
Automated Refactoring of Objects for Application Partitioning

Vikram Jamwal and Sridhar Iyer
IIT Bombay, INDIA

(vikram, sri)@it.iitb.ac.in

Abstract

Distributed infrastructures are becoming more and more
diverse in nature. An application may often need to be re-
deployed in various scenarios. Ideally, given an applica-
tion designed for one deployment scenario, one should be
able to generate an application version for a new scenario
through an automated refactoring process. For this to hap-
pen, one of the principal requirements is that application
components should be amenable to partitioning.

To achieve this: (i) We use a structurally simple and
slightly modified model of object called Breakable Ob-
ject (BoB), for structuring such applications. BoB can be
treated as an object which is designed to be well disposed
towards automated refactoring. We also devise a program-
ming model for BoBs in Java called JavaBoB . (ii) We pro-
vide algorithms for automated refactoring of a JavaBoB-
based program.

1. Introduction

Distributed systems have grown from having nodes with
uniform computing and communication capabilities, to hav-
ing nodes with widely varying capabilities. An application
designed for one scenario may not be amenable to direct re-
deployment in another scenario.

Consider an e-mail application. One may access email in
a variety of scenarios, such as using a desktop on a LAN
or using a PDA on a 3G network. We may also want dif-
ferent versions of the application to cater to different modes
of operation, such as (i) Online mode in which the mes-
sages are kept on a server and the client manipulates them
remotely using an appropriate interface, (ii) Offline mode in
which the client fetches the messages to the local machine
and the messages are deleted from the server, and (iii) Dis-
connected mode in which the client fetches the messages to
the local machine and the messages are also retained at the
server; the client and server periodically synchronize to ap-
propriately reflect the actions taken on any message.

Although the functionality of the application remains
same in all the three modes, the amount of functionality that
is implemented at the server or the client varies, depend-
ing upon the mode. Ideally, given an application designed
for one scenario, one should be able to automate refactor-
ing and generate the application for a new scenario.

Our experience with e-mail applications (icemail, jwma,
pooka, popmail [1]) has shown us that refactoring an ex-
isting application to operate in a different scenarios is ex-
tremely difficult. Besides dealing with (i) environmental
heterogeneity issues [10] - differences in environments en-
countered due to hardware and software constrains on tar-
get environment, and (ii) distribution issues [14] - distrib-
uting the application components across nodes and making
them work as distributed components, one issue of primary
concern is functionality partitioning of the application.

Functionality partitioning implies - apportioning appli-
cation functionality into deployment specific sub-sets of ob-
jects. However, this is hard to achieve in practice as we can-
not draw clean lines of functionality separation through an
application. Some functionality may span across multiple
classes, or a single class may include parts of multiple func-
tionality. For example, in the email application , the Store
class may be on the server in all the three modes. However,
the Folder class may have its functionality partitioned be-
tween client and server for online and disconnected modes.
For the offline mode, it may be only on client. Hence it is re-
quired that we refactor the Folder class for transforming
the application from one scenario into another.

To enable automatic refactoring of an application com-
ponent, such as the Folder class, we need to first reformu-
late it in terms of a component that can be easily partitioned
into sub-components.

We use a structurally simple and slightly modified model
of object called Breakable Object - BoB, for structuring
such applications. A BoB is an object that can be readily
broken into sub-objects. It has an added construct - together,
to denote the methods that are designated inseparable by the
designer of the BoB. The sub-objects can replace the origi-
nal BoB in a program, without affecting the original seman-
tics (operational) of the program. We define BoB in section
2 and give an overview of the BoB programming method-

Together Interface Methods

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

m6 ()

m5 ()

m4 ()

m3 ()Implementation

BoB m2 ()

BoB Name = A

BoB Interface

m1 ()

�����
�����
�����

�����
�����
�����

Figure 1. BoB

ology by using the distributed e-mail application outlined
above as an illustrative example.

