
��� �
A Semantics preserving distributed message

ordering protocol for group communication
Chaitanya Krishna Bhavanasi and Sridhar Iyer

KR School of Information Technology,
Indian Institute of Technology - Bombay

(email:chaitanya, sri@it.iitb.ac.in)

Abstract— Message ordering is a key component in developing
group communication applications. A message ordering protocol
must guarantee that when two semantically related messages
are sent to a group, one after another, the receivers will
deliver them to the application in the same order. Also if two
messages are semantically unrelated, delivery of the later message
should not be blocked in waiting for the delivery of the earlier
message. Traditional solutions like total ordering protocol or
causal ordering protocol do not take into account the semantic
relationship among messages and hence are inadequate for many
distributed group communication applications.

In this paper we propose a new message ordering, called ���
ordering, and a corresponding protocol, called ��� protocol, which
is implemented by every member of the group. The primary
objective of the ��� protocol is to order received messages, based
on the semantic relationship among them, irrespective of the
chronological order in which they are received. As a result, the��� protocol also minimizes the delivery delay at a process (the time
from the moment a message is received at a process to the time the
message is delivered to the application consuming it), by blocking
delivery of a message only if it is yet to receive any semantically
preceding message(s). The ��� protocol is a fully distributed
protocol and does not rely on any central servers. We present
proofs for the correctness and liveness of the protocol and also
discuss the time and space complexities for its implementation
algorithms.

I. INTRODUCTION

The key property of any group communication [8] is that
when messages are sent to the group, all the members receive
it. However different members may receive these messages in
different order depending on the transmission delays between
the sender and receivers. For example if a group member sends
a message 	�
 as a response to message �
 , then it is possible
that some of the group members may receive 	�
 before �

(see Fig 1). Hence a message ordering protocol is required to
guarantee that every group member will deliver the message�
 before delivering 	
 to the application. Also if ��� and 	��
are semantically unrelated messages, then a member receiving	�� before ��� , should not block delivery of 	�� by waiting for
the arrival of � � .

Existing message ordering protocols like total ordering
protocol [2] or causal ordering protocol [11] do not allow
application � specific semantic relations between messages.
The total ordering protocol assumes that two messages (X
and Y) are related if they are sent one after another (say, Y
after X) according to an assumed global clock. Hence if a
process receives message Y before X, it cannot deliver Y to

Fig. 1.

the application until it receives X, even though Y may not be
semantically related to X.

Causal ordering, guarantees that if message X, causally
precedes another message Y then X must be delivered before
Y at all their common destinations. The causal precedence
has been defined in literature based on Lamport’s “happened
before” relationship, denoted by ������ and defined by transitive
closure of following two relationships: (i) X ������ Y, if X and Y
are events in the same process and X happens before Y, and (ii)
X ������ Y, if event X is sending of the message by one process
and event Y is the receipt of same message by another process.
If two messages do not have causal precedence relationship
then they are said to be concurrent. Nevertheless, if a process
receives message Y before X, it cannot deliver Y to the
application until it receives X, even though Y may not be
semantically related to X. For example, as shown in Fig. 1,
process Q sent message 	�� after receiving message ��� and

hence � ���������	 � . The process R receiving 	 � before � � ,
blocks the delivery of 	�� until ��� is received, even though��� and 	�� are not semantically related.

To the best of our knowledge, there is no protocol that con-
siders ordering among messages using semantic relationships
among them. In this paper, we propose a new message ordering
called ��� ordering (semantically before) and a fully distributed
message ordering protocol called � � protocol that preserves
application specific semantic ordering among the messages.
For example in Fig 1a, as 	�
 is semantically related to �
 ,

process Q sends this information to the group along with the
message 	�
 . If process R is using � � protocol then on receiving
message 	�
 before �!
 , it blocks delivery of 	�
 until it receives��
 . On the other hand, as in Fig 1b, as 	 � is semantically
unrelated � � , process R upon receiving message 	 � before� � , delivers 	 � immediately without waiting for � � . Hence
the message delivery delay at the receiver R is reduced.

Since the semantic relationship between two messages is
application specific and it is difficult to determine automati-
cally by simply inspecting the messages at the receiver, our
protocol derives information about semantic relationships of
the messages from the application.

The ��� protocol is fully distributed and does not rely
on centralized message ordering servers, thereby avoiding
problems such as the server being the point of failure or
bottleneck for large groups. Hence it is suitable for peer-to-
peer as well as mobile computing systems.

This paper is organized as follows: Section II motivates the
need for � � ordering using an example application. Section III
defines � � ordering and its properties. Section IV describes the� � protocol and Section V proves its correctness and liveness.
Section VI describes the � � protocol implementation algorithm
and discusses its time and space complexities.

