APPENDIX-B : System Capacity- Analysis and Optimisation

1 Spatial Reuse Model

Maximising the cardinality of independent sets used in a schedule need not necessarily increase
the throughput, since as the cardinality of the set increases, the prevailing SINR drops, thereby
resulting in an increase in the probability of error, decreasing the throughput. Hence it is necessary
to limit the cardinality of the independent set used so as to satify the SINR requirements. i.e., there
is a limit to the number of simultaneous transmissions possible.

In this section the problem of finding the maximum number of simultaneous transmissions possible
in different sectors in the uplink and the downlink is being considered. There is no power control
in the downlink. The BTS transmits to all the STs at the same power. There is static power control
in the uplink. Each ST transmits to the BTS at a fixed power, such that the average power received
from different STs at the BTS is the same. The STs near the BTS transmit at a lower power and
the ones farther away transmit at a higher power.

A typical antenna pattern used in the deployment is as shown in Figure 1. Based on the antenna pat-
tern, one can divide the region into an association region, a taboo region and a limited interference
region with respect to each BTS.

The radial zone over which the directional gain of the antenna is above -3dB is called the associ-
ation region. In the analysis, the directional gain is assumed to be constant over this region. Any
ST which falls in this region of a BTS antenna j is associated to the BTS j.

The region on either side of the association region where the directional gain is between -3dB
and -15dB is called the taboo region. Any ST in this region of BTS j causes significant interfer-
ence to the transmissions occuring in Sector j. When a transmission is occuring in Sector j, no
transmission is allowed in this region.

In the limited interference region the directional gain of the BTS antenna is below -15dB. A single
transmission in this region of BTS j may not cause sufficient interference to the transmission in
Sector j. But a number of such transmissions may add up causing the SINR of a transmission in
Sector j to fall below the threshold required for error free transmission. This is taken care of by
limiting the total number of simultaneous transmissions in the system as explained in Sections 1.1
and 1.2.

As an example, for the antenna pattern shown in Figure 1, the association region is a 60° sector
centered at the 0° mark, the taboo region is 30° on either side of this association region, and the
limited interference region covers the remaining 240°.

1.1 Uplink

In the uplink, there is static power control. All STs transmit at a power such that the power received
at the BTS is P times noise power. Let the maximum power that can be transmitted by an ST be
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Figure 1: Radiation pattern for a typical antenna that could be used in the deployment.

P, times noise power. Let R, be the distance such that when P, is transmitted by an ST at distance
Ry, the average power received at the BTS is F, times noise power, where F is the minimum SNR
required to decode a frame with a desired probability of error. Also, let R be such that when P, is
transmitted from an ST at distance R, the power received at the BTS is P times noise power, i.e.,

L (ﬁ)‘”
Py \Ry

In the presence of interferers, the power required at the receiver will be greater than P, times noise.
Let P be the power required, so that the receiver decodes the frame with a desired probability of
error, in the presence of interferers. The directional gain of the BTS antenna is -15dB in the other
non taboo directions. Hence, the interference power from a transmission in any other sector would
be 10~2 P. If there are no — 1 simultaneous transmissions, the path loss factor being 7, the signal
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to interference ratio at the BTS receiver is
P
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For decoding a frame with less than a given probability of error, we need an SINR of P, at the
receiver. So, R should be such that
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To provide a margin for fading, consider a reduced range R’ such that
RN\
10log (E) > 230
where o is the fade variance. In this case, 99% of the STs in a circle of radius R’ around the BTS

can have their transmit power set so that the average power P is received at the BTS in the uplink.

Evidently, ny can be increased by reducing R’. But then, spatial reuse increases at the expense of
coverage. This tradeoff can be captured by the spatial capacity measure C' = nR'2, which has units
slots.km? (or packets.km?)

The variation of the maximum number of transmissions, ny and system capacity, C', with coverage
is as shown in Figure 2. One can see that for each 7, there is an optimal ny and R’ such that
C' is maximum. The coverage for which capacity is maximum can be obtained by equating the

derivative of C', with respect to (R'/ Ry) to be zero. Take r’ = %’) and set
dC
=0
dr’

Then we get the optimum value of " and ng as
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Figure 2: Variation of the number of simultaneous transmissions possible (1) and system capac-
ity(C) with coverage relative to a reference distance R, for n = 2.3,3,4 and o = 0, 4, 8. Plots for

0.4 0.6 0.8 1 0
RR,

o = 0,4, 8 are shown left to right.

RIR,

2.3

N

no

1 0 | 4 8
n
23 | 077031012
3 1078039 | 0.20
4 080047028

Table 1: The optimum values of C' and ny for different values of 7 and o.
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Table 1 gives the optimum coverage C' and maximum number of simultaneous transmissions pos-
sible for different values of nand o. Fj is taken to be 8dB. Directional gain of the antenna is taken
to be 1 in the associated sector and —15d B in non-taboo directions. For path loss factor n = 4,
the number of simultaneous transmissions is seen to be 4. For a given value of 7, the maximum
nunber of simultaneous transmissions is found to be independent of the fade variance o.