Once an application has been developed using BoBs, we
can more easily refactor the application for various deploy-
ment scenarios by appropriate scenario-specific splitting of
the BoBs. We claim that a BoB-based application design
greatly facilitates automated partitioning of the application
for various redeployment scenarios.

This paper presents:

1. Programming model for BoB: We provide a BoB im-
plementation in Java, called JavaBoB , in section 3. The
features of a JavaBoB class are subset to those of a Java
class except for one new language/preprocessor con-
struct, namely, together.

2. Alogrithms for Splitting Engine: The split-
ting engine performs compile-time refactoring
of a BoB-based program for various configura-
tions. It takes as input the BoB-based program
along with a split-configuration (which provides
sub-object specifications for each partition) and pro-
duces a scenario-specific Java program as the out-
put. Section 4 describes the details of these algo-
rithms.

In Section 5 we discuss the related work on automated
application partitioning and object refactorings. Section 6
provides the conclusions and future directions of our work.

2. BoB Based Programming

A BoB is an entity (class/object/component) in a pro-
gram that can be readily split into sub entities. Sub entities
should be so formed that they can replace the BoB while re-
taining the semantics(operational) of the original program.

2.1. BoB Features

1. BoB Interface: It defines the services provided by the
BoB. It has the following salient features:

• The set of public methods exported by the BoB pro-
vide the interface.

• There are no public attributes (fields) in a BoB in-
terface. Access to attributes, if needed, is provided
through get() and set() methods.

• Together methods: Some of the methods can be
grouped together by the designer of a BoB. These in-
terface methods cannot be separated in the course of
a split. We introduce a language/ preprocessor con-
struct together to specify such methods.

2. BoB Implementation: A BoB in a class-based program-
ming language is implemented using a Class in that lan-
guage. There are two features that BoBs do not support:
viz., BoBs do not inherit and BoBs are not active objects.
We discuss this in the later sections.

Figure 1 depicts a BoB for a class-based programming
language like C++, Java, etc. It consists of name of the
BoB class - A and an interface consisting of public meth-
ods m1, m2, m3, m4, m5, and m6 exported by the
class. Methods m1 and m2 are together. The specification is:
together{m1, m2};

2.2. BoB Splitting Specifications

BoBs are split on the basis of their interface methods and
an externally specified split-configuration file.

(b)

m2
m3
m4
m5
m6

A

m6

m3
m4

A2

m1
m2
m5

A1

m5

m3

A3

m6

m1
m2
m4

A1 A2

Split−Config −2

Split−Config − 1

BOB

BOB SPLITS

(a)

m1

Figure 2. BoB splits generation

For example, consider the BoB A (Figure 1). It has:
Interface IA = {together(m1, m2), m3, m4, m5, m6}

Given split-configuration is:
Splitcfg−1A = {s1 =< m1, m2, m4 >, s2 =< m5 >, s3 =< m3, m6 >}

After the splitting process (Figure 2a), A is split into sub
class-set A1, A2, A3 supporting the interfaces:
I1A = {together(m1, m2), m4} ,
I2A = {m5} , and
I3A = {m3, m6} respectively.
The original BoB A is replaced by these split-classes
(A1, A2, A3) in the program. This program transforma-
tion is denoted as: A ⊗

−−−−−→
Splitcfg

A1 + A2 + A3

2

In Figure 2b, we use another split-configuration to
achieve a different sub class-set A1, A2 for the origi-
nal BoB A.

Keeping the specification of split-configurations exter-
nal to a BoB helps to separate the splitting and implemen-
tation concerns.

2.3. BoB Methodology

We explain here briefly the stages involved in a BoB
based programming process (Figure 3):

1. Program Design and Implementation (Steps 1-3,
Figure 3): The program designer proceeds in a manner sim-
ilar to object-oriented analysis and design, and uses require-
ment guidelines to divide the application functionality into
a set of objects and BoBs.

