and two topics below it as follow-ups, from 
the hierarchy of the ontology. Our experiments to evaluate 
the performance of the system are shown in Section 5 and 
conclusions in Section 6. To the best of our knowledge, 
there is no such system to automatically determine 
dependencies of topics from a repository of lecture notes. 

II. BACKGROUND 
This section describes courseware repositories, gives a 

brief overview of domain ontology and defines 
dependency graph. 

A. Courseware Repositories 
 We surveyed OCW and NPTEL repositories and 

searched for topics like Threads, TCP/IP and Ethernet. 
Although these topics are covered in these repositories, the 
search results often gave links to more advanced topics 
than our desired topic. We believe that a user not already 
familiar with the domain would find it difficult to 
determine the sequence of links to follow. 

1) OCW: MIT OpenCourseWare is an initiative by 
MIT and has over 2,000 courses in 36 academic 
disciplines[2]. This content is available from 
http://ocw.mit.edu/. A lot of the content is in the form of 
PDF documents. We used the existing search facility for 
the topic “Operating system Threads”. The first link of the 
results was “Micro-kernels”, which is an advanced topic 
and does not help a user who is not familiar with the 
domain. 

2) NPTEL: The National Programme on Technology 
Enhanced Learning (NPTEL) is a project from the 
Ministry of Human Resource Development (MHRD), 
India, initiated in 1999 [3]. There are more than 260 
courses, available in two modes: Some courses have video 
lectures, while others have lectures notes in the form of 
PDF files. 
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We used the existing search facility at NPTEL and 
found that it is course-grain and limited to only course 
titles. Currently it does not support topic-level search. 

Hence we believe that a facility to not only support 
accurate topic-level search but also to identify pre-
requisites and follow-ups of a topic would be useful. In 
the next section we provide the background on domain 
ontology that forms the basis of the techniques used in our 
system. 

B. Ontology 
Ontology provides a mechanism to capture information 

about the ideas, concepts, and the relationships between 
them in some domain [4]. The aim of ontology is to 
develop knowledge representations that can be shared and 
reused.  Guber [5] defined ontology as 

“A formal explicit specification of a shared 
conceptualization.” 

Domain ontology provides particular meanings of 
terms as they apply to that domain. For example the word 
thread has many different meanings. An ontology for the 
domain of operating system would model process threads, 
while an ontology for the domain of textiles would model 
thread as “long object resembling a thin line”. Main 
application areas of ontology are knowledge management, 
web commerce, electronic business, and e-learning [6].  

The key difficulties in developing ontology are: (i) 
extensive knowledge about a subject is required and (ii) it 
is time-consuming. We have automated this process, in the 
context of lecture notes. We use domain ontology to 
represent relations between topics for a given course. Here 
we consider only one relation, which is “follows”. Topic- 2 
follows Topic-1 means that Topic-1 is a pre-requisite for 
Topic-2 and Topic-2 is a follow-up of Topic-1. In our 
system we first develop the domain ontology from the 
given set of notes. Then we refer the node which 
represents the user’s desired topic and also provide two of 
its ancestor nodes as pre-requisites and two descendants as 
follow-ups. 

The domain ontology developed by our system is also 
presented to the user by a graphical representation called 
dependency graph. 

C. Dependency graph 
A dependency graph is a directed graph which represents 
dependencies of several objects towards each other.  
“Given a set of objects S and a transitive relation 

 with  modeling a dependency ‘a 
needs b evaluated first’, the dependency graph is a graph 

 with  and R being the transitive closure 
of T.”[7]  

Dependency graphs are represented in hierarchical 
order, i.e., most general concepts are at the top of the graph 
and the more specific and less general concepts in lower 
orders. Using dependency graphs we can represent the 
dependencies between different concepts as shown in 
Figure 1; concepts are shown by ellipses and dependencies 
by arrows. 

A dependency graph being similar to a concept-
map[1], enhances the learner’s understanding of a 

given

 
Figure 1.  Dependency Graph 

subject and is useful for providing summary of various 
interconnected and dependent topics. The key difference 
between a dependency graph and a concept-map is that: a 
concept-map can have any relation between two concepts, 
whereas in a dependency graph there is only one relation, 
that is, depends. 

III. SYSTEM OVERVIEW 

A. Courseware Repositories 
 Given a repository of lecture notes for a particular 

subject (or the soft-copy of a text book), our aim is to build 
a system that provides the user with: (i) a mechanism to 
query for a desired topic, (ii) identify the pre-requisites and 
follow-ups for the topic and (iii) a dependency graph of the 
pre-requisites and follow-ups of all topics in the subject. 

B. Solution Outline 
The steps for our solution are as follows and also shown 
in Figure 2:  

1) Convert the given PDF files into text, and index the 
text files. 

