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Abstract

The extent to which a wireless multi-hop network is connected is usually measured by the probability
that all the nodes form a single connected component. This measure is called connectivity. We find this
unsuitable for use with sparse networks since it is not indicative of the actual communication capability
of the network, and can be unresponsive to changes in network parameters. We propose an alternative
measure called reachability, defined as the fraction of node pairs in the network that are connected.
We claim that it is more intuitive and expressive than connectivity when dealing with sparse networks.
We obtain analytical expressions for reachability for two and three nodes in the static case. We iden-
tify reachability as growing according to the logistic growth model and present a regression model for
reachability in terms of number of nodes and normalised transmission range. This model is applicable
for static networks with up to 500 nodes. We also extend this model to larger networks using an approx-
imation. These characterisations of reachability can be used by a network designer to estimate the trade
off between how connected the network is, the number of nodes, the area of operation, and transmission
range of nodes.

1 Introduction

The extent of communication that a wireless multi-hop network can support is a matter of interest
for designers and users of the network. In a wireless multi-hop network, a fundamental limiting factor
is the absence or presence of routes between nodes. It is beyond this that factors like channel capacity
and interference affect the extent of communication. A popular measure for determining the degree to
which a wireless multi-hop network is connected is the probability that the network graph forms a single
connected component. This probability is called connectivity, and has been extensively studied.

A sparse wireless multi-hop network is one in which connectivity with high probability is not ensured.
For our purposes, we call a network sparse if its connectivity is less than 0.95. Such a network can arise
in various ways: a vehicular ad hoc network in an area with low traffic density, an initially connected



sensor network after some of its nodes have failed, and an ad hoc communications network that is being
deployed incrementally can all be sparse networks. Occasionally, in a constrained deployment scenario,
we may even wish to deploy a multi-hop network that trades off connectivity for cost. In such sparse
networks, we claim that using the probability of connectivity as a design metric can prove inadequate
because i) connectivity is not indicative of the actual extent to which the network can support communi-
cation; and ii) it is unresponsive to fine changes in network parameters. For example, it is possible that
a sparse network that allows a significant number of nodes to communicate has a connectivity close to
0. Further, an increase in some network parameter such as number of nodes, or transmission range, may
increase the ability of nodes to communicate, but it may not be reflected by a corresponding increase in
connectivity. We believe that a property of the network graph better suited for use with sparse networks
is the fraction of node pairs that are connected. We call this quantity reachability. We consider both
connectivity and reachability to be different connectivity measures of a network graph.

(a) Increasing N, no mobility (b) Increasing R, no mobility

(c) Increasing N, with mobility (d) Increasing R with mobility and asynchronous commu-
nication

Figure 1. Reachability and Connectivity growth curves

To illustrate the behavior of reachability and connectivity in a sparse multi-hop wireless network, con-
sider this simulation study from [15] for a sparse rural deployment: N nodes, each with a uniform radio
transmission range of R meters, are to be deployed in a 2000m x 2000m area. The nodes are distributed
uniformly at random in the area of operation. Figure 1(a) shows growth curves for connectivity and
reachability for increasing N when R = 300m. The connectivity curve remains at 0 for this network till
N grows to almost 70. But even with fewer than 70 nodes, the network affords a significant degree of
communication as can be seen from the corresponding reachability curve. For example, with 60 nodes,
45% of node pairs have a multi-hop path connecting them. Reachability also lets us quantify the differ-



ence between having, say, 30 nodes and 50 nodes: 14% of node pairs can communicate when there are
30 nodes, and 30% when there are 50 nodes. Similar observations can be made from Figure 1(b) which
plots the growth of reachability and connectivity for 60 nodes as R increases. Low connectivity in sparse
networks is often handled by exploiting mobility and asynchronous communication between nodes. Us-
ing asynchronous communication, two nodes that may never have had a path between each other at a
single instant, can communicate using store-and-forward arrangements with other nodes. Figure 1(c)
shows an increased difference between reachability and connectivity when mobility is introduced in the
scenario of Figure 1(a). Figure 1(d) shows the comparison when asynchronous communication is en-
abled in the scenario of Figure 1(b). In this case, almost 80% of node pairs are able to communicate
before connectivity increases from 0. Details regarding these simulations and a case-study in the use of
reachability for designing sparse multi-hop wireless networks can be found in [15].