2. Splitting and Reorganization (Steps 4-6, Figure 3):
The split-configurations for a given scenario are specified
for all the relevant BoBs. A splitting engine prepares class-
definitions for the new set of BoB-splits that will replace the
original BoB in the program. The rest of program is reorga-
nized to convert the references to original BoBs into refer-
ences to their splits.

3. Redeployment (Steps 7-8, Figure 3): The applica-
tion components are redistributed across the various nodes
of network by a distribution engine (based on deployment-
configuration specifications).

8

BOB based

Application

(Design)

 (Implementation)

Application

Specification

 Functionality

2a

Application
Deployment

Specification

2b

...

+

ENGINE
SPLITTING

Split
Configuration

 File

Split−cfg−n

Split−cfg − 1 Application
Topology − 1

. . .

Topology −n
Application

3

4

5a

5b

6

High−Level

Requirement

Specification

7

1

DEPLOYMENT
CONFIG

ENGINE

To
DEPLOYMENT

Figure 3. BoB programming process

For the e-mail application motivated in the introduc-
tion, we identified two objects for BoB implementation:
BoBFolder, which supports a mechanism to create a
cache of sub-folders and message-infos, and contains an ob-
ject for IMAP protocol handling; and BoBMessage, which
carries actual e-mail messages that can be single or multi-
part. Figure 4 shows the refactoring of the BoBFolder for
the disconnected mode of the given e-mail application.

In this paper we focus on the splitting engine. Given a
BoB-based program and a split-configuration file, we show
how the splitting engine generates the splits corresponding
to each BoB in the program. The distribution engine and de-
ployment aspects are beyond the scope of this paper.

− m_MessageFolderList : List

− m_MessageFolderList : List

− m_MessageInfoList : List

− m_ActualMessage : BoBMessage

− m_ProtocolFolder : IMAPFolder

− m_Store : Store

− m_Path : String

+ hasSubFolders(): Boolean

+ getMessage() : BoBMessage

+ hasMessages() : boolean

+ createSubFolderList()

− m_Name : String

− m_Store : Store

− m_Name : String

+ createSubFolderList()

− m_ActualMessage : BoBMessage

− m_ProtocolFolder : IMAPFolder

+ prepareFolder()

+ createMessageInfoList()

+ createMessageInfoList()

+ prepareFolder()

+ listSubFolders() : List

− m_MessageInfoList : List

+ hasSubFolders(): Boolean

+ getMessage() : BoBMessage
+ hasMessages() : boolean

+ listSubFolders() : List

− m_Name : String

BoB Folder

m5 =

Node Server: m1, m6, m7

Node User: m2, m3,
 m4, m5

BoBFolder: Split_Cfg

NODE USER

BoB Folder−Split−1

m5 =

Class: BoB Folders−Split−2

m1 =

m6 =

m7 =

 BoB Folder− AUX−1

NODE SERVER

2

m2 =
m3 =

together {m2 ; m3}
together {m4 ; m5}

m2 =

m3 =

m4 =

m6 =

m7 =

m1 =

m4 =

 BoB Folder− AUX−1

Figure 4. Splitting and redeployment for
BoBFolder

3. BoB Model for JAVA

Our programming model for BoBs, called JavaBoB is
based on the object oriented language Java. Though sim-
ple, the programming model is functionally comprehensive.
Table 1 presents the status of various constructs used in
JavaBoB .

3.1. JavaBoB

BoB class resembles a Java class except the restrictions
that are placed on certain features. There is an additional
programming language construct in JavaBoB , viz., together,
which is used to specify inseparable methods. A preproces-
sor (refer splitting engine, section 4) generates Java class
definition files (.java files) from the BoB class definition
files (.bob files). Thus Java BoBs can be used with exist-
ing Java Virtual Machines(JVMs) without any modification
to the latter. Figure 5 provides the schematics of a JavaBoB

class. A more formal description of JavaBoB class is avail-
able in [6].

Some of the constructs in present Java language have
been disallowed for the sake of simplicity1. The JavaBoB

differs from Java as defined in language reference [4] prin-
cipally in the following ways:

public fields: No public fields are exported by the BoB.
The designer provides getter and setter methods for ac-
cessing the fields if required.