II. MOTIVATION AND RELATED WORK

Fig. 2. Chat Application

Fig. 3. Threaded Chat Application

Consider a group of processes (A,B,C,D) running on dis-
tributed devices and implementing a simple chat application

that lets the members of the group interact with each other.
The processes communicate with each other by sending mes-
sages using a broadcast medium. Suppose the application is
implemented using a message ordering protocol based on
logical timestamps, such as total ordering [2]. See [15] for
a comprehensive survey of total ordering protocols.

As shown in Fig 2, let process C send messages ’Did you
visit Chennai?’ and ’Did you visit Delhi?’ with timestamps
1 and 2 respectively. After receiving the above messages,
suppose process A replies to the message ’Did you visit
Chennai?’ with the response ’No’ and process B replies to
the message ’Did you visit Delhi?’ with the response ’Yes’.
As per total ordering, both A and B would affix the timestamp
3 to their responses. Now, the message ordering protocol at
process D on receiving these messages orders them according
to their timestamps and displays them on the chat console.
However, since there are two messages having the same
timestamp, they may get displayed on the console at D in
an arbitrary order. This leads to ambiguity because the user
at D may not be able to map the responses ’No’, ’Yes’, to
the messages ’Did you visit Delhi?’, ’Did you visit Chennai?’
appropriately. Hence total ordering protocol is inadequate for
such an application. It can be shown that the ambiguity persists
even when the messages are ordered using vector clocks, as
in causal ordering [11] or even when synchronized global
clocks [10] are assumed.

In contrast to the above, consider a threaded chat applica-
tion [13] that lets users communicate in a message � response
form as shown in Fig 3. All chat messages are structured in
the form of a tree. The key feature of this tree structure is
that messages and responses are organized into relationships
called threads. A user explicitly selects a message before
responding to it. As a result, the response is linked directly to
the corresponding message, using threads, and other users can
perceive the semantic relationship among the messages.

Although the paper [13] does not provide the details of the
message ordering protocol used by threaded chat application,
such an application can be easily implemented using the � �
protocol. For the above example, upon receipt of messages
from process C, process A displays both of them to the user.
Now the user at process A would explicitly select the message
’Did you visit Chennai?’ before responding with the message
’No’. The ��� protocol at process A captures this semantic de-
pendence between the message and its response and sends this
information to the group, along with the response. Similarly,
the ��� protocol at process B captures the semantic dependence
between the message ’Did you visit Delhi?’ and its response
’Yes’ and sends this information to the group. The � � protocol
at D, upon receipt of these responses, orders the messages
appropriately and unambiguously, as shown in Fig 3. In the
next section, we define the � � ordering which forms the basis
for the � � protocol.

III. � � ORDERING

The primary objective of the � � protocol is to identify the
semantic relationship among received messages and delivering

Fig. 4. Relation between " � and # � protocols

Fig. 5. Ordering Tree

them to the application in a semantically consistent order.
Guaranteeing such ordering involves:

1) Capturing the semantic relationship between a message
and its response, from the application at the sender.

2) Representing these semantic relationships in an appro-
priate form and conveying them to the receivers.

3) Maintaining the relationship at each member of the
group with minimum overhead.

In this section, we focus on representing the semantic relation-
ship, which we call � � order. Capturing them and maintaining
them are aspects of the � � protocol and are dealt with in next
section.

Definition of � � order:
Two messages X and Y are said to be related in � � order

if and only if Y is produced semantically in response to a
unique message X. This is represented as X $ ���� Y. Also if X
and Y are not semantically related then it is represented
as X % $ ��&�'� Y.

For a group of messages, we conceptually represent the
semantic relationship among them in the form of a tree, called
the Ordering Tree (OT), as shown in Fig 5. The OT has the
following structure:(The vertices of the OT are identities of the messages;

each message has a unique system-wide identity.(The directed edges of the OT represent the semantic
message � response relationships among messages. There
is an edge between any two vertices in the OT, if and
only if and the corresponding messages are related in � �
order.(The root of the OT is a virtual node, denoted by)+*-, .)+*-, is assumed to be semantically before all the mes-
sages sent to the group. If a message is not a response
to any other message in the OT, it is considered to be a
response to)+*-, .

A. Properties of � � order

Some salient properties of � � order are as follows:

1) Response semantics:
If X $ ���� Y then P(Y) = X, i.e., X is said to be parent of
Y.
The OT represents this relationship in the form of a
directed edge between a parent node X and a child node
Y. For example, the relationship among the messages
exchanged in the threaded chat application of Fig 3 can
be represented as in the Fig 5. The directed edge of
the tree from C1 to A1 represent the response ’No’ of
process A to the message Did you visit Chennai? sent
by process C, i.e C1 $'���� A1 and P(A1)=C1.

2) Uniqueness:
If X $ ���� Y then P(Y) ./ Z (0 Z, Z ./ X), i.e., X is unique.
The OT represents this by allowing a node to have
multiple number of child nodes but a child node can
have exactly one parent node. In other words, a message
sent to the group may generate multiple responses from
various members of the group but any given response is
associated with one and only one message and not with
multiple messages.