Our main contribution in this paper is the characterisation of reachability for wireless multi-hop net-
works: we present analytical expressions for small cases (Section 5), identify reachability as consistent
with the logistic growth model (Section 6.2), and obtain a closed form expression through regression
analysis of simulated data that is valid for values of N from 2 to 500 when nodes are static and dis-
tributed uniformly at random (Section 7). We also extend this model to be applicable to larger networks
within a bounded factor of error (Section 8).

2 Related Work

Gupta and Kumar showed in [4] how throughput per source-destination pair in a multi-hop wireless
network decreases as node density increases. Grossglauser and Tse in [3] showed that in the presence
of mobility, multi-user diversity could be used to achieve a trade off between throughput and delay.
This would allow throughput to be maintained almost constant even with increasing node density. A
further quantification of this trade off is found in [12]. Similarly, a trade off has also been achieved
between connectivity and delay. Delay tolerant routing [6] and Message Ferrying [24] are representative
examples of work that studies the use of node mobility to achieve asynchronous communication between
disconnected nodes in sparse networks. This background forms the context for our work on reachability
by motivating the need for connectivity measures that better express the communication capabilities of
a network, and allow fine-grained evaluations of trade offs.

It is shown in [20] that forming a connected component with 90% of the nodes in the network requires
a much lower minimum transmission range than for complete connectivity. A number of sparse sensor
network applications are described in [18]. Regression has been used in [8] to model the threshold trans-
mitting range for k-connectivity in wireless multi-hop networks, and in [22] to model the probability of
obtaining a fully connected network. [22] also defines a connectivity index in terms of number of nodes
in each connected component, that is identical with reachability. However, no model or characterisa-
tion is offered. We use the term reachability since it is more intuitive in the context of communication
in sparse networks. Although this term has been used before in several other areas, to the best of our
knowledge it has not been used to denote a connectivity measure.

The characterisation presented in this paper has earlier appeared in a shorter form in [14]. An intro-
duction to reachability and an overview of its role in designing sparse wireless multi-hop networks can
be found in [16] and [13] respectively.



Figure 2. A network instance with Reachability = 0.378

3 Reachability

The reachability of a static network is defined as the fraction of connected node pairs in the network.
It is a property of the network graph, with no assumptions made regarding the distribution of nodes.
Using this definition we can calculate reachability for a network of N nodes as:

Reachability =
No. of connected node pairs(

N
2

) (1)

A pair of nodes is considered connected if there is a path of length one or greater between them. Figure
2 shows one instance of a network with 10 nodes. We count the number of node pairs that can reach
each other, that is, nodes that are connected either directly or through other nodes, as 17. Substituting
N = 10 in the denominator of Equation 1, we obtain the reachability for this network instance as 17/45
or 0.378.

Note that for the same 10 nodes, it is possible to have a different value of reachability in another
instance. We define a network by the number of nodes, their bounding area, and the transmission range of
the nodes. The same network can have different instances depending on how the nodes are arranged. The
network’s reachability can be measured as the average of reachabilities across several instances of that
network. This value is significant since it represents the probability that a pair of nodes chosen randomly
from the network are connected. Note that the procedure for measuring reachability is analogous to that
for connectivity: a single instance of a network is either fully connected or not, and connectivity is
measured as the fraction of a large number of network instances that are connected. When nodes are
mobile, the fraction of connected node pairs varies depending on node movement, but a single value can
be obtained for any time instant. We can measure reachability for a mobile network as the average of
instantaneous reachability values measured at frequent intervals during the operation of the network.
When a theoretical value of reachability is known for a mobile network, the measured reachability is
expected to converge to this value with time.