1 However, this is not a binding on the model. If required and if ap-
propriate solutions for refactoring are available, the model can be ex-
tended to incorporate new or many of these diallowed features.

3

Java Construct Status in JavaBoB

Class declarations
public Allowed
abstract Not Allowed
final Allowed (default)
class Name Of Class Allowed
extends Super Not-Allowed
implements Interface Allowed
Variable (Field) declarations
public Not Allowed
private Allowed
protected Not Allowed
package Not Allowed
static Allowed
final Allowed
transient Not Allowed
volatile Allowed
Method declarations
public Allowed
private Allowed
protected Not-Allowed
package Not-Allowed
static Allowed
abstract Not-Allowed
final Allowed (default)
native Not Allowed
synchronized Allowed
Miscellaneous features
Constructors Allowed
Exceptions Allowed
Threads Not Allowed
Nested class/Inner class Not-Allowed

Table 1. Constructs for BoB Model - JavaBoB

Inheritance: The class that needs to be split cannot be a
derived class. This means that all the members that
form a part of the class are specified within it. The
only class that a BoB class implicitly inherits from is
object, the root Java object class. Also each BoB is
a final class.

Interface inheritance is allowed with a restriction
that all the methods of an interface are designated to-
gether. This is done to maintain interface based poly-
morphic refereces to the objects even after splitting.

We propose the use of aggregation and delega-
tion, as discussed in [7], as the preferable composition
mechanisms for BoBs.

Threading: BoB is not an active object [2] [8], that is, it
cannot run as separate threads on its own. Also, since
we do not allow inheritance, Java BoB cannot inherit
from the Thread class and hence cannot be run as
a separate thread in a program. However, BoB meth-
ods can be accessed by different threads in a program
and we can specify the methods as synchronized.
The responsibility of ensuring thread safety lies with
the designer of the BoB.

The next section provides the details of splitting engine.

Together methods

...

...

}

 private static field declarations
 private field declarations

 constructor declarations

 private static method declarations

 public method declarations

 }

 together{ (‘;’ separted list

...

 public static method declarations

 private method declarations

(...),...
methodName(List ArgumentTypes),

BoB Interface

specification

<public> final BoBClass A{

Figure 5. A.bob

4. Splitting Engine Details

In this section, we present the algorithms used by the
splitting engine (refer Figure 6). A program P compris-
ing of a set of BoB classes and Java classes and a split-
configuration file, forms the input. The transformed pro-
gram P

′

containing only Java classes is the output of the
splitting engine. Both the operations, viz., BoB splitting
and client reorganization, are done at compile time. Prior
to splitting, a validator checks whether the splittings speci-
fied in the configuration file form valid splits on the speci-
fied BoBs.

4.1. Main Algorithm

The splitting engine takes a specified BoB class, splits it
and performs client reorganizations. For the example shown
in Figure 6, it first takes the BoB class A.bob and based
on the specifications in the split.conf file and the in-
ternal dependency graph of A.bob, it generates Java class
definitions for the new splits - A1.java, A2.java,
A3.java.

Input: BoB and Java class files for P, Split-Config file
Output: Java class files for P

′

foreach BoB class A ∈ Split-Config do
if (valid A ∧ valid splitcfgA) then

Prepare IDG for A ;
Split A ;
forall classes in P that refer A do

Reorganize ;
end
Delete A;

end
else

report ‘invalid splits’
end

end

Algorithm 1: Splitting engine main algorithm

4

CLASSESCLIENT

.java .java
Cl−2

.java
Cl−3Cl−1

BoB SPLITS

.java
Cl−1

.java
Cl−3

.java
Cl−2

REORGANIZER

CLIENT

A.bob

BoB Internal

Dependency Graph

GENERATOR

SPLIT
CONFIG VALIDATOR

BoB

A3.java
A2.java

A1.java

MODIFIED CLIENTS

SPLITTER

Split
Info

Program P’

Program P

Figure 6. Mechanisms of Splitting Engine

It then reorganizes all the client classes, Cl-1.java,
Cl-2.java, and Cl-3.java, that referred to
A.bob to now refer to A1.java, A2.java,
A3.java. This process is then repeated for all the
specified BoB classes. This algorithm is described in Algo-
rithm 1.

