
A Method to Prove Query Lower Bounds

Jagadish M
Dept. of Computer Science and Engg.
Indian Institute of Technology Bombay

Mumbai 400076, India
jagadish@cse.iitb.ac.in

Sridhar Iyer
Dept. of Computer Science and Engg.
Indian Institute of Technology Bombay

Mumbai 400076, India
sri@iitb.ac.in

ABSTRACT
The query-model or decision-tree model is a computational
model in which the algorithm has to solve a given problem
by making a sequence of queries which have ‘Yes’ or ‘No’
answers. A large class of algorithms can be described on
this model and we can also prove non-trivial lower bounds
for many problems on this model.

Many lower bounds on the query-model are proved using
a technique called adversary argument. In CS courses, a
common example used to illustrate the adversary argument
is the following problem: Suppose there is an unweighted
graph G with n vertices represented by an adjacency ma-
trix. We want to test if the graph is connected. How many
entries in the adjacency matrix do we have to probe in or-
der to test if the graph has this property (property being
‘connectivity’)? Each probe is considered as a query.

Since the adjacency matrix has only n2 entries, O(n2)
queries are sufficient. It is also known that Ω(n2) queries
are necessary. Proving this lower bound is more difficult
and is done using the adversary argument.

In literature, we find that lower bound proofs of this prob-
lem rely too much on ‘connectivity’ property and do not gen-
eralize well. When the property being tested is changed, the
proof changes significantly. Our contribution is a method
that gives a systematic way of proving lower bounds for
problems involving testing of many graph-properties. We
did a pilot experiment and found that students were able to
understand and apply our method.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE’14, June 21–25, 2014, Uppsala, Sweden.
Copyright 2014 ACM 978-1-4503-2833-3/14/06 ...$15.00.
http://dx.doi.org/10.1145/2591708.2591736 .

Keywords
Query complexity, Lower bounds, Adversary arguments

1. INTRODUCTION
A major focus of computer science is on design and analy-

sis of provably efficient algorithms. Once we have designed a
correct algorithm for a problem, a natural question to ask is:
‘Is this the best possible algorithm for this problem?’. The
only way to know the answer for certain is to prove that no
better algorithm exists. On the Turing-machine computa-
tional model, this question is very difficult to answer and
very little is known. So researchers have been studying the
question of proving the optimality of an algorithm on sim-
pler models of computation. One such model that is widely
studied is the ‘query model’ (also known as decision-tree
model).
Query Model. In this model, the algorithm is not given
the input directly. The algorithm has to output the answer
by asking queries specified by the problem. The efficiency
of the algorithm is measured by the number of queries it
takes in the worst case. The query-model is popular be-
cause a large class of algorithms can be implemented on this
model. Hence, proving optimality of an algorithm on the
query model proves its optimality within a large class of al-
gorithms. For example, consider the problem of sorting n
numbers in an array. All comparison-based algorithms like
Quicksort, Mergesort, Heapsort, etc. can be implemented as
query algorithms where a query corresponds to a comparison
between a pair of elements from the array.
Query Complexity. In the query model, we are concerned
only with the number of queries asked by the algorithm and
any other computation it may do is irrelevant. The cost
of an algorithm that solves a problem P is the number of
queries the algorithm takes in the worst case to solve P . The
cost of an algorithm can usually be expressed as a function
of the input size n. We say algorithm A is better than al-
gorithm B if there exists a constant co such that the cost of
algorithm A is less than B for every problem instance of size
n > c0. The query complexity of a problem P is the cost
of the best algorithm that solves P . We denote the query
complexity of the problem of size n by T (n). Query com-
plexity is a property of the problem and cost is a property
of an algorithm.

Given below are four examples of query-model problems.
We will refer to all of them later, but our method is applica-
ble only to problems similar to the Connectivity problem.