4 Network model and notation

The network model we use for our characterisation of reachability is as follows: N nodes are dis-
tributed uniformly at random in a square area of side l; two nodes can communicate directly with each
other if the distance between them is not greater than R, the transmission range of every node. Since
the network graph remains unchanged when R and l vary proportionally, we combine the two into a
normalised transmission range, r = R/l without loss of generality. While this model takes a simplistic



view of radio propagation, it promotes better defined behavior of topological properties, and is useful for
an initial study. Note that the assumptions regarding the network model help in characterising reacha-
bility. The definition of reachability is independent of these assumptions. For a network with N nodes,
normalised transmission range r and a set of mobility model parameters M in a cube of d dimensions,
we denote the corresponding value of reachability as RchM,d

N,r . In this work, since we deal only with
characterisation of the static case, we use the notation Rchd

N,r. In the case of most interest, when d = 2,
we drop the superscript altogether for convenience and write RchN,r.

5 Analysis of reachability for small cases

In this section we derive closed form expressions for reachability of two and three static nodes located
uniformly at random along a line of length l: Rch1

2,r and Rch1
3,r.

5.1 Rch1
2,r

Figure 3. Positions of a node on a line segment

Let N1 and N2 be two nodes that can take positions uniformly at random on a line of length l. For
instances of this network, Rch1

2,r is 1 in cases when they are connected and 0 when they are not. The
reachability for this network is therefore equivalent to the probability that two nodes with transmission
ranges R are connected when they are distributed randomly on a segment of length l. (As this implies,
reachability and connectivity are identical for a network with two nodes.)

We define the coverage of a node as the length of the line segment that is covered by the transmission
range of the node. The probability that N1 and N2 are connected is given by the fraction of the length l
covered by N1:

Rch1
2,r =

Coverage(N1)

l
(2)

We first consider the case when l ≥ 2R. As seen in Figure 3, the coverage of N1 varies depending
on where it is positioned on the line segment. The coverage of N1 is 2R if it is not within a distance
R from either end point of the line segment. If it is placed in one of the edge segments of length R,
its coverage on one side would remain R, while the coverage on the other side would vary between 0
and R. Considering all positions along the edge segments equally likely, the coverage of N1 in an edge
segment is R for the side away from the edge, and the expected coverage is R

2
for the side near the



edge1. Therefore, the total expected coverage of N1 on an edge segment of length R is 3R
2

, and the total
coverage of N1 in the middle segment of length l − 2R is 2R. The expected coverage of N1 when it
takes any position on the line of length l is given by:

Coverage(N1) =
2R

l
.
3R

2
+

l − 2R

l
.2R

=
2Rl −R2

l
, (l ≥ 2R)

For the case when 2R > l > R, we divide the line of length l into three segments of lengths l − R,
2R − l and l − R. When N1 is located in the central segment of length 2R − l, coverage is 1 because
N1’s transmission range extends beyond the end-points on either side. When N1 is located on either of
the edge segments of length 2R− l, it extends to a length R on the side of the farther end-point. On the
side of the nearer end-point, N1’s coverage is between l − R and, when it is exactly on the end-point,
0. The expected value for coverage on the side of the nearer endpoint is (l − R)/2. Therefore, when
2R > l > R,

Coverage(N1) = 2.
( l −R

l

)
.
(
R +

l −R

2

)
+

2R− l

l
.1

=
2Rl −R2

l
, (2R > l ≥ R)

Since the coverage is the same for both cases, we can write

Coverage(N1) =
2Rl −R2

l
, (l > R)

Substituting in Equation 2:

Rch1
2,r =

2R

l
− R2

l2
, (l ≥ R) (3)

= 2r − r2, (r ≤ 1) (4)

5.2 Rch1
3,r

Finding Rch1
3,r is more involved than finding reachability for two nodes. We start by enumerating the

different ways in which three nodes can be positioned in one-dimension:

A. All three nodes are isolated

B. One node is isolated and two are connected

C. All three nodes are connected with one intermediate hop

D. All three nodes are directly connected to each other

1If c is a random variable representing coverage on the side near the edge, the expected coverage when the node is located
in the edge segment of length R is 1

R

∫ R

0
c dc or R

2 .