4.2. Split Configuration File

It specifies the number and the form of splits. The format is:

Number of BoBs = n;
BoB-Name-1 {

No of splits = k;
Split 1 = (‘;’ separated list of methods

specified as -
MethodName (ArgumentTypes))

. . .
Split k = . . .

} . . .
BoB-Name-n {...}

A valid configuration file satisfies the following properties:

1. Only public methods are specified.

2. Every public method in each BoB has to be specified
as part of some split.

3. A method cannot belong to more than one split.

4. Together methods cannot be specified as belonging to
different splits.

 m_Store : Store

 m_ProtocolFolder

+ getMessage()

 m_ActualMessage

+ hasSubFolders()

 m_MessageFolderList

+ createSubFolderList()

 m_MessageInfoList

+ hasMessages()

 m_Path

+ listSubFolders()

 m_Name

+ createMessageInfoList()

+ prepareFolder()

DependencyFieldsInterface Methods

m3 =

BoB Folder IDG

m4 =

m5 =

m2 =

m1 =

m7 =

m6 =

Figure 7. IDG for BoBFolder

4.3. BoB Internal Dependency Graph (IDG)

BoB internal dependency graph is used for understand-
ing various dependencies between fields and methods, and
among methods in a BoB class. The algorithm constructs
a directed graph capturing these internal dependencies of a
BoB. It has two types of nodes: field (F) nodes and method
(M) nodes. We need to consider only those object and class
references in a method, which form the fields of that class.
Figure 7 presents the IDG for BoBFolder.

4.4. Algorithm for Splitting a BoBClass

Input to this algorithm is a valid BoB class file (A.bob)
and its corresponding split-configuration file (Acfg). The
splitting algorithm (Algorithm 2) creates a .java file for
each specified split. Split class file constructions are done
in the following three passes:

Pass 1: Writing specified methods into the splits This
pass begins by including all the import package state-
ments. It modifies the Name of Class and includes the class
declaration constructs. These translations are done as indi-
cated in the Table 2. It then includes all the methods that are
specified in the configuration file into the respective split
class files, referring to the Table 2 for appropriate transla-
tions of method declaration constructs. Next it includes all
the methods of the original class, which fall in the call chain
of an included method M .

As the final step in this pass, it changes the access spec-
ifiers of all the included methods that are not part of the
split-specifications to private. This is done to main-
tain interface consistency.

Pass 2: Writing fields and constructors into the splits
The algorithm notes all the fields referred by a method M in
a split class. If a field is referred only by the methods of one
split, i.e., if it is an independent field, it is included in that
particular split. If it is a shared field, i.e., it is referred by
the methods of more than one split, it is written into a sep-

5

Input:
• BoBClass File A.bob

• Split Configuration File Acfg

Output: Split Class Files
Asplit 1.java,...,Asplit k.java &
Asplit AUX.java

forall splits specified in Acfg do
Create a class file (splitclass) ;
Name it as: ASplit k.java,where
k = split number ;
foreach import statement (importstm) in the original
class A do

splitclass write
←−−−− importstm

end

splitclass write
←−−−− ASplit k + translated class constructs

{refer Table 2}

splitclass write
←−−−− ‘ { ’

foreach method m in original class A do
if method m specified for this split in the Acfg file
then