3) Transitivity:
X $ ���� Y 1 Y $ ���� Z /�2 X $ ����3 Z.
The OT represents this as having a path from X to Z,
if there is an edge from X to Y and an edge from Y to
Z. We use the notation $ ����3 to represent such transitive
closure. It can be easily seen that the following also
hold:(X $'����3 Y 1 Y $'���� Z /�2 X $4����3 Z

(X $'���� Y 1 Y $'����3 Z /�2 X $4����3 Z

(X $ ����3 Y 1 Y $ ����3 Z /�2 X $ ����3 Z

B. Relationship between � � and 5��
The following relationships hold between �6� (semantically-

before) and 5�� (happened-before):

1) � $ ����7	 /�2 �8������7	 .
If Y is a response to X, then X ’happened-before’ Y. For
example, in Fig 4a, process Q sends message 	�
 to in
response to message �
 (��
 $ ����9	�
). Since process Q
can respond to a message only after receiving it, �:
 ������	�
 also holds.

2) � ������7	<;=�8$ ����7	 .
If Y ’happened-after’ X, then Y need not be a response
to X. For example, in Fig 4b, process Q sends a message	�� after receiving ��� (���>� ��?�@	��). However, message	�� need not be semantically related to ��� .

3) �BA�	 /�2 � % $ ��&�'�C	 . If X and Y are ’concurrent’,
then they are not semantically related. For example, in
Fig 4c, process Q sends message 	�D independent of

when it receives message ��D from the group. Hence
message 	�D is semantically unrelated to message �!D .

IV. � � PROTOCOL FOR GROUP COMMUNICATION

In this section we present the � � protocol that includes:

1) At the sender: Captures the � � order between a message
and its response and includes this information while
broadcasting the response.

2) At the receiver: Maintains the � � order information and
determines the action to be taken for each received
message. A message is delivered immediately to the
application either if its parent in the � � order has been
delivered or if it is not a response to any other message,
i.e., it has the root of the OT ()+*-,)as its parent.
Otherwise the delivery of the message is deferred, until
the receipt and delivery of its parent.

We now describe the system model, data structures and
algorithmic details of the ��� protocol.

A. System Model and Assumptions

1) The system consists of a group of processes hosted on
devices that communicate through underlying broadcast
medium. The composition of the group does not change.

2) The processes do not share any physical memory and
communicate by sending messages to the group over
broadcast medium. Examples of such systems are group
of process hosted on devices connected in LAN or
wireless devices that are in communication range of each
other.

3) Broadcast medium is assumed to be reliable and guar-
antees message delivery to every member of the group.
However it may suffer from nondeterministic bounded
delay in message delivery. Messages in transit need not
follow FIFO order.

4) All members of the group have unique identities.
5) Every member of the group maintains a sequence

counter and increments it by one every time it sends a
message. The sequence counter and the member identity
are used to generate a unique identifier for each message.

B. Notations, Message Format and Data Structures

1) Notations::(FEHG�IKJ&LNMPO denotes identity of the member I of the group.(FERQ?S�T�U�VWLXMPO denotes sequence counter value at memberI .(FEZYIKJ[L\MPO denotes message identity of message i andE]Y:IKJ&L^M is E_G�IKJ[La`bQ�S�T�U�VWLXM
2) Message Format:: The message is in the format: EYIKJdc�`eYIKJ'fd`bJ&g[hag�M where Y:IKJdc is the message identity, Y:IKJ'f

is the identity of its parent (Y:IiJ4f $'���� Y:IKJ[c) and J[g[hag is the
application information. If a message is not a response to any
other message then the identity of its parent (Y:IKJ f) is set to)+*-, (Ordering Tree Root).

Fig. 6. State Diagram of the protocol

3) Data Structures:: Every process maintains the following
two data structures:

1) Ordering Tree (OT): As discussed earlier, the OT
represents the � � order among the messages of a group.
Each process constructs its OT dynamically by recording
the identities of those messages that have been received
in ��� order.

2) Out of Sequence Messages Store (OSMS): OSMS
saves messages that have arrived out of � � order. For
every such message EjY:IKJdc�`kY:IKJWfl`eJ[g[hagmM , YIKJdc ,Y:IKJWf , J[g&hag are are saved in the OSMS.

C. Protocol Actions:

The state diagram of the � � protocol is as shown in Fig 6. In
the INITIAL state the data structures OSMS,OT are initialized
to npoPqrq , OTR (default root of OT)respectively and the
process then waits in the LISTEN state. When the application
wants to send a message to the group, the process goes to the
RESPOND state, where it augments the message with the � �
order information, broadcasts the message and returns to the
LISTEN state.