2) Extract the keywords from the text files. 
3) For each keyword: Identify its relation with other 

keywords. If there is a relation, then determine whether it 
is a pre-requisite or a follow-up. 

4) Construct and store the ontology with the identified 
relations, in the form of a dependency graph in a 
hierarchical order. 

5) Given a user query, lookup the ontology and 
provide the pre-requisites (ancestors) and follow-ups 
(descendants), as a reply to the query. 

IV. IMPLEMENTATION DETAILS 
The implementation of our system has the following five 
phases:  

1) Parsing: Parse the PDF files of the course to get the 
corpus text files, using PDFBox [8] 

2) Indexing: Index the Text files, using Lucene [9]. 
3) Keyword Extraction: Extract the keywords, using 

tf-idf weighting scheme [10]. 
4) Ontology Construction: Find the relations between 

the keywords, using the apriori algorithm [11]. 
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Figure 2.  System overview 

 
5) Dependency Graph Generation: Generate the 

dependency graph for the whole course, using DOT [12]. 
 

The flow of input to output is shown in Figure 3 and the 
details are described in the subsequent sections. 

 

 
Figure 3.  System Design 

A. Parsing  
We made use of a Nutch utility called PDFbox [8] to 

parse the PDF files and to convert them into text (as 
required by our indexing utility, Lucene). In case there is 
only one big PDF file containing all the topics (such as 
soft-copy of a book), we used PDFBox also to divide it 
into multiple PDF files, since our algorithm requires 
multiple PDF files for identifying relations. 

B. Indexing  
Lucene[9] is embedded in our system to index and 

search the given text documents. It lets one add indexing 
and searching capabilities to the application. Lucene can 
index any data that can be converted to textual format, and 
make it searchable. We used Lucene index to search and to 
calculate the tf-idf weight of each term (as described 
below), and also to identify the relationship between two 
keywords, i.e., whether one is a pre-requisite for other or a 
follow-up to the other. 

C. Keyword Extraction 
Keyword extraction is the process of extracting 

important phrases which can summarize the meaning of a 
document. Keywords can be extracted using linguistic 
techniques or machine learning techniques. Linguistic 
techniques make use of part-of-speech tagging or phrase 
chunking [13]. On the other hand, machine learning 
techniques use statistical or probabilistic data for keyword 
extraction. Machine learning based keyword extraction is 
once again divided into supervised and unsupervised 
techniques. Supervised techniques require some data for 
which the keywords are known (this is called training 
data) for its operation, while unsupervised techniques do 
not require any training data.  

We used tf-idf (an unsupervised technique), to identify 
terms with high relevance to the document. We used 
“topia” [14] (Which makes use of part-of-speech (POS) 
tagging technique), to find other keywords which are 
missed by tf-idf algorithm, if any. 

1) Term Frequency Inverse Document Frequency (tf-
idf)[10]: Term frequency inverse document frequency (tf-
idf) is defined as the number of occurrences of a term in a 
given document multiplied by the inverse of the number 
of documents where the term appears. Given a document 
collection , a word , and an individual document 

  
  

where  
•  equals the number of times  appears in ,  
•  is the size of the corpus (number of 

documents), and  
•  equals the number of documents in which  

appears in .  
Logarithm of document frequency in the above 

formula is used for smoothing purpose. The tf-idf value is  
• High when a term occurs many times within a 

small number of documents,  
• Low when the term occurs fewer times in a 

document, or occurs in many documents,  
• Lower when the term occurs in virtually all 

documents.  
 

Using tf-idf weighting scheme, we scored each word 
(unigram, bigram, trigram, and fourgram) in the given text 
corpus. Then we found out the top unigrams, bigrams, 
trigrams, and fourgrams according to the tf-idf weights. 
Ngrams are groups of  written letters,  syllables, or  
words. In this way, we extracted top keywords for the 
given text.  

We defined our own set of stop words in order to 
increase the accuracy of the extracted keywords. Stop 
words are common words like numbers, digits, 
articulations, conjunctions etc. We did not allow any stop 
words in bigrams. We allowed stop words as a second 
word for conjunction purpose in trigrams. In fourgrams, 
the third and the fourth words can be stop words but the 
first and the last words cannot be stop words. All the 
keywords extracted are stored in a file called 
tfidf.txt.  
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We performed experiments to determine the optimal 
number of unigrams, bigrams, trigrams, fourgrams, and 
total number of keywords to include. These are discussed 
in the evaluation section. 

D. Ontology Construction 
To identify the relation between different keywords 

and to construct the ontology, we used apriori algorithm, a 
classical algorithm for learning association rules. 