In case A, Rch1
3,r is 0 by definition. In case B, it follows from our definition of reachability (Equation

1) that Rch1
3,r is 1

3
. Similarly, in cases C and D, Rch1

3,r is 1. Since any of these cases is possible, the sum
of Rch1

3,r for all possible cases after weighting with the probability of occurrence of each case gives us
the expected value of Rch1

3,r:

Rch1
3,r =

1

3
P (B) + P (C) + P (D)

Since the cases A, B, C, and D are exhaustive, P (A) + P (B) + P (C) + P (D) = 1. We can now rewrite
the above equation as:

Rch1
3,r =

1

3
[1− P (A) + 2P (C) + 2P (D)] (5)

Derivations for P (A), P (C) and P (D) follow the general approach used for N = 2, and are given in
Appendix A. For the case l ≥ 4R we get:

P (D) = (2r − r2)

(
3r

2
− 3r2

8

)
(6)

P (C) = (2r − r2)(r − r2) + (2r − 3r2)

(
r

2

)
(7)

P (A) = (1− 4r + 4r2)(1− 4r + 2r2) + (2r − 3r2)

(
1− 7r

2
+

14r2

3

)
(8)

Having obtained expressions for P (A), P (C), and P (D), we can substitute for these in Equation 5 to
obtain Rch1

3,r.
The expression obtained for Rch1

2,r also gives the probabilistic connectivity for two static nodes uni-
formly distributed on a line segment. This can be understood as follows: with two nodes, every network
instance has either one or zero connected node pairs, resulting in a reachability of either one or zero for
that instance. Each instance with a reachability of one also is completely connected since there are only
two nodes. Therefore, the values of reachability and connectivity are identical for N = 2. When N ≥ 3,
there can be connected node pairs in an instance without all nodes being part of a single component.
Therefore, reachability is always greater than connectivity for networks with N ≥ 3.

6 Modelling RchN,r in the finite domain

The above analysis for N = 3 involves the handling of multiple cases, and is significantly more
involved than the analysis for N = 2. It is evident that this method of analysis is impractical for
use with larger values of N , and other methods will have to be explored to characterise reachability.
There is work that gives asymptotic probabilistic bounds on connectivity in a one-dimensional network
by characterising the conditions required for a single node to be left out of the connected component
[19, 21]. Such an approach is difficult to use with reachability since the metric by definition tries to
capture communication capabilities in a network that can be separated by disconnections. In any case,
asymptotic results for one dimensional networks, while of theoretical interest, are unlikely to be of
practical use in networks with smaller numbers of nodes.

If the N nodes form k components with mi nodes in the ith component, we can rewrite Equation 1 as



RchN,r =

∑k
i=1

(
mi

2

)(
N
2

) =

∑k
i=1 mi(mi − 1)

N(N − 1)
(9)

It may be possible to use results for number of components and distributions of nodes for a Random
Geometric Graph [11] to obtain asymptotic bounds (as N tends to infinity) for RchN,r.

Because sparse networks often involve small numbers of nodes, we are particularly interested in char-
acterisations of RchN,r in the finite domain. Since we could generate accurate data for RchN,r from
simulations, we decided to obtain a finite domain characterisation using empirical regression.