When a message is received from the group, the process
goes to the RECEIVE state, where it checks the � � order
information of the message with the OT (Ordering Tree).
If it has delivered the parent of the current message, it
goes to the RCVDeliverableMSG state, else it goes to the
RCVOutSequenceMSG state. In the RCVOutSequenceMSG
state, the process simply saves the message in the OSMS and
returns to the LISTEN state. In the RCVDeliverableMSG state,
the process delivers the message to the application as well as
any of its � � order children that may be saved in the OSMS
and returns to the LISTEN state.

A more detailed description of the protocol actions in each
state, for a group of U processes, is as follows:

1) INITIAL STATE:
(a)

0�sLut
 G�IKJ[LKvWQ?S�T�U�VWL /xw `)P�ryz� L / n_o{qrq ` 0�s|et
)+* L /)+*-,~}

(b) go to LISTEN STATE.
2) LISTEN STATE:

Listen until a message is received or application wants
to respond to a message.

if message is received then
go to RECEIVE state

else if application sends a message to the group then
go to RESPOND state.

end if
3) RECEIVE STATE:

Process I on receiving a message y / EY:IiJ c `kY:IKJ f `eJ[g[hag�M ,

if Y:IKJ f ./)+*-, and Y:IKJ f���)+* L then
go to RCVOutSequenceMSG STATE.

else
go to RCVDeliverableMSG STATE

end if
4) RCVOutSequenceMSG STATE:

a) insert E]Y:IiJdc?`eYIKJ'fd`bJ&g[hag�M in)P�^yz� L
b) go to LISTEN state.

5) RCVDeliverableMSG STATE:

a) Call the UpdateOT operation described below with
received message M as its parameter.

b) UpdateOT(y)

i) Append y�� Y:IKJdc into)+* L as a child node ofy�� YIKJ'f .
ii) Deliver the y�� J[g&hag to the application.

iii) /* Let y Q�� represents a message in)P�^yz� L
and y Q�� � Y:IiJ f , y Q�� � Y:IKJ c represent theYIKJ f , Y:IiJ c values of the message Msg
respectively. */
for each message y Q�� �)P�^yz� L havingy Q�� � YIKJ f == y�� Y:IiJ c do

UpdateOT(y Q��)
Remove message y Q�� from)P�^yz� L

end for
c) go to LISTEN state.

6) RESPOND STATE: When application at process I
responds to a message with identity Y:IKJ4f , then,

a) Q�S�T�U�VWL / Q�S�T�U�VWL��x�
b) Y:IiJ[L / EpG�IKJ[La`bQ�S�T�U�VWLXM
c) ��� VWgdJ[��glQ�hkQ\O�E]Y:IiJ L `kY:IiJ'fl`eJ[g&hag!M
d) go to LISTEN state.

If message is not related to prior messages then Y:IKJ f
is OTR.

D. Protocol illustration

Consider a group formed by two processes with idenitities
A and B respectively. We follow the Ordering Tree
representation explained in Section II, to show the semantic

Fig. 7. " � protocol illustration

relationships among the messages exchanged between A and
B. Recall that the root of the tree is a default node)+*-, and
we assume OTR is semantically before every message sent to
the group. The vertex of the tree represents message identity
in the format E_G�IKJ�`bQ�S�T�U�V�M .

Protocol Actions at process A are illustrated below:

1) In the initial state, the)+*�� ,)+*�� at process A,B
respectively contains root node OTR. Also the)P�ryz� � ,)P�ryz� � at process A,B respectively are
empty. The sequence counters Q�S�T�U�V � , Q?S�T�U�V � are set
to zero. The process remains in LISTEN state until
a message is received from the group or application
responds to a previous message. The ordering tree is as
shown in Fig 7a.

2) Process A on receiving a message E����4`)+*-, `eJ[g[hag�M
enters RECEIVE state. Since Y f /)+*-, the process
A goes to RCVDelivarableMSG state, saves B1 in)+*�� as child node to OTR, and delivers the J[g&hag to
the application. As the)P�^yz��� is empty, it cannot
find any messages Y�� such that (Y�c $ ����3 Y:�) and goes
back to LISTEN state. The data structures at process A
are as shown in Fig 7b.

3) Process A on receiving a message E��\��`e���l`eJ[g[hag�M
enters RECEIVE state. Since ��� (Y:IiJ4f field of the
message), is not present in)+*�� the protocol goes to
RCVOutSequenceMSG. Following the � � protocol, theEF�\�M , E>����M , and J[g[hag are saved in)P�^yz��� as
shown in Fig 7c.

4) Similarly on receiving E ����`e�~��`eJ[g[hag M , the
process A goes to RECEIVE state and then to
RCVOutSequenceMSG because B3 is not in){q���� .�\� , �~� , J[g[hag are saved in)P�^y�� . The Fig 7d shows)P�ryz� � ,)+* � .