1.2 Downlink

In the downlink, the transmit power is kept constant. The BTS antennas transmit at a power F;
times noise. Let Ry be the distance at which the average power received is F times noise. R be
the distance such that the average power received is P. Then,

-n
= (8

do
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P = P|—
t(do)
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Allowing ny — 1 interferers,
P
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which is the same as in uplink. So, the optimum number of transmissions and optimum coverage
in uplink and downlink are the same. The plots and tables for uplink apply for downlink also.

1.3 Number of Sectors

Once the maximum number of simultaneous transmissions possible, ng is obtained, one gets some
idea about the number of sectors required in the system. In an ng sector system, when a transmis-
sion occur in the taboo region between Sector j and Sector j + 1, no more transmissions can occur
in Sectors j and j + 1. So, the number of simultaneous transmissions can be at most ny — 1, one
in Sector j and j + 1 and at most one each in each of the other sectors. Thus the maximum system
capacity cannot be attained with ny — 1 sectors. With ng + 1 sectors, one can choose maximal
independent sets such that the sets are of cardinality ny. So, at least ng + 1 sectors are needed in
the system. From the spatial reuse model it can be seen that there can be up to 4 simultaneous
transmissions in the system, for path loss n = 4. So, the system should have at least 5 sectors.



2 Characterising the Average Rate region

There are m STs. Suppose a scheduling policy assigns &;() slots, out of ¢ slots, to ST 7, such that
lim; kﬂT(t) exists and is denoted by ;. Letr = (ry,rs,...7,,) be the rate vector so obtained.
Denote by R(n) the set of acheivable rates when the maximum number of simultaneous transmis-
sion permitted is n. Notice that for ny > ny, R; D Ro. This is evident because any sequence of
scheduled slots with n = ny is also schedulabale with n = n;.In the previous section, we have
determined the maximum value of n, i.e., ng. Denote Rg = R(ng). A scheduling policy will

aceive an r € Ry. In this section, we provide some understanding of R via bounds.

2.1 An Upper Bound on Capacity

Suppopse each ST has to be assigned the same rate r. In this subsection an upperbound on r is
dertermined. In general, the rate vector (r,7,...7) ¢ Ro. The upper bound is obtained via simple
linear inequalities. Consider the case n > 3. Suppose one wishes to assign an equal number of
slots k to each ST in the uplink. There are /Ny uplink slots in a frame. Consider Sector 7, which
contains m; STs. Thus k - m; slots need to be allocated to uplink transmission in Sector j. When
STs in the interference region j— or j+ transmit, then no ST in Sector j can transmit. Suppose
k;+ slots are occupied by such interference transmission. Now it is clear that

k‘-mj+kji:NU

because whenever there is no transmission from the interference region for sector j there can be a
transmission from sector j. Let m;_ and m; denote the number of STs in the interference regions
adjacent to Sector j. Since the nodes in j— and j+ can transmit together, we observe that

kjx > max(k-m;_, k-m;jy)
with equality if transmission in j— and j+ overlap wherever possible. Hence one can conclude
that for any feasible scheduler that assigns £ slots to each ST in the uplink

k-mj+max(k-m;_,k-m;) < Ny

For large frame time /V, divide the above inequality by N and denote the rate of allocation of slots
by r. Thus if out of ¢ slots, each ST is allocated £ slots, then r» = lim;_. % <1

r-my + 1 -max(m;_,mjy) < @,
where ¢, is the fraction of frame time allocated to the uplink or

Pu

myj + max(m; ., m; )

r <

This is true for each j. So,
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max <j<n (1 + max(m;—, m;))

r <

For the case n = 2 for j € {1, 2} denote the interfering nodes in the other sector by m ;. One easily
sees that
- 2

~ max(my + mj, mg + mjh)

2.2 An Inner Bound for the Rate Region

In this section a rate set R, is obtained such that R, C R,. i.e., R is an inner bound to the
aceivable rate set.

The following development needs some graph definitions.

Reuse constraint graph: Vertices represents links. In any slot all links are viewed as uplinks or
all are downlinks. Two vertices in the graph are connected, if a transmission in one link
can cause interference to a transmission in the other link. The reuse constraint graph is
represented as (), £), where V is the set of vertices and £ is the set of edges.

Cligue: A fully connected subgraph of the reuse constraint graph. A transmission occuring from
an ST in a clique can interfere with all other ST in the clique. At most one transmission can
occur in a clique at a time.

Maximal clique: A maximal clique is a clique which is not a proper subgraph of another clique.

Clique incidence matrix: Let x be the number of maximal cliques in (V, ). Consider the k X m
matrix Q with
{ 1 if link j is in clique
QiJ = 0
0.W.