6.1 Empirical modelling of RchN,r

We explored data from simulations to see if reachability obeyed any known growth models. We
studied the relationship between r and RchN,r for various values of N. We chose r as our independent
variable since it is continuous and allows greater flexibility in choice of data points. RchN,r grows
from zero at r = 0 and reaches an asymptote of one for some value of r. We visually explored several
growth models consistent with this behavior, and found that the logistic growth model consistently fit
the simulated data for a wide range of N and r. Among models we considered and rejected were power
law models, sum of exponentials, the Gompertz model, and various logarithmic functions [17].

6.2 The Logistic Growth Curve

The logistic model is often used to fit sigmoidal curves with a lower asymptote of zero and a finite
upper asymptote. Its most popular application has been in modeling the growth of populations over time.
Intuitively, logistic growth models a system that grows rapidly beyond a threshold, and slows down as it
approaches its maximum limit. Figure 4 shows a logistic curve expressed by the equation:

y =
k

1 + eα−βx
(10)

where k is the limiting value that y can take, β is the maximum rate of growth, and α is a constant of
integration [7]. The curve is skew-symmetric and has a point of inflexion at x = α/β, y = k/2, where
the growth rate is maximum [17].

We use the logistic equation to model the growth of RchN,r as r increases for a fixed value of N. Since
the maximum value of reachability is one, it becomes our upper asymptote. α and β vary with N, and
we denote them by αN and βN . We use Equation 10 in the form:

RchN,r =
1

1 + eαN−βNr
(11)

Figure 5 shows the close correspondence between simulated data and Equation 11 for the case N =
100. The values of α100 and β100 used were 9.58 and 79.2 respectively. We see how these values were
obtained in Section 7.

7 Simulation and Regression Modeling

After having identified reachability as consistent with the logistic model, our approach towards char-
acterising RchN,r was as follows:



Figure 4. A general logistic curve

• We conducted extensive simulations to obtain data that represented the growth of RchN,r from 0
to 1 as r increased, while keeping N fixed.

• We used Equation 11 as a regression function for simulated data, and obtained the coefficients α
and β for the corresponding value of N. This allowed us to characterise reachability as a function
of r for one value of N.

• We repeated the above two steps for values of N ranging from 2 to 500, and performed a second
level of regression on the estimated values of αN and βN . This gave us a set of equations that
allows us to obtain reachability as a function of N and r for values of N ranging from 2 to 500.

Figure 5. Logistic fit for N=100

7.1 Simulations

We conducted extensive simulations to generate the data required for fitting the regression function.
Since we were looking to characterise reachability for small to medium sized networks, we chose, as



representative points, 55 values of N between 2 and 500. For each of these values of N, we varied r in
increments from zero to a value where reachability was at its maximum value of one. For each such value
of r, we conducted simulations over 1000 randomly generated network graphs and calculated the mean
value of RchN,r across those instances. We know that the error of the mean is within 1.96s/

√
n with

95% confidence where s is the standard deviation of the samples, and n is the number of samples [5].
A worst case bound for s would be the case when the samples are uniformly distributed in the interval
[0, 1]. The variance for a uniform continuous distribution in the interval [a, b] is given by (b − a)/12
[23]. The worst case standard deviation for the interval [0, 1] is given by s =

√
1/12 = 0.2887. Using

this value of s, and with n = 1000 we find that the error in the mean is within 0.018 with a confidence
of 95%. At the end of our simulations, we had 55 tables each containing r and reachability values for
the corresponding value of N. For illustration, one of these tables, for N=60, is shown in Table 1.

7.2 Fitting the Logistic Curve

Our next step was to fit each of those 55 tables of values to Equation 11. We transform the non-linear
equation to a linear form in order to use the linear least-squares regression. Applying logarithms to both
sides of Equation 11 we get:

log(
1

RchN,r

− 1) = αN − βNr

Substituting t = log( 1
RchN,r

− 1),
t = αN − βNr

which allows us to estimate αN and βN using linear least-squares regression.
We estimated α and β for each of the 55 selected values of N. Goodness of fit as measured by the

R-squared statistic was almost one, with the lowest value being 0.996. This corroborates the close
agreement of simulated values and the fitted equation seen in Figure 5. At this point, we obtained a table
with estimated α and β values for the 55 values of N we had chosen. Some rows of this table are shown
in Table 2.