1) Apriori Algorithm:   “Given a set of documents, 
generate all association rules that have support and 
confidence greater than the user-specified minimum 
support and minimum confidence respectively”[11]. 
Where Association Rule:  means, “if a 
document contains all of  then it is likely to 
contain ”. Support is the number of documents 
containing all the words  and Confidence of 
this association rule is the probability of  given .  
We modified the apriori algorithm according to our 
requirement. Our modified version is as follows: 

• Step 1: Read documents and count the 
occurrences of each item. It requires only memory 
proportional to the number of words in the 
documents. This step was modified by using tf-idf 
weight.  

• Step 2: Read documents again and count only 
those pairs which were found in Step 1 to be 
frequent. So if we find  frequent keywords, then 
we will have  pairs. Now, find out the 
frequent wordsets with the given confidence. The 
frequent wordsets establish an Association 
between the two words.  

 
The support is a configurable parameter. If the support 

is less (minimum number of documents in which the pair 
of words should be repeated), then the algorithm will find 
more number of relations. On the other hand, if the 
support is more then, the algorithm will identify less 
number of relations. We considered the confidence as . 
That is, if the support is satisfied, then we consider it as a 
relation, though other documents may contain only word-
1 but not word-2.  

For each pair of keywords in tfidf.txt, we 
calculated the frequency among different documents, and 
listed the pair of words having greater frequency than the 
support provided as relations. All the relations are stored in 
a file called relation.dot in a form which can be read 
by DOT language. 

E. Generating the Dependency Graph 
Having found the relations between the keywords, we 

show them in a graphical representation, i.e., the 
dependency graph. The purpose of creating the 
dependency graph is to let the users decide what they 
should know before learning any specific topic. Using 
DOT language, we constructed a directed acyclic graph 
for the relations that we identified above, and converted 
the file relation.dot into dag.pdf which is the 
dependency graph. 

V. EVALUATION 
We used Computer Networks and Operating Systems 

courses of NPTEL courseware repository for our testing 
purpose. The dependency graph for Computer Networks 
course is shown in the Figure 4. It has been generated 
using DOT language. DOT language orders the nodes in 
such a way that, node with less number of incoming edges 
comes at the top levels, and nodes with more number of 
incoming edges in the next levels. So, the order shown in 
the graph is not the exact output of our system, it is a 
graphical simulation of the output. In the dependency 
graph shown in Figure 4, concepts like tcp, ospf, rip are 
the keywords identified by our system. For a particular 
node the ancestors are pre-requisites and descendants are 
follow-ups. For example, the pre-requisites of the concept 
tcp is topology and the follow-up topic is congestion 
control.  

We evaluated our system by manually comparing its 
results with the results given by an expert. We compared 
the keywords generated by our program with the expert 
generated keywords. Similarly we compared the relations 
generated by our system with those of the expert 
generated relations. We modeled a goodness metric as 
shown in the following equations. Here, 

 denotes Expert Positive, Self Positive, 
Expert Negative, and Self Negative, respectively, for the 
keywords identified. Whereas,  denote 
Expert Positive, Self Positive, Expert Negative, and Self 
Negative, respectively, for the relations determined. 
Expert positive is, the correct keywords given by system 
with respect to the expert results. On the other hand, self 
positive is, the correct keywords given by system with 
respect to keywords given by the system. Similarly, 
Expert Negative is the items given by expert but missed 
out by the system, and Self Negative is the spurious items 
reported by the system.  

A. Goodness Metric 
Let  

•  and  denote the total number of keywords 
and relations suggested by the expert, respectively,  

•  and  denote the total number of keywords 
and relations generated by our system, 
respectively, and  

•  and  denote the common keywords and 
relations in both expert given and system 
generated, respectively, then  

 
 
Expert Positive ( )  

 
Self Positive ( )  

 
Expert Negative ( )  
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Figure 4.  DAG for Computer Networks  
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Self Negative ( )  

 
For example, for a given subject as shown in the 
following Figure 5, let  and  be the keywords 
identified by an expert, and let , and  be the 
keywords identified by our system. In this case, True 
Positive is , so the Expert Positive is 

, whereas the Self 
Positive is . False 
Positive is , so the Self Negative is 

, and False Negative 
is , so the Expert Negative 
is .   

 
Figure 5.  Classification Diagram 

B. Performance Analysis 
We manually identified the keywords for both the 

subjects Computer Networks and Operating Systems, then 
compared them with those of the results generated by our 
system. The results are given in the following tables. 
Table II shows the results for Computer Networks and 
Figure 6 is the graph for Computer Networks with respect 
to the results. In the same way, Table III and Figure 7 
show the results for Operating Systems.  