5) On receiving E��~�l`b���&`eJ[g&hag�M , the process goes to
RECEIVE state and then to RCVDeliverableMSG
state because ��� is present in){q � . In this state,
the protocol delivers J[g[hag corresponding to received
message and saves its identity ��� is saved in){q��
as child node of ��� . Messages with identities B3, B4

are retrieved from)P�^yz��� because B2 $ ���� B3 directly
and B2 $ ����3 B4 transitively. The E�J[g[hag�M corresponding
to messages with identities �~��`e�\� are delivered to the
application in � � order and identities B3, B4 are saved
in)+*�� as shown in Fig 7e.

6) If the application at process A wants to respond to a
message having identity �~� , then it goes to RESPOND
STATE. It increments the sequence counter value to 1,
receives J&g[hag from the application and broadcasts the
message in the format E ���&`e�~��`eJ[g[hag<M . Since the
message is a broadcast, process A on receiving its own
message goes to RCVDelivarableMSG delivers J[g[hag
and updates)+*�� as shown in(Fig 7f).

V. ��� PROTOCOL CORRECTNESS AND LIVENESS

We prove the correctness and liveness of the �6� protocol
by using the semantic relationships among the messages as
represented by the Ordering Tree (OT). Recall that by the
transitive closure property of ��� order, the root of the OT is
semantically before all messages sent to the group.)+*¡, $ ����3v 0 Y¢SWQ�Q?g&�lSWQ �)+*P} .
A. Correctness

Theorem 1: The ��� protocol preserves ��� ordering.
Explanation: Let £¤)+*-, `e�
 `e� � `e� D `b�¦¥ �?��� � s�§ be the iden-
tities of the messages in the OT along the path from root to
any node � s of the OT. As these messages are in � � order,
we need to prove that the � � protocol delivers them to the
application in the same order.
Proof:
The proof is by induction on the number of messages n.
Base case:
For n = 1, the first message having identity �
 sent to
the group is not semantically before any other messages
except)+*-, . Hence every process receiving it will deliver
information corresponding to �
 to the application. �
 is
represented as the child of)+*-, in OT.

If a process does not receive �
 but receives a message � �
such that �
 $'����3 �¡� then the process saves � � in the OSMS
until it receives message �
 . The process after receiving �

will deliver information corresponding to �
 to the application
before delivering information of � � . Hence the ordering is
preserved.

Induction Hypothesis:
Assume that the � � protocol preserves the ordering for n
messages i.e for the messages £¤)+*-, `e�
 `b� � `e� D `e� ¥ ���?� � s §
in the ordering tree (OT).

Induction Step:
Suppose a member of the group sends a new message in the
format E�� s4¨K© `kY:IKJ f `eJ[g[hag�M to the group.(If YIKJ'f is node � s : Since � s is present in the OT,

the J[g[hag corresponding to identity � s&¨K© is delivered to
the application and � s4¨K© becomes child node of � s in
OT. Hence the protocol preserves the ordering for U��R�
messages £ª)+*-, `b�
 `b� � `b� D ` ���?� � s `e� s&¨K© § .

Fig. 8. Data Structures

(If Y:IKJWf is any node �¡« in OT. In this case also,
the J&g[hag corresponding to identity � s4¨K© is delivered to
the application and � s4¨a© becomes child node of � « in
OT. Hence the protocol preserves the ordering for U��R�
messages.(If Y:IiJ f is not in OT: In this case, � s4¨a© is saved in the
OSMS until the process receives Y:IiJ f . Upon delivery
of the message corresponding to YIKJ f , YIKJ f would
be inserted into the OT. Now � s4¨K© is removed from
the OSMS and also delivered to application. � s4¨a© then
becomes child node of Y:IKJ'f in OT. Hence the protocol
preserves the ordering for U��x� messages.

B. Liveness

Theorem 2: The � � protocol is liveness preserving.
Explanation: Every message sent to the group will be even-
tually delivered to the applications at every process. We need
to prove that no process will block a message indefinitely.
Proof:
Consider a message M for which n responses have been
generated in the group. Consider the receipt of one of these
responses, R, at process i.(If process i has delivered message M to the appli-

cation: In this case process i also delivers response R
immediately, irrespective of other n-1 responses.(If process i has not received message M: In this case
process i saves response R in the OSMS and waits for
receipt of message M. Since the underlying broadcast
medium is assumed to provide reliable message delivery,
message M would be eventually delivered to process i.
When process i receives message M, and subsequently
delivers it, it traverses the OSMS and also delivers
response R.

VI. PROTOCOL IMPLEMENTATION

In this section, we discuss the protocol algorithm details
and the corresponding time and space complexities.
The data structures required for � � protocol at a process I are
implemented as follows:

1) Ordering Tree £ª)+* L § : We implement this as an array
of linked lists, called Ordering Lists £ª){q L § , as shown
in Fig 8a. The size of the array is equal to the number
of processes present in the group. Each array element){q Le¬ 4® saves the starting address of the linked list
corresponding to process and the linked list saves
the sequence numbers of the messages received from

process . The data structure support the following
operations:

a) InsertInOL(Q�S�T�U�V?|): inserts Q�S�T�U�V?| in linked list
starting at array element j.

b) IsPresentInOL(Q�S�T�U�V�|): searches for Q�S�T�U�V?| in
linked list starting at array element j. If the Q?S�T�U�V�|
is present then returns true else returns false.