81

Formal descriptions of the first three problems can be found
in [3], [2] and [5], respectively.
Problem E1. Sorting. Given an array A of n numbers,
sort the elements in the array using only comparison queries.
A comparison query is of the type, ‘Is A[i] smaller or bigger
than A[j]?’.
Problem E2. Element Distinctness. Given an array A
of n numbers, find if all the numbers are distinct, using only
comparison and equality queries. An equality query is of the
type, ‘Is A[i] equal to A[j]?’.
Problem E3. 3-Sum. Given an array A of n numbers, find
if there exists three numbers in the array, say a, b and c,
such that a+b+c = 0, using only linear-equation queries. A
linear-equation query is of the type, ‘Is 3A[1]+2A[3]−A[6] >
0?’.
Problem E4. Connectivity. Suppose there is a graph
G = (V,E) with n vertices. We know the vertex set V of
the graph but not the edge set E. Vertices are labelled from
1 to n. For any two vertices, a and b with a, b ∈ V , we are
allowed to ask the following query: ‘Is (a, b) an edge in G?’.
If G is given by an adjacency matrix, this query is equivalent
to probing the entry at the ath row and bth column of the
adjacency matrix of G. What is the query complexity of
determining if the graph is connected?

If the objective of the problem is to determine whether an
input satisfies a given property or not, then we call such a
problem as ‘property-testing’ problem. A property-testing
problem has exactly two possible answers: ‘True’ or ‘False’.
For example, problems E2, E3 and E4 are property-testing
problems.
Tight lower bounds.1 We call a lower bound tight if it
asymptotically matches an upper bound of T (n). We are
interested in obtaining tight asymptotic bounds on T (n) for
problems involving testing of graph-properties (similar to
Prob. E4).
Overview. There are four main techniques for proving
query lower bounds. The four problems E1-E4 are gener-
ally used as examples to illustrate each technique (Sec. 2).
However, our focus is only on proving lower bounds for test-
ing graph properties. The known methods for proving lower
bounds for this kind of problems are ad-hoc in nature and
rely on problem-specific observations. Our main contribu-
tion is a method that gives a more systematic way of proving
lower bounds (Sec. 5). In Sec. 6, we show that our approach
works for many problems within the scope. We did a pilot
experiment and observed that students are able to under-
stand and apply our method (Sec. 7).

2. RELATED WORK
We review known methods for proving query lower bounds

and provide context for our work.
Information-theoretic proof. An explanation of this

method can be found in Chapter 8 of [3]. The main assertion
of the proof is the following:

Fact. If a problem P has M possible outputs and the input
to the problem can be accessed only via ‘Yes/No’ queries,
then log2 M is a query lower bound for P .

1Most of the terminology we use is standard. Definitions of
algorithmic terms and graph theoretic terms can be found
in [8] and [10], respectively.

In other words, log2 M is the minimum number of queries
any correct algorithm must ask, in the worst case. For ex-
ample, in the sorting problem, if the input consists of n
numbers, then there are n! possible outputs. Each out-
put corresponds to a different ordering of n numbers. So
we can claim that the lower bound for sorting problem is
log2 n! = Ω(n log n).

However, this method is not useful for property-testing
problems. In a property-testing problem, there are only two
outputs: ‘True’ or ‘False’. The information-theoretic proof
only gives a trivial lower bound of one (log2 2 = 1).

Algebraic Methods. In 1983, Ben-Or gave an alge-
braic technique that proves a tight Ω(n log n) lower bound
for Element-Distinctness problem. His technique, in one
stroke, proves non-trivial lower bounds for twelve different
problems [2]. But problems E3 and E4 are not amenable to
this technique.

Reduction. Reduction is another way of proving lower
bounds. At undergrad-level, reduction is often taught in the
context of NP-hardness. If we want to show that problem
H is NP-hard, we do so by proving that some known NP-
hard problem (like SAT) reduces to H in polynomial time.
Query lower bounds can also be proved in a similar vein.
Suppose we know that a problem R has query complexity of
Ω(g(n)) on a certain computation model, we can show that
another problem S has query complexity Ω(g(n)) on the
same model by reducing problem R to S in o(g(n)) time.
For example, we know that finding the convex hull of a set
of n points takes Ω(n log n) operations because the sorting
problem reduces to it (Prob. 33.3-2 in [3]).