From the graph, we can observe that with increase in 
the number of system generated keywords, Expert 
Positive ( ) increases. This is because, the expert given 
keywords ( ) are fixed. At the same time with increase 
in number of keywords, Self Positive ( ) increases up to 
a certain value. After this value if we further increase the 
number of keywords, it will result in more number of 
spurious keywords, than the number of legitimate 
keywords. So, it will start decreasing with increase in 
number of system generated keywords after this 
maximum value. We considered the value where Self 
Positive ( ) is maximum as the optimum number of 
keywords. In the domain of “Computer Networks” the 
optimum value for number of keywords is . At this 
point  ( ) of system answers are correct which 

happens to be finding  ( ) of all correct answers. 
Similarly for “Operating System” domain the optimum 
value of keywords is . 

The number of relevant keywords found was 
“fairly good”. We have observed “some conflicts” when 

we compared the system results and the expert answers. 
“Some” relations which were generated by our system 
were not valid. And “some” important relations, which 
should have been obtained, were not generated by the 
system. 

TABLE I.  RESULTS FOR COMPUTER NETWORKS 

 Expert 
Positive(%) 

Self 
Positive(%)  

Expert 
Negative(%)  

Self 
Negative(%) 

keywords             

69  18.02 14.09 44.92 40.82  81.97  18.03  55.06 59.18 
92  22.09 18.02 41.3 37.1  77.9  22.1  58.69 62.9  
101  26.74 21.14 45.54 41.39  73.25  26.75  54.44 58.61 
114  30.23 23.21 45.61 41.09  69.76  30.24  54.38 58.91 
127  30.23 25.09 40.94 37.18  69.76  30.24  59.05 62.82 
140  36.04 28.03 44.28 40.97  63.95  36.05  55.70 59.03 
143  34.3  28.03 41.25 36.95  65.69  34.31  58.70 63.05 
148  34.3  29.4 39.86 36.02  65.69  34.31  60.08 63.98 
153  38.37 31.57 43.13 39.18  61.62  38.38  56.86 60.82 
167  38.95 32.19 40.11 36.51  61.04  38.96  59.87 63.49 
174  38.95 32.19 38.5 34.51  61.04  38.96  61.49 65.49 
183  38.95 32.19 36.61 33.41  61.04  38.96  63.35 66.59 
195  39.53 32.93 34.87 31.27  60.46  39.54  65.12 68.73 

 

 

Figure 6.  Computer Networks 

TABLE II.  RESULTS FOR OPERATING SYSTEM 

 Expert 
Positive(%) 

Self 
Positive(%)  

Expert 
Negative(%)  

Self 
Negative(%) 

keywords             

58  15.88 11.58 29.31 25.21 84.11  74.79  70.68 74.79 
78  18.69 13.49 25.64 21.13 81.3  78.87  74.35 78.87 
87  21.49 21.39 26.43 22.41 78.5  77.59  73.56 77.59 

101  28.03 23.23 29.7 22.17 71.96  77.83  70.29 77.83 
103  28.97 23.07 30.09 26.39 71.02  73.61  69.89 73.61 
124  36.44 32.14 31.45 27.15 63.55  72.85  68.54 72.85 
129  40.18 37.28 33.33 29.03 59.81  70.97  66.66 70.97 
133  40.18 37.28 32.33 28.31 59.81  71.69  67.67 71.69 
144  42.99 38.19 31.94 27.51 57  72.49  68.05 72.49 
156  44.86 42.76 30.76 27.16 55.14  72.84  69.23 72.84 
168  45.79 43.39 29.16 26.16 54.2  73.84  70.83 73.84 
179  44.85 41.85 26.81 22.11 55.14  77.89  73.18 77.89 
195  44.85 41.45 24.61 21.1  55.14  78.9  75.38 78.9  
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Figure 7.  Operating System. 

C. Configuring the system 
After conducting different experiments, we observed 

that Self Positive was maximum when the number of 
keywords was nearly equivalent to . The optimum 
value of Self Positive was obtained when the number of 
unigrams was , number of bigrams was , number of 
trigrams was , and number of fourgrams was . This 
is because most of the keywords in any subject are 
unigrams, there are very few fourgrams, and there may be 
hardly any fivegrams. However, more experiments with 
lecture notes in various subjects are required before these 
results can be generalized. Moreover, the goodness metric 
can be improved by considering a higher number of 
keywords, at the cost of increase in execution time. 

VI. CONCLUSION 
We have developed an automatic ontology generator to 

get a dependency graph of topics in an area from a set of 
lecture notes. We evaluated our system by defining 
goodness metric and found that its performance is 
comparable to the keywords and relations generated 
manually by an expert in the area. In our experiments we 
found  of our answers are correct, which happens to 
be finding  of all correct answers. We have used free 
and open source components for building our system and 
believe that such a system will be of use to courseware 
repositories.  
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