MethodInclude(m);
end

end
foreach method m in splitclass do

if method m NOT specified for this split in the Acfg

then
if access 6= private then

Make (access = private)
end

end
end

end
forall splits specified in Acfg do

foreach method m in splitclass do
Refer BoB Internal Dependency Graph. Check all
outgoing edges from the given method node m ;
foreach outgoing edge do

if referred node is field f then
FieldInclude(f)

end
end

end
foreach constructor A(exps) in original class A do

ConstructorInclude(A(exps));
end

splitclass write
←−−−− ‘ } ’

end
forall splits specified in Acfg do

foreach method m in splitclass do
foreach field reference ref.f in m do

if field f /∈ this split then
if field f is static then

f
convert
−−−−−−→ AUX.(get/set)f

end
else

f
convert
−−−−−−→ refAUX.(get/set)f

end
end

end
end

end

Algorithm 2: Generating BoB class splits

Procedure MethodInclude(M)

Input: Method Name M

if M not already included then
splitclass write

←−−−−M ;
Refer BoB IDG. Check all outgoing edges from method
node M ;
foreach outgoing edge do

if referred node is method M then
MethodInclude(M)

Procedure FieldInclude(F)
Input: Field Name F

if F not already included then
if F = constant field then

splitclass write
←−−−− F ;

else if F = variable field then
Refer BoB IDG. Check all incoming edges to field
node F ;
if ∃ incoming edges from methods in other splits
then

AUXclass write
←−−−− F ;

AUXclass write
←−−−− getter and setter for F ;

if F is non static then
splitclass write

←−−−− refAUX ;

else
splitclass write

←−−−− F ;

Procedure ConstructorInclude(A (exps))

Input: Constructor Name A(exps)

forall (f ∈ original class) ∧ (f referred in A(exps)) do
if f /∈ this split then

Declare f local in beginning of constructor body
with same initial value as in original class ;

if exist AUX class then
Include AUX in argument list A(exps);
Initialize refAUX with passed value in A(exps);

splitclass write
←−−−−Asplit k(exps) ;

arate auxiliary (AUX) split class file. Constant fields are
replicated into all the splits that use them.

We use only simple constructors for constructing
BoBs. It is assumed that BoB constructors will not af-
fect the state of objects external to that BoB. For each
constructor specified in the original BoBClass, the al-
gorithm includes a corresponding modified construc-
tor in each split.

Pass 3: Transforming the shared field references In
this pass, the algorithm iterates over each split class file and
its method bodies to see if there are any class or object ref-
erences to a shared field in the AUX − Split file. Every
such occurrence is transformed into a reference through
AUX − split class or an object of this class.

Handling Shared Fields Some fields of a BoB are shared
between two or more splits. The splitting engine places all
the shared fields as private fields of an auxiliary class. The
access to these shared fields is provided with the help of
getters and setters. At a later stage, the option is given to
the user, to merge these shared variables with any of the
split classes or keep them in separate node-specific auxil-
iary classes.

Figure 4 shows the splits performed on BoBFolder. It
also shows the redeployments done on BoBFolder splits.
The AUX class obtained after splitting is further split into
AUX1 and AUX2 for the purpose of redeployment.

6

BoB Class Construct Translation in splits
public, final,
class

Apply public, final, class re-
spectively to all split class declarations

NameOfBoB Modified in the split classes as:

NameOfBoBSplit_1
NameOfBoBSplit_2
. . .
NameOfBoBSplit_k

implements Inter-
face

Apply implements Interface to the cor-
responding split

BoB Field Construct Translation in respective split fields
private,
static, final,
volatile

Apply private, static, final,
volatile respectively

Type and Name Type and Name remain same as before
BoB Method Con-
struct

Translation in respective split methods

public Change to private if split interface does
not contain this method; otherwise, apply
public

private,
static, final,
synchronized,
throws

Apply private, static, final,
synchronized, throws respectively

Type, Name, Arg List Type, Name, Arg List remain same

Table 2. Construct Translations in Splits

4.5. Modification of the Client Program

All the classes that refer to a BoB class or object in a
program, constitute clients with respect to the server BoB
class. The clients can access these classes or objects in a
number of forms. The algorithm considers the various sce-
narios and the corresponding modifications that are done in
client codes. Table 3 shows the various transformations that
occur on client statements that refer to BoB classes or ob-
jects. We discuss them briefly below:

• Variable declaration (Transformation T-1): Variables
for each split are declared.