The 3-Sum problem is known to have a query complexity
of Θ(n2) [5]. The lower bound proof of 3-Sum does not result
in any general technique. But the strength of 3-Sum lies in
the fact that this problem is an excellent candidate problem
for proving lower bounds by reductions. Several problems
in computational geometry have been shown to be as hard
as 3-Sum [6]. But a lower bound for Prob. E4 cannot be
proved by reduction either.

Adversary Arguments. What can we do if none of the
above three methods work? We take recourse to proving by
‘first principles’, commonly known as proving by adversary
argument. Recall that a lower bound of g(n) for a prob-
lem P means that any correct algorithm must make at least
g(n) queries to solve P . So if we show that any algorithm
that makes strictly less than g(n) queries must be incor-
rect, then we have proved a lower bound of Ω(g(n)) for the
problem. Imagine that the queries asked by the algorithm
are answered by an adversary. The adversary’s objective is
to maximize the number of queries that the algorithm asks
and the algorithm’s objective is to minimize the number of
queries. If an adversary can force any correct algorithm to
ask at least g(n) queries, then g(n) is a lower bound on the
query complexity of the problem. It is necessary to under-
stand the format of adversary arguments in order to follow
the proofs in this paper. Introduction to adversary method
can be found in [4] or [9]. Two proofs that give exact lower
bounds for Prob. E4 can be found in [4] and [1]. Both the
proofs are based on adversary arguments. However, these
proofs do not generalize easily to other graph properties.
In the next section, we give a different proof for this prob-
lem using an adversary argument. Though our proof gives

82

only an asymptotic tight lower bound, it generalizes easily
to other graph properties.

3. ADVERSARY ARGUMENT REVISITED

Terminology
Notation. Throughout the text, the notation G = (V,E)
refers to an undirected unweighted graph G with n vertices,
where V is the vertex set and E is the edge set. We may
assume that the vertices are labeled from 1 to n. We denote
a complete graph having r vertices by Kr.
Definition. If there is no edge present between a pair of
vertices u and v in a graph, we say (u, v) is a non-edge in
the graph.

3.1 Testing Connectivity
Problem E4. We are given access to a graph G = (V,E)

via queries of the form ‘Is (a, b) an edge in G?’. We know
the vertex set V but not the edge set. Prove that it takes
at least Ω(n2) queries in the worst case to determine if G is
connected.

Proof: We prove that any correct algorithm must take at
least n2/4 queries. For contradiction’s sake, let us assume
that there is a correct algorithm A that makes less than
n2/4 queries. We first describe the adversary’s strategy for
answering queries asked by the algorithm and then give the
analysis.

Let G1 be the graph made of two complete subgraphs A
and B, such that A has nodes labelled from 1 to n/2 and B
has nodes labelled from n/2+1 to n (Fig. 1 (a)). Note that
graph G1 has the same vertex set V as G.

Adversary’s Strategy. The adversary first picks the
graph G1 tentatively as input (in its mind) and answers the
queries posed by the algorithm as follows:

When the algorithm asks ‘Is (a, b) an edge in G?’,
the adversary says ‘Yes’ if (a, b) is an edge in G1

and ‘No’ if (a, b) is a non-edge in G1.

The adversary also keeps track of all the queries asked by
the algorithm.

Analysis. Consider the moment when all the queries are
made and A has declared whether G is connected or not. By
our assumption, A has made less than n2/4 queries. Since
there are n2/4 non-edges in G1, there exists some pair of
vertices (say (i, j)) such that:

• Pair (i, j) is a non-edge in G1.

• A did not ask the query ‘Is (i, j) an edge in G?’

Let G2 be the graph obtained by replacing the non-edge
(i, j) in G1 by an edge (Fig. 1 (b)). G1 is not connected but
G2 is connected. But both the graphs are consistent with
all the answers the adversary has given. The adversary can
prove that algorithm A is wrong as follows:

If the algorithm outputs ‘True. G is connected’, the adver-
sary ‘reveals’ that G = G1 and shows that the algorithm is
wrong. If the algorithm outputs ‘False. G is not connected’,
the adversary reveals that G = G2 and again proves the
algorithm wrong.