Table 1. N = 60
r Rch60,r

0.11 0.097306765
0.12 0.144781929
0.13 0.214324298
0.14 0.313522569
0.15 0.436204508
0.16 0.572368896
0.17 0.703084160
0.18 0.811325984
0.19 0.880296608
0.20 0.928937296



Table 2.
N αN βN

2 3.255884789 6.283736818
5 3.977056234 9.870638140
10 4.691024580 14.53923918
. . .
. . .

55 8.145698174 50.98543867
60 8.263521833 53.85171640
. . .
. . .

175 11.47178670 124.4936168
200 12.03414482 138.8969787

. . .

. . .
450 16.21675101 278.7307447
500 16.69687608 302.2307067

7.3 Fitting the Logistic Coefficients

Having estimated the logistic coefficients αN and βN for several values of N, we performed a second
level of regression on the estimated coefficients to express α and β as a function of N. Doing this allows
us to interpolate αN and βN for values of N we have not simulated, and lets us express αN and βN

concisely in terms of N. This can also reduce error by staying faithful to a general trend, mitigating the
effect of any anomalous data points.

We fit values of α to a sum of exponentials function, and values of β to a sixth degree polynomial.
In the absence of physically significant models, we chose models that gave us maximum accuracy. The

Figure 6. Estimated and fitted α



expressions in terms of N for 2 ≤ N ≤ 500 are:

αN = 3.004 + 3.815(1− e−4.091×10−2N)

+15.4(1− e−2.055×10−3N) (12)

βN = 5.141 + 0.9421N − 2.597× 10−3N2

+8.42× 10−6N3 − 1.37× 10−8N4

+1.058× 10−11N5 − 3.209× 10−15N6 (13)

Figures 6 and 7 plot the estimated values of α and β along with the curves represented by equations
12 and 13.

Figure 7. Estimated and fitted β

7.4 Validation

Equations 11, 12 and 13 form a model for reachability. Given a value of N and r, we obtain the
corresponding value of reachability as follows:

• obtain αN and βN by substituting N in equations 12 and 13

• substitute αN , βN and r in Equation 11.

We chose 20 values of N between 2 and 500 at random, which were not among the 55 values of
N chosen to build the regression model. For each value of N, we chose five values of r that would
roughly correspond to a reachability value between 0.05 and 0.95. This choice of r is necessary because
a random selection of r is very likely to result in a reachability of either zero or one, since reachability
takes on values in between only for a narrow range of values of r. We calculated the reachability
corresponding to these hundred pairs of N and r values using equations 11, 12 and 13, and compared
them with values obtained from simulation. We calculated absolute and relative errors between the
simulated and estimated values of reachability and found an average relative error of 3.5% in the model.
We did not observe a single instance where the value of reachability predicted by the model was in error
by more than 0.05.



Table 3. Beyond N = 500
N gN =

αN
βN

Rch(N,gN−0.01) Rch(N,gN+0.01)

500 0.055 0.0515 0.9418
600 0.0495 0.0315 0.9470
700 0.0451 0.0201 0.9518
800 0.0413 0.0129 0.9518
900 0.0381 0.0086 0.9515

1000 0.0354 0.0060 0.9505
1200 0.0308 0.0031 0.9414

8 Extending the model

As N grows, smaller changes in r suffice for RchN,r to increase from a value near 0 to a value near 1.
For example, when N = 10, the increase of Rch10,r from 0.1 to 0.9 corresponds to an increase in r of
0.3. But when N = 500, it corresponds to an increase in r of only 0.015. As N grows larger, RchN,r

begins to resemble a step function by transitioning from a value of almost 0 to a value of almost 1 at
a threshold value of r. Such phase transition behaviour [9] is a known property of multi-hop networks,
and the critical transmitting range is a well-studied problem for connectivity [20].