2) Out of Sequence Message Store()P�^yz� L): We im-
plement this as a 2-dimensional array of 3 columns
each and some finite number of rows called Out of
Sequence Message Table ()P�ry�* L) as shown in Fig 8b.
Message identities of the messages that have arrived out
of sequence are saved here. The process I on receiving
a out of sequence message E�YIKJlc?`kY:IKJWfl`eJ[g[hag�M saves
the identity of the parent message YIKJlc in the first
column of the row, identity of the message Y:IKJ f in the
second column and the J[g[hag in the third column.
The data structure supports the following operations:

a) InsertInOSMT(Y:IiJ c `eYIKJ f `bJ&g[hag):
The operation uses the first empty row available
from the top of the)P�^y�* L table and inserts Y:IKJ c ,Y:IKJ f , J&g[hag in the first, second, third columns of
the row respectively.

b) getRow(YIKJ f):
The operation searches in linear manner from the
beginning of the)P�^y�* L table and returns the
index of row containing Y:IKJ4f value in its second
column. If there are multiple rows containing Y:IKJ4f
in their second column then it returns the first
row that it encounters while searching from the
beginning of the list.

c) putOSMsgsInOL(YIKJ c):
The operation identifies all the rows of)P�^y�* L
containing messages for which YIKJ c is either di-
rectly or transitively semantically before them. The
operation transfers the identities of these messages
to){q L and J[g[hag corresponding to these messages
to application in � � order. The rows containing
these messages are marked empty for reusing them.

A. Protocol at process I
1) In the initial state,

for / � to U (where U is the number of members
present in the group.) do){q Le¬ 4® =NULL
end forQ?S�T�U�V L =0
The rows of)P�^yz� L are marked empty.

2) Process I on receiving a message:
On receiving a message E�Y:IKJlc�`eYIKJ'fd`bJ&g[hag¯M from
group, where Y:IKJdc / E]G�IiJdc?`bQ�S�T�U�V'cPM and YIKJ'f / EG�IKJ'fd`�Q�S�T�U�V?f�M

if Y:IKJWf ./±° and IsPresentInOL(Q�S�T�U�V�f) is false
then

InsertInOSMT £ YIKJdc�`eYIKJ'fd`bJ&g[hag §

Fig. 9. Ordering List Data structure

else
InsertInOL £ Q?S�T�U�V4c §
Deliver J[g[hag to the application
putOSMsgsInOL(Y:IKJ c)

end if
3) Process I for responding to a message having identityY:IKJWf

a) Q?S�T�U�V L = Q?S�T�U�V L + 1;
b) Y:IKJ L = E_G�IKJ L `bQ�S�T�U�V L M ;
c) Broadcasts: E�YIKJ[Lk`kY:IKJ f `eJ[g[hag�M

B. Ordering List Operations

The structure of Ordering List is as shown in Fig 9. An array
element){q L ¬ ²d® saves the starting address of the linked list
corresponding process ² . Each node of the linked list contains
there 3 fields. The first two fields called Low (L) and High
(H) contains sequence numbers of the messages and the third
field points to next node. The values L and H indicate that
the process I has received all the messages having sequence
numbers between L and H inclusive.

1) IsPresentInOL(Q�S�T�U�V |): The operation searches forQ�S�T�U�V | in linked list starting at){q Lb¬ 4® . If the Q?S�T�U�V | is present
then returns true else returns false.

Algorithm 1 IsPresentInOL(Q�S�T�U�V�|)
1: � | /){q Le¬ 4® /* Starting address of linked list */
2: Scan the list and find the node U « such that q « is greatest

number less than or equal to Q?S�T�U�V |
3: if ³ «~´�Q�S�T�U�V | then
4: return h ��µ S
5: else
6: return ¶ gd·ªQ�S
7: end if

Time complexity: Scanning the list takes linear time, i.e.,
O(m) where m is the number of nodes present in the linked
list.

2) InsertInOL(Q�S�T�U�V�|): The operation inserts Q�S�T�U�V�| in
linked list starting at){q Le¬ 4® . If process I receives messages
with continuous sequence numbers starting from L and ending
at H from a process then these messages are represented in){q L by storing only L and H values in a node of linked list
starting at){q Lb¬ 4® . The linked list stores these values in the
non decreasing order.
So, to insert Q?S�T�U�V�| , the linked list starting at){q L ¬ '® is