• Object creation (Transformation T-2): Argu-
ment types for the constructor that is being in-
voked are noted. Split-objects are created by in-
voking the same signature constructor for all the
split-classes.

• Method invocation (Transformations T-3 and T-4):
The reference is changed to the split-class/object
to which this method belongs and the correspond-
ing method is invoked.

• Variable assignment, argument passing, or alias-
ing (Transformations T-5 and T-6): Wherever the split
variable is being assigned a value, being passed as
an argument or being aliased, it is replaced by corre-
sponding assignment, method argument passing, and
aliasing for each of the split variables.

Tfm Code form in P Code translation in P
′

T-1 BoBTypeA x; BoBTypeA Split1 x split1;
. . .
BoBTypeA Splitk x splitk;
BoBTypeA AUX x aux;

T-2 new BoBTypeA
(exps);

new BoBTypeA Split1(exps);
. . .
new BoBTypeA Splitk(exps);
new BoBTypeA AUX(exps);

T-3 BoBClassA.m (exps) BoBClassA Split1.m(exps) ∨
. . .∨
BoBClassA Splitk.m(exps)

T-4 ref. BoBClassA/m
(exps)

ref. BoBClassA Split1/m(exps) ∨
. . .∨
ref. BoBClassA Splitk/m(exps)

T-5 BoBTypeA x = ref-
BoBTypeA;

BoBTypeA Split1
x split1 = refBoBTypeA split1;

. . .
BoBTypeA Splitk

x splitk = refBoBTypeA splitk;
BoBTypeA AUX

x aux = refBoBTypeA aux;

T-6 Method (Type1 arg1,
. . . , BoBTypeA x,. . . ,
Typen argn)

Method (Type1 arg1, . . . ,
BoBTypeA Split1 x split1,
BoBTypeA Split2 x split2,
. . .
BoBTypeA Splitk x splitk,
BoBTypeA AUX x aux,
. . . , Typen argn)

Table 3. Client Transformations

It is to be noted that, access to a BoB is only through
the public methods exported by it, and hence for client-
transformations we need not consider references made to
class or object fields. One of the consequences of splitting
is that it might create some splits that remain unutilized in
the application. Static optimizations can be applied, if re-
quired, to the program at a later stage to remove such split
classes/objects. Also, some cases present in the Java lan-
guage are presently not considered in the reorganizer. For
example, at present we do not consider reflection based
class references.

All the transformations (BoB splitting and client-
reorganization) are semantics preserving. A framework for
evaluating the operational equivalence of the split and orig-
inal BoB programs is provided in [6] .

5. Related Work and Discussion

We discuss here the related work in application partition-
ing and object refactoring areas and also show how our ef-
forts get inspired by or compliment these works.

7

5.1. Application Partitioning

Application partitioning, has been active area of research
in the last decade. For example, J-orchestra [14], Pangaea
[12] , Addistant [13] try to automate application partition-
ing of arbitrary Java programs, Coign [5] does partitioning
of COM based applications. Work on the application parti-
tioning has so far focused mainly on finding optimal ways
to partition an application among different nodes, and com-
ponent conversions into distributed components. Our focus
is: (i) to have an entity which is more suitable for such par-
titioning (ii) create mechanisms or a process by which par-
titioning goals are externally specified (in manual or semi-
automated way) and actual partitioning is automated and
transparent. This makes our approach a purely declarative
way of application partitioning. Additionally the granular-
ity level of partitioning in these systems is objects or com-
ponents, while in our case, granularity level is finer and is
related to the methods of a BoB.

5.2. Class Refactoring

Different methods of refactoring have been proposed in
literature [11] [3]. Mens and Tourwe [9] do a comprehen-
sive survey and elaborate these refactoring techniques. For
comparison, class refactoring method Extract Class[3] pro-
vides a means to create new class by moving the relevant
fields (Move Filed) and methods (Move Method) from the
old class into a new class. The main intent here is to im-
prove the code design by splitting bloated classes and creat-
ing new crisper classes. However, no comprehensive tech-
niques exist to provide refactoring of application classes for
functional parititioning as discussed in this paper.