Kn/2

A

Kn/2

B

(a) G1

Kn/2

A

Kn/2

B

i j

(b) G2

Figure 1. (a) G1 is the graph the adversary tentatively keeps
as input in its mind. Every pair of vertices (p, q) with p ∈ A
and q ∈ B in a non-edge in G1. So G1 has n2/4 non-edges.
(b) G2 is the graph obtained by replacing the non-edge (i, j) in
G1 with an edge. G2 is connected but G1 is not. Since (i, j)
was not queried by the algorithm, both G1 and G2 could have
been possible inputs to the problem.

So regardless of what the algorithm outputs, the adversary
can always contradict the algorithm. Hence, every correct
algorithm must make at least n2/4 queries.

�

4. SCOPE OF PROBLEMS
Our method is applicable to problems of the following

kind.
Generic-Problem. There is a graph G = (V,E) to

which we do not have direct access. We know the vertex
set but not the edge set. There are n vertices in G and
we may assume that they are labelled from 1 to n. We are
allowed to ask queries of the type ‘Is (a, b) an edge in the
graph G?’, where a, b ∈ V . The problem is to find if G has
a given property P by asking such queries.

4.1 Our approach
In order to prove a lower bound for theGeneric-Problem,

when property P is specified explicitly, we do the following:

• Construct a critical graph G for property P which
has many non-edges. We will define a critical graph
shortly.

• Apply Theorem 5.1 which says that existence of a crit-
ical graph with many non-edges implies a lower bound
for the problem.

5. MAIN THEOREM
Definition. Given a property P , a graph Gc is said to

be critical with respect to the property if the following two
conditions are met.
(C1) Gc does not have the property P .
(C2) Replacing any non-edge in Gc by an edge endows the
graph with property P .

For example, if the property is ‘Connectivity’, then the
graph shown in Fig. 1 (a) is an example of a critical graph.

We will now prove our main result using ideas very similar
to the proof of Connectivity problem (Sec. 3.1).

Theorem 5.1. Suppose Gc is a critical graph for the prop-
erty P . If Gc has n vertices and x non-edges, then x is a
query lower bound for the Generic-Problem.

Proof: We show that any correct algorithm must make at
least x queries in the worst case. We prove by contradic-
tion. Assume that there is some algorithm A that solves the
Generic-Problem by making strictly less than x queries.

83

We first give an adversary’s strategy for answering queries
by A and then give the analysis.

Adversary’s Strategy. The adversary first constructs
the graph Gc (in its mind) and answers the queries posed
by the algorithm as follows: When the algorithm asks ‘Is
(a, b) an edge in G?’, the adversary says ‘Yes’ if (a, b) is an
edge in Gc and ‘No’ if (a, b) is a non-edge in Gc.

Analysis. Consider the moment when all the queries are
made and A has declared whether G has the property P or
not. By our assumption, A has made less than x queries.
Since there are x non-edges in Gc, there exists some pair of
vertices (say (i, j)) such that:

• Pair (i, j) is a non-edge in Gc.

• A did not ask the query ‘Is (i, j) an edge in G?’

By our definition of critical graph, we have the following:

• Graph Gc does not have property P .

• Suppose G′
c is a graph which is same as Gc except

that the non-edge (i, j) in Gc is replaced by an edge in
G′

c. So G′
c has exactly one more edge than Gc. More

importantly, G′
c has the property P , since Gc was a

critical graph.

Either Gc or G′
c could have been the input graph for the

problem since they are consistent with all the answers the
adversary has given. But one graph has the property and
the other one does not. Hence, whatever answer the algo-
rithm outputs, the adversary can prove the algorithm wrong.
Hence, any algorithm that makes less than x queries must
be incorrect. �

Now we turn to the applications of this theorem.

6. APPLICATIONS
We prove lower bounds for many common graph proper-

ties by constructing a critical graph for each property. It
turns out that all the problems we consider have a lower
bound of Ω(n2), which proves that the bounds are asymp-
totically tight.

For each problem, we describe how to construct a critical
graph with Ω(n2) number of non-edges. The lower bound
follows from Theorem 5.1.

Here is a handy fact about the number of non-edges in a
graph.

Lemma 6.1. A graph with n vertices and m edges has x
non-edges, where x =

(
n
2

)−m.