In our model, the transition of RchN,r for large values of N takes place at gN = αN

βN
which is the point

of inflexion for the logistic curve. Note that in figures 6 and 7, the shape of the curves seems relatively
stable for N greater than 200. We use data for N between 200 and 500 to find a rough estimate for the
critical transmitting range for RchN,r up to N = 1000. We approximate αN using a simple exponential
function, and βN using a linear function as

αN = 16.16(1− e−1.947×10−3N) + 6.658 (14)

βN = 27.8844 + 0.5522N (15)

for 500 ≤ N ≤ 1000. While these estimates do not exactly predict the point of inflexion, they are
close enough that setting r = gN − 0.01 results in a RchN,r value close to 0, and setting r = gN + 0.01
results in a RchN,r value close to 1. Table 3 illustrates this: the second column contains gN values
obtained from equations 14 and 15, and the third and fourth columns contain RchN,r values obtained
from simulations by setting r to gN − 0.01 and gN + 0.01 respectively.

9 Conclusions

This paper has dealt with characterising reachability for a static network. In a static network, prob-
abilistic reachability is of limited use since the measured reachability of a network instance can vary
from the expected reachability. But in the presence of mobility and asynchronous communication in
a multi-hop network, the measured value of reachability would tend towards its expected value over



time. As evidenced by figures 1(c) and 1(d), it is also in such networks that reachability would be
most applicable. There is work that allows us to determine the stationary distributions for the locations
of mobile nodes [10, 1, 2]. This distribution is a function of the mobility model used and its param-
eters. It should be possible to use the models obtained in this paper when the stationary distribution
of mobile node locations is close to the uniform distribution. When this is not the case, or when mo-
bile nodes are not necessarily restricted to a square area, we can use simulation. We have developed
a simulator for sparse wireless multi-hop networks called Simran that includes support for reachabil-
ity and several other topological properties of multi-hop networks. It is available for download from
http://www.it.iitb.ac.in/∼srinath/simran/.

The assumptions made regarding the propagation model in this paper are quite idealised, and reach-
ability in a real deployment would almost certainly be worse than that obtained by using such a model.
However, it should be possible to use the reachability model presented in this paper for designing net-
works after choosing suitably conservative parameters. It would be useful in estimating trade-offs be-
tween number of nodes, transmission range, and required communication capability at different operat-
ing points. To this end, we have built a design tool incorporating the reachability model presented in this
paper. The tool can be accessed from http://www.it.iitb.ac.in/∼srinath/tool/rch.html.
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A Derivations for P (A), P (C) and P (D)

Expressions for P (A), P (C) and P (D) in terms of r when l ≥ 4R are obtained as follows.

A.1 P (D): All three nodes are directly connected

Observe that when three nodes are directly connected, every two nodes are connected to each other.
We derive the combined coverage for two nodes which is the length in which a third node must be
located to be connected to both other nodes.

Let x be the average distance between two nodes that are connected. Let N1 be the node closest to the
left end of the line segment of length l, and let N2 be the other node connected to N1 on its right. Note
that the coverage area for N3 to be connected to both of them is the length between the two nodes, x, and
an overlap of R−x on N2’s right and an overlap of R−x on N1’s left. We also need to accommodate the
reduction of this overlap in the end segments of the length of operation, as we did for the case N = 2.
Coverage for the initial R − x segment of l is (R − x)/2 to N1’s left, x in between them, and R − x to
N2’s right. Coverage for the rightmost segment of length R, after compensating for reduction of overlap
is obtained as 5R/4, and coverage for the central l − 2R + x segment is 2R− x. The total coverage is:(

R− x

2
+ x + R− x

)
R− x

l
+

l − 2R + x

l
(2R− x) +

R

l
.
5R

4



Substituting x = R/2 (here we use x without factoring in boundary conditions, as the resulting error
is small and allows us to obtain an equation of lower degree):