6. Conclusions

Direct refactoring of an application from one deploy-
ment scenario to another is difficult. We need to create struc-
turing mechanisms by which functionality of an application
can be easily partitioned. Toward this end, we use a struc-
turally simplified model of objects called Breakable Ob-
jects. The main motivation is to write the application once
and then, as far as possible, generate a scenario specific ver-
sion by automated refactoring of BoBs.

We have defined a programming model for BoBs in Java,
which requires the introduction of only one new construct
in the language. The splitting engine generates the class de-
finitions in Java for the BoB splits. This implies that we can
use a BoB-based program in conjunction with the existing
JVMs without any need to modify the latter.

Splitting engine provides an architecture for BoB split-
ting and program reorganizations. By keeping the config-
uration specifications external to BoB, it helps to separate

out the partitioning concerns from the component imple-
mentation issues and paves the way for a declarative ap-
proach to application partitioning. We provided algorithms
for BoB splitting and client reorganizations. Most impor-
tantly, we have have proved that BoB refactoring is opera-
tional semantics preserving.

Once an application has been refactored as above, com-
ponents can be prepared for the new distributed environ-
ments through source or binary level transformations, as ap-
plicable in systems like Pangaea [12] and J-orchestra [14].

References

[1] Open source mail clients in java. At:
java-source.net/open-source/mail-clients.

[2] G. Agha. ACTORS : A model of Concurrent computations
in Distributed Systems. The MIT Press, Cambridge, Mass.,
1990.

[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: improving the design of existing code. Object
Technology Series. Addison-Wesley, 1999.

[4] J. Gosling, B. Joy, G. L. Steele, and B. Bracha. The Java lan-
guage specification. Java series. Addison- Wesley, Reading,
MA, USA, second edition, 2000.

[5] G. C. Hunt. Automatic distributed partitioning of
component-based applications. PhD thesis, University of
Rochester. Dept. of Computer Science, 1998.

[6] V. Jamwal and S. Iyer. BoB Based Program-
ming and Formalizations. Technical Report KRe-
SIT, IIT Bombay, India, 2005. Available at:
www.it.iitb.ac.in/˜vikram/bob-formal.pdf.

[7] R. E. Johnson and W. F. Opdyke. Refactoring and Aggrega-
tion. In Object Technologies for Advanced Software, volume
742 of Lecture Notes in Computer Science, pages 264–278.
First JSSST International Symposium, Nov. 1993.

[8] R. G. Lavender and D. C. Schmidt. Active object:
an object behavioral pattern for concurrent programming.
Proc.Pattern Languages of Programs,, Sept. 1995.

[9] T. Mens and T. Tourwe. A survey of software refactoring.
IEEE Transactions on Software Engineering, 30(2):126–
139, Feb. 2004.

[10] M. Mikic-Rakic. Software Architectural Support for Discon-
nected Operation in Distributed Environments. PhD thesis.

[11] W. F. Opdyke. Refactoring Object-Oriented Frameworks.
PhD thesis, University of Illinois, Urbana-Champaign , IL ,
USA, 1992.

[12] A. Spiegel. Pangaea: An automatic distribution front-end for
java. In J. D. P. R. et. al., editor, IPPS/SPDP Workshops,
pages 93–99, 1999.

[13] M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A bytecode
translator for distributed execution of “legacy” java software.
In J. L. Knudsen, editor, ECOOP, volume 2072 of Lecture
Notes in Computer Science, pages 236–255. Springer, 2001.

[14] E. Tilevich and Y. Smaragdakis. J-orchestra: Automatic java
application partitioning. In B. Magnusson, editor, ECOOP,
volume 2374 of Lecture Notes in Computer Science, pages
178–204. Springer, 2002.

8