Proof: There are
(
n
2

)
pairs of vertices in a graph. Between

every pair of vertices, either there is an edge or a non-edge.
If m is the number of edges and x is the number of non-edges
we have x+m =

(
n
2

)
. �

6.1 Triangle Detection
A graph G is said to have a triangle if K3 is a subgraph

of G.
Problem P1. Given access to G = (V,E) via queries

of the form ‘Is (a, b) an edge in G?’ determine if G has a
triangle.

Construction of Gc. A rooted star tree with the root node
as 1 (Fig.2). In other words, Gc is a graph where we connect
node 1 to every other node. There are exactly m = n − 1
edges in Gc.

It is easy to verify that Gc satisfies both the conditions of
a critical graph.
(C1) Gc does not have triangle.
(C2) Replacing any non-edge in Gc, induces a triangle in-
volving node 1.

No. of non-edges in Gc: x =
(
n
2

)−m = Ω(n2).

By Theorem 5.1, any algorithm must make at least Ω(n2)
queries. Since this step is same for all problems, in sub-
sequent examples, we only describe the construction of the
critical graph.

. . .

1

2 3 n

Figure 2. A critical graph for ‘has a triangle’ property. Node 1
is connected to every other node. The non-edges are between
nodes 2, ...n.

6.2 Hamiltonian Path
Problem P3. Given access to a graph G = (V,E) via

queries of the form ‘Is (a, b) an edge in G?’ determine if G
has a Hamiltonian path.
Construction of Gc. We build two complete subgraphs A
and B of equal size such that A has nodes labelled from 1
to n/2 and B has nodes labelled from n/2+ 1 to n (Fig. 3).

Kn/2

A

Kn/2

B

(a)

Kn/2

A

Kn/2

B

(b)

Figure 3. (a) A critical graph Gc for Hamiltonian property.
Gc does not have a Hamiltonian path since it is disconnected.
(b) Replacing any non-edge by an edge induces a Hamiltonian
path.

6.3 Perfect Matching
Problem P3. A graph G is said to have a perfect match-

ing if there exists a pairing of all nodes in G, such that every
node is contained in exactly one pair and each pair has an
edge between them. A necessary (but not sufficient) condi-
tion for G to have a perfect matching is that n must be an
even number. Given access to G = (V,E) via queries of the
form ‘Is (a, b) an edge in G?’ determine if G has a perfect
matching. Assume that n is even.
Construction of Gc. Since n is an even number, assume
that n = 2s. If s is an odd number, we construct two com-
plete subgraphs A and B such that A has nodes from the
set {1, .., s} and B has nodes from the set {s + 1, .., n}. If
s is an even number, we construct two complete graphs A
and B such that A has nodes in the set {1, .., s − 1} and B

84

has nodes in the set {s, .., n} (Fig. 4). Basically, we want to
ensure that both A and B have odd number of nodes.

No. of non-edges is s2, when s is odd and s2 − 1 when s
is even. Hence, number of non-edges x ≈ n2/4.

Ks−1

A

Ks+1

B

(a)

Ks+1

A

Ks−1

B

(b)

Figure 4. (a) Critical graph Gc for ‘perfect matching’ property
when s is even. Graph Gc does not have a perfect matching
since A and B have odd number of vertices. (b) If we replace
any non-edge by a edge then it is easy to verify that the graph
obtained has a perfect matching.

6.4 Non-Bipartite Detection
Problem P4. Given access to G = (V,E) via queries

of the form ‘Is (a, b) an edge in G?’ determine if G is non-
bipartite.
Construction of Gc. Gc is a complete bipartite graph
with two partitions A and B. where partition A has nodes
labelled from 1 to n/2 and B has nodes labelled from n/2+1
to n. So Gc has m = n2/4 edges (Fig. 5). No. of non-edges
in Gc: x =

(
n
2

)−m ≈ n2/4.

A BA B

Figure 5. A critical graph for the property of ‘Non-
bipartiteness’. Gc is bipartite but adding replacing any non-
edge by an edge makes in non-bipartite.