Coverage(D) =
3R

2
− 3R2

8l

Since we have assumed that N1 and N2 were connected, we multiply the coverage with the probability
of N1 and N2 being connected, i.e., Equation 3, and divide by l to obtain:

P (D) = (2r − r2)

(
3r

2
− 3r2

8

)
A.2 P (C): Probability that three nodes are one-hop connected

There are two ways in which three nodes can be one-hop connected:

1. By nodes N1 and N2 being connected, and N3 then occurring in a position such that it is connected
directly to only one of N1 or N2; and

2. By nodes N1 and N2 being located such that they are unconnected but can potentially be connected
through another node, and then with N3 positioned such that it connects the two.

Case 1:
Let the average distance between two connected nodes be x. Since N1 and N2 are given to be con-

nected, N3 can be one-hop connected with N1 only by being located to the right of N2 in a segment that
does not overlap with N1’s coverage. This segment is of length x. We do not consider N3 being located
to the left of N1 since that case is covered by the symmetrical nature of our analysis. (The analysis
proceeds from left to right of the line segment with N2 always to the right of N1. We could perform an-
other analysis proceeding from right to left and weight both results by half, but the two analyses would
be identical except for the nomenclature of the nodes.) The segment of length l is divided into four
segments of length R− x, 2x, l− 2R− x, and R, from left to right to account for boundary conditions.
After identifying the coverages for each of those segments, taking the product of coverages and segment
lengths, summing, and substituting x = R/2, we get the coverage within which a node would one-hop
connect two already connected nodes as R

l
− R2

l2
. Since the first two nodes are already connected, the

probability for Case 1 is given by dividing the product of the coverage and Equation 3 by l:

P (C1) = (2r − r2)(r − r2)

Case 2:
Here N1 and N2 are not connected, but are such that they can possibly be connected by a node located

between them. First, we find the probability of two nodes being located such that they are not connected,
but can possibly be connected. Note that the criterion for this is that the two nodes should be separated
by at least a distance of R, and not more than a distance of 2R. After analysis similar to previous cases,
this probability is obtained as: 2r − 3r2.

If y is the distance between nodes that are not connected, but can be connected by a third node, the
common coverage between the two nodes where the third node should be located can be seen to be
2R− y. Substituting y = 3R/2, the coverage comes to R/2.

P (C2) = (2r − 3r2)

(
r

2

)



Since P (C) = P (C1) + P (C2),

P (C) = (2r − r2)(r − r2) + (2r − 3r2)

(
r

2

)
A.3 P (A): Probability of all three nodes being isolated

There are two ways in which three nodes can be located such that each node is unconnected to any
other node:

1. When the first two nodes are located such that they can never be connected, and the third node is not
located in either of their coverage segments.

2. When the first two nodes are located such that they are not connected, but can possibly be connected
by a third node, but the third node is not located in the overlapping coverage length of the two
nodes, or in their individual coverages.

Case 1:
Here, analysis proceeds similar to previous cases and we first obtain the probability that two nodes

are located such that they can never be connected as: 1−4r +4r2. Next, we find the combined coverage
area of those two nodes and obtain the probability that the third node will not be located in that coverage
area. This is found to be 1− 4r + 2r2. The product of these two terms gives us:

P (A1) = (1− 4r + 4r2)(1− 4r + 2r2)

Case 2:
Again we use the probability that two nodes fall such that they are not connected, but can be connected

by a third node: 2r − 3r2.
We also find the coverage length within which the third node could be connected to one or both the

nodes, and obtain from it the probability that the third node will not be located in this coverage length:
1− 7r

2
+ 14r2

3
. We get:

P (A2) = (2r − 3r2)

(
1− 7r

2
+

14r2

3

)
Since P (A) = P (A1) + P (A2),

P (A) = (1− 4r + 4r2)(1− 4r + 2r2) + (2r − 3r2)

(
1− 7r

2
+

14r2

3

)