Fig. 10. Ordering List Data structure

scanned to find the node U « such that q « is the least value
greater than Q�S�T�U�V�| as shown in Fig 9a. Let U «�¸
 be the node
preceding it. If Q�S�T�U�V?| is one more than ³ «�¸
 and one less
than q « then ³ «�¸
 is replaced by Q?S�T�U�V�| and the node U «
is deleted. Otherwise if Q�S�T�U�V�| is one more than ³ «�¸
 then³ «�¸
 is replaced by Q�S�T�U�V?| . Or else if Q�S�T�U�V?| is one less
than q « then q « is replaced by Q�S�T�U�V�| . If none of the above
conditions satisfy then a new node U s4¨K© is created with q s4¨K©
and ³ s4¨K© fields set to Q�S�T�U�V | and U s&¨K© is inserted betweenU�«�¸
 and U�« .
Algorithm 2 InsertInOL(Q?S�T�U�V�|)

1: 1. Scan the list and find the node U « such that q « is the
least number greater than Q�S�T�U�V�| .

2: if ³ «�¸
 / Q�S�T�U�V?| � � and q « / Q�S�T�U�V?|r�x� then
3: 1. ³ «�¸
 = ³ «
4: 2.Delete node ²
5: else if q « = Q�S�T�U�V?| + 1 then
6: q « = Q�S�T�U�V |
7: else if ³ «�¸
 = Q�S�T�U�V | -1 then
8: ³ « = Q�S�T�U�V |
9: else

10: 1.Create a new node U�S�¹
2.Assign q s4¨a© = ³ s4¨a© = Q�S�T�U�V |
3.Insert it between nodes U «�¸
 and U « .

11: end if

Time complexity:
Scanning the linked list takes linear time, i.e., O(m) where m
is the number of nodes present in linked list.

C. OSMT operations

The structure of)P�^y�* L is shown in detail in Fig 10.
We assume the table contains a maximum of q rows 1 for
analyzing time complexity of the OSMT operations. Also for
sake of clarity, we refer to a row of table)P�^y�* Lk¬ ²[® as� « and columns corresponding to row � « i.e.,)P�^y�* L ¬ ²[®i¬ w ® ,)P�^y�* L ¬ ²[®i¬ � ® ,)P�^y�* L ¬ ²[®K¬ � ® as � « � YIKJ c , � « � YIKJ f , � « � J&g[hag
respectively.

1We assume º number rows of OSMT are sufficient for a process to save
every message that arrives out of sequence.

1) InsertInOSMT(YIKJ c `eYIKJ f `bJ&g[hag):: As explained ear-
lier the operation performs linear search starting from the
beginning of the table and searches until an empty row is
found to insert the values YIKJ c , YIKJ f , J&g[hag .
Time complexity:
Hence the InsertInOSMT operation takes O(p) time.

2) getRow(Y:IKJ[»):: As explained earlier the operation re-
turns row ��¼ from OSMT such that ��¼�� Y:IKJWf / Y:IiJ[» . If such
row does not exist than it returns null. We assume the operation
performs linear search from starting of the table to find the
required row.

Time complexity:
Hence the above operation takes linear time, i.e., O(q) time.

3) Operation: putOSMsgInOL(Y:IKJ ¼): The OSMT con-
tains collection of prospective edges of ordering tree OT that
arrived out of � � sequence in the form of rows of OSMT
with each row containing parent and child message identities
in columns Y:IKJ f , Y:IKJ c respectively. The operation starting
from YIKJ ¼ performs depth first search (DFS) on the contents
of OSMT. It identifies the rows of OSMT that forms the
edges of prospective sub tree of OT having YIKJ ¼ as its root.
During depth first search, every time a row is visited, the
operation removes the row from OSMT, appends YIKJ�c to
OT and delivers J[g[hag to application. Hence the messages that
arrive out of ��� order are delivered to the application in � �
order.

Algorithm 3 putOSMsgInOL(YIKJ »)
1: for each row (��¼ =getRow(YIKJ[»)) ./ NULL do
2: Deliver ��¼ .data to application
3: InsertInOL(��¼d� YIKJdc)
4: putOSMsgInOL(� ¼ � YIKJ c)
5: remove row � ¼ from OSMT
6: end for

Time complexity:

Searching the)P�ry�* L and putting them into the){q L takes
quadratic time, i.e.,)�£e£ Y½�¾G § � § (where m and p are as before).

This may be computed in detail as follows: Depth First
Search algorithm for a tree with e edges takes O(e) time.
Hence the DFS algorithm for)P�^y�* L with a maximum
of q rows takes O(q) time. To identify each edge of the
tree and transferring it to){q L , getRow operation at line
1 and InsertInOL operation in line 3 takes O(q),O(m) time
respectively. Hence time taken by these operations together
for each edge is O(m+q). Hence the operation putOSMsgInOL
takes O(q(m+q)) time or)�£k£ Y¿��T § � § time.

D. Complexity of � � protocol

1) Time Complexity: The major operations of the protocol
occur at a process while sending and receiving of messages.(Sending a message takes constant time as it involves only

capturing Y:IKJ f from the application, incrementing the
sequence number, and broadcasting the message.