6.5 Cycle Detection
Problem P5. Given access to G = (V,E) via queries of

the form ‘Is (a, b) an edge in G?’ determine if G has a cycle.
Construction of Gc. A critical graph for ‘has a cycle’ prop-
erty is a path containing all nodes. Hence Gc has exactly
n− 1 edges (Fig. 6). No. of non-edges: x = Ω(n2).

1 2 n

Figure 6. Critical graph Gc for ‘has a cycle’ property. Replac-
ing any non-edge by an edge induces a cycle.

6.6 Degree-Three node
Problem P6. Given access to G = (V,E) via queries of

the form ‘Is (a, b) an edge in G?’ determine if G has a node
whose degree is three.

Construction of Gc. A critical graph for property ‘has a
degree-3 node’ is a cycle containing all nodes. Hence Gc has
exactly n edges (Fig. 7). No. of non-edges: x =

(
n
2

) − n =

Ω(n2).

1

2

3

4

5

6

. . .

n

Figure 7. Critical graph Gc for ‘has a degree-3 node’ property.
Gc has all nodes of degree two but replacing any non-edge by
an edge gives a degree-3 node.

The method also works for other graph properties like pla-
narity, two-connectedness, etc. but we have omitted these
examples.

7. TEACHABILITY
We did a pilot experiment with five CS graduate students

to see if they could apply our method to derive query lower
bounds. We report our findings in this section.

Design. One of the authors of the paper had one-on-
one interview-type session with each student. Prior to the
start of the session, we made sure that the student under-
stood the basic concepts and definitions related to query
computational model. A session lasted for 2-4 hours and
was divided into three phases. In the first phase, the stu-
dents understood the format of adversary arguments. In the
second phase, the student attempted to solve the Connec-
tivity problem (Prob. E4) for one hour. Our objective was
to allow the students to try the problem on their own so that
we could identify the common approaches taken to solve the
problem. The student was encouraged to think aloud during
this time. If he persisted in a wrong approach for more than
ten minutes, the author alerted the student to the mistake
and let him continue. At the end of one hour, regardless
of how the student performed, the author gave the solution
to the problem along with an explanation of the method as
described in Sections 3-5. In the third phase, the student
attempted to derive lower bounds for the list of problems
given in Sec. 6, without any help. We describe observations
made in each phase below.

7.1 Phase I: Adversary Argument Explained
In the first phase, the students got familiar with the ad-

versary argument. Two students who said they were fa-
miliar with adversary arguments were quizzed on the topic
with a couple of questions. The other three students found
it easy to follow the adversary argument through examples
like ‘n-Card Monte’ and ‘20-questions’, given in [4] and [9],
respectively. Some students took more time than others to
understand the format of the proof, which accounted for the
variability in the duration the sessions.

85

7.2 Phase II: Teaching
We list common failed approaches taken while solving the

Connectivity problem.
Failed approach F1. Students find it hard to let go of the
algorithm and think like an adversary. They often prove
lower bounds assuming that the algorithm works in a certain
way. For example, four out of five students gave the answer
along the following lines: “Every vertex has n − 1 possible
incident edges. When the algorithm asks n− 1 queries for a
vertex, the adversary answers with a ‘Yes’ only for the last
incident edge.” The flaw in this reasoning is the assumption
made about the algorithm’s behavior. The algorithm need
not ask queries in an orderly manner. The lower bound
has to work for any algorithm, not just the one that probes
vertex-by-vertex.
Failed approach F2. All the students tried for exact bounds
which is harder than proving asymptotic bounds. Even
when the students were reminded that only asymptotic lower
bound is sufficient, they could not figure out a way to make
use of the relaxed constraint.
Failed approach F3. Three students came up with the cor-
rect adversary strategy, but failed to do the analysis. The
strategy was: The adversary always says ‘No’ unless saying
so definitely disconnects the graph. This strategy is intuitive
and is also correct, but unfortunately none of them were not
able to prove that it works. The correct analysis of this
strategy is given in [1].