(On receiving a message, the IsPresentInOL() opera-
tion takes 0(m) time to check whether the message
is deliverable to the application or not. If the mes-
sage is not deliverable, then operation InsertInOSMT()
takes linear time proportional to number of rows in)P�^y�* L i.e., O(q). If the message is deliverable,
then the operations performed are InsertInOL(Q�S�T�U�V[c),
putOSMsgInOL(Y:IKJdc) and time complexity of each of
these operations is 0(m), w £e£ Y=�<T § � § respectively. (as
discussed earlier). Hence the total time complexity of the��� protocol is 0(£ YZ��T § �).

2) Space Complexity: The linked lists in the OL store only
the first and last values of contiguous sequence numbers of
messages received from a process.(The Space complexity for){q L :The linked lists in the

OL store only the first and last values of contiguous
sequence numbers of messages received from a process.
The best case occurs when all the received messages have
contiguous sequence numbers. Hence in the best case,
each linked list contains only one node and size of array
of linked lists is O(n) for a group with n processes. The
worst case is when a process receives messages with
alternate sequence numbers from every process. In this
case, the number of nodes in each linked list is equal
to the number of messages received from that process
and the number of nodes present in the){q L is equal to
the number of messages received by the process from all
members of the group. Hence in the worst case, the size
of the OL is bounded only by the device’s memory limits.(The Space Complexity for)P�^y�* L :, the best case
is when all messages are received in � � order and the
number of entries in the)P�^y�* L is zero and the worst
case is when a process does not receive the messages
corresponding to the nodes closer the root of the)+* L
and the number of entries in the)P�^y�* L is bounded
only by the number of rows allocated.

VII. CONCLUSION

Message ordering protocols are key components for group
communication systems. The most widely used message order-
ing protocols like total ordering, causal ordering protocols are
not suitable for all group communication applications because
they do not let the application explicitly specify the order
among the messages.

In this paper we have defined a new ordering called � � that
orders the messages according to the semantic relationship
among them as specified by the application and we described
a protocol called � � protocol that ensures all the receivers
will receive the messages sent to the group in � � order. We
have explained the protocol actions with a state diagram.
We have proved the correctness and liveness of the protocol
and discussed the implementation issues and time, space
complexity of protocol. Our future work lies in extending the
protocol to dynamic groups where members may join or leave
at any time.

REFERENCES

[1] C.Fidge. Timestamps in message passing systems that preserve the
partial ordering. Proceedings of 11th Australian Computer Science,
page56-66, pages 56–66, 1988.

[2] D.R.Cheriton and D.Skeen. Understanding the limitations of causally
and totally ordered communication. In the Preceedings of 14th ACM
Symposium on Operating System Principles, pages 44–57, 1993.

[3] C.Fetzer F.Cristian. The timed asynchronous distributed system model.
IEEE Trans. Parall. Distrib. Syst. 10,6, 1999.

[4] S.Mishra F.Cristian. The pinwheel asynchronous atomic broadcast pro-
tocols. In Proceedings of 2nd International Symposium on Autonomous
Decentralized Systems. IEEE Computer Society Press., 1995.

[5] S.Mishra. F.Cristian, R.Debeijer. A performance companrision of
asynchronous atomic broadcast protocols. Distrib. Syst. Eng. J.1,4,177-
201, 1994.

[6] A.Schiper F.Pedone. Handling message semantics with generic broadcast
protocols. Distrib. Comput. 15,2,97-107, 2002.

[7] A.Schiper. F.Pedone. Optimistic atomic broadcast: A pragmatic view-
point. Theor. Comput. Sci.291,79-101, 2003.

[8] R.Vitenberg. G.Chockler, I.Keidar. Group communication specifica-
tions:a comprehensive study. ACM Computing Surv. 9,2(Feb.), 427-469,
2001.

[9] F. Viegas J. Donath, K. Karahalios. Visualizing conversation. Proceed-
ings of HICSS-32, 1999.

[10] L.Lamport. Using time instead of time-outs in fault-tolerant systems.
ACM Trans. Program. Lang. Syst. 6,256-280, 1984.

[11] L.Lamport. Time,clocks, and the ordering of events in a distributed
system. Communication of ACM, July 1978.

[12] M.Dasser. Tomp: A total ordering multicast protocol. ACM Op-
erat.Syst.Rev.26,1, 1992.

[13] B.Burkhalter M.Smith, JJ. Cadiz. Conversion trees and threaded chats.
ACM Magazine, 2000.

[14] P.Urban X.Defago, A.Schiper. Comparitive performance analysis of
ordering strategies in atomic broadcast algorithms. IEICE Trans. Inf.
Syst. E86-D,12, 2003.

[15] P.Urban. X.Defago, A.Schiper. Total order broadcast and multicast
algorithms: Taxonomy and survery. ACM Computing Surveys,Vol. 36,No.
4 pp.372-421, December 2004.