7.3 Phase III: Testing
In Table 1, we give the time taken by each student to con-

struct the correct critical graph. Some students gave dif-
ferent (correct) critical graphs than the ones we have given.
For example, for ‘Triangle’ property two students gave com-
plete bipartite graph as the answer. Similarly, for ‘Cycle’
property all the students gave ‘any spanning tree’ as the an-
swer. As it can be seen from Table 1, most students were
able to construct critical graphs quickly. We observed that
three students who were not familiar with adversary argu-
ments did equally well as the other two students. We did not
anticipate this but it seems reasonable in hindsight. After
all, the main reason why our method is helpful is because
it shifts the focus from designing an adversary strategy to
finding one critical graph. So prior knowledge of adversary
arguments did not matter as much. In the words of a stu-
dent, “Instead of thinking about how the queries must be
answered, I just have to look for the right graph, which
seems easier to do”.

8. CONCLUDING REMARKS
Remark 1. An alternate approach to proving lower bounds

for graph-properties can be found in [7]. However, this proof
method is beyond the scope of most CS courses since it relies
on deep ideas in topology.

Remark 2. There is a lacuna in most traditional text-
books when discussing lower bounds. We suspect that this
is because much work on this topic has been done only in the
last two decades. But lower bounds as a topic in complexity
theory has gained a lot of importance in the last few years.
In support of this claim, we would like to point out that
the recent book by Arora and Barak titled ‘Computational

Phase Topic Students

S1 S2 S3 S4 S5

I Adv. Yes Yes No No No

II E4 F2 F1,2,3 F1,2 F1,2,3 F1,2,3

III

P1 8m 10m - 9m -

P2 5m 5m 9m 6m 6m

P3 8m - - 10m 9m

P4 1m 2m 4m 2m 2m

P5 1m 2m 2m 1m 2m

P6 1m 1m 1m 1m 1m

Table 1. Summary of data from the experiment. Phase I: ‘Yes’
means that the student already knew the adversary method.
Phase II: Subscripts in F refer to the failed approaches taken
by the student as discussed in Sec. 7.2. Phase III: Numbers
give the time taken by the student to answer. A - against a
problem means that the student was not able to answer that
problem within 15 minutes.

Complexity: A Modern Approach’ [1] has one-third of the
book devoted exclusively to lower bounds!

9. REFERENCES
[1] S. Arora and B. Barak. Computational complexity: a

modern approach. Cambridge University Press, 2009.

[2] M. Ben Or. Lower bounds for algebraic computation
trees. In Proceedings of the fifteenth annual ACM
Symposium on Theory of Computing (STOC), pages
80–86. ACM, 1983.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press,
2nd edition, 2001.

[4] J. Erickson. http://goo.gl/0z36dz. Last Accessed Jan
10, 2014.

[5] J. Erickson et al. Lower bounds for linear satisfiability
problems. Chicago Journal of Theoretical Computer
Science, 8:1999, 1999.

[6] A. Gajentaan and M. H. Overmars. On a class of
o(n2) problems in computational geometry.
Computational geometry, 5(3):165–185, 1995.

[7] J. Kahn, M. Saks, and D. Sturtevant. A topological
approach to evasiveness. Combinatorica, 4(4):297–306,
1984.

[8] J. Kleinberg and E. Tardos. Algorithm Design.
Addison Wesley, second edition, 2006.

[9] Sally A. Goldman and Kenneth J. Goldman.
Adversary Lower Bound Technique.
http://goldman.cse.wustl.edu/crc2007/handouts/adv-lb.pdf.
Last Accessed Jan 10, 2014.

[10] D. B. West. Introduction to Graph Theory. Prentice
Hall, 2 edition, September 2000.

86

http://goo.gl/0z36dz
http://goldman.cse.wustl.edu/crc2007/handouts/adv-lb.pdf

	1 Introduction
	2 Related Work
	3 Adversary Argument Revisited
	3.1 Testing Connectivity

	4 Scope of Problems
	4.1 Our approach

	5 Main Theorem
	6 Applications
	6.1 Triangle Detection
	6.2 Hamiltonian Path
	6.3 Perfect Matching
	6.4 Non-Bipartite Detection
	6.5 Cycle Detection
	6.6 Degree-Three node

	7 Teachability
	7.1 Phase I: Adversary Argument Explained
	7.2 Phase II: Teaching
	7.3 Phase III: Testing

	8 Concluding Remarks
	9 References