By the definition of r and Q, a necessary condition for r to be feasible is (denoting by 1, the
column vector of all 1s.)
Q-r<i

since at most one link from a clique can be activated. In general, Q - r < 1 is not sufficient to
guarantee the feasibility of r. It is sufficient if the graph is linear. A linear graph is one in which
links in each clique is contigous. A linear clique will have a clique incidence matrix of the form

(1111 ... ... 0 0 0

0011 1 1 ...0 0
o=[0000 1 1 1 1

0000 0 ... 1 1 1




The reuse constraint graph in the multisector scheduling problem being considered has a ring
structure. Q - r < 1 gives an upper bound on the rate vector. The reuse constraint graph is linear
except for the wrapping around at the end. If the nodes in one sector are deleted, the graph becomes
linear. Let m; be the set of STs in Sector i. There is a feasible r; such that Q - r; < 1 and all STs
in m; are given rate 0. Linear combination of feasible vectors is also feasible. Thus, defining

Rp={x:x= Zairij; Q- [rire...ry) < 1; Zai =1; ri(my) =...=rn(my,) =0}
i=1

i=1

Weseethat R;, € R

2.3 Optimum Angular positioning of the Antennas

As can be seen from the previous section, feasible rates set, R, of the system depends on the spatial
distribution of the STs around the BTS. Thus the R varies as the sector orientation is changed. A
system where the antennas are oriented in such a way that most STs fall in the association region
of BTSs rather than in the taboo region will have more capacity than one in which more STs are in
the taboo regions.

One sector boundary is viewed as a reference. Let R(¢) denote the feasible rate set, when this
boundary is at an angle 6 with respect to a reference direction. Then, for each 0 < 6 < %, we
have Ry (6), where n is the number of sectors. Since Ry () is not known, the inner bound R () is
used in the following analysis. If each vector r is assigned a utility function U(r), then one could
seek to solve the problem
max  max U(r)
0<9<360° reR L (0)
and then position the antenna at this value of 6.

The optimization can be done so as to maximise the average rate allocated to each ST, with the
constraint that each ST gets the same average rate. The bound evaluated with average rate to each
ST, for antenna positions differing by 5° is given below. ub(i) gives the upperbound on capacity
of the system with antenna placed at ((¢ — 1) % 5)° from the reference line. Similarly [b(i) is the
lower bound for each position.

[0.0714 0.0769 0.0714 0.0714 0.0667 0.0769 0.0714

Upper bound, ub = ye67 0 0667 0.0625 0.0625 0.0667 0.0667 0.0769]

Lower bound. Ib — [0.0714 0.0769 0.0714 0.0714 0.0667 0.0769 0.0714
77 0.0667 0.0667 0.0625 0.0625 0.0667 0.0667 0.0769]

The bounds are seen to be very tight, and the maximum rate is obtained when antennas are at
5°, 25° or —5H° from the reference line. The maximum rate so obtained is 0.0769, giving a sum
capacity of 3.076. Only 14 different positions of the antenna are considered for a 5 sector system,
since the pattern would repeat itself after that.

Trying to optimize tha rates such that the rate to each ST is maximized will adversely affect the

sum capacity of the system. So, take U(r) = X7, (r;).
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Figure 3: Variation of sum rate and fairness index with antenna orientation for different utility
functions.

For example, the sum capacity evaluated for antenna postition varied in steps of 5° is as follows.
It can be seen that the system capacity does not vary much with the position of the antenna. But,
there seems to be some positions which are worse than the others.

Upperboundjub= [4 4 4 4 4 4 4 4 4 4 4 4 4 4]
Lowerbound,lb= [4 4 3.8046 4 4 4 4 4 4 4 3.8883 3.8699 4 3.9916]

Maximising > | log(r (7)) under the given constraints for upper bound and lower bound gives the

utility functions for different positions of the antenna as

U = [—96.2916 —95.7459 —97.0998 —95.112  —95.9083 —98.0191  —96.1752
L7 _99.1991 —101.1465 —102.5186 —102.0872 —99.52350 —98.37440 —96.58240]

U, = [—96.2916 —95.5485 —97.0998 —95.1122 —95.9083 —98.0191 —96.1752
w7 _99.1991 —101.1465 —102.5186 —102.0872 —99.5235 —97.3909 —96.4809]

The sum capacities for each of the rates above are bounded by

[3.9102 3.8463 3.7333 3.8611 3.8535 3.6159 3.7896
3.6663 3.3637 3.30270 3.3513 3.6291 3.7565 3.7844]
[3.9102 3.8350 3.7333 3.8612 3.8535 3.6157 3.7896

3.6663 3.3636 3.3027 3.3512 3.6291 3.704 3.7734]

Sum of rates for upperbound =

Sum of rates for lower bound =

The utility function is maximum when the antenna is positioned at 15° from the reference line.
The sum of rates at this position is 3.86. This gives a trade-off between maximising the system
capacity and providing fairness.

The sum of the rate given to STs and the fairness index vs antenna orientation is plotted in Figure 3
for different utility functions (the lower bounds are plotted here). Fairness index varies from 0 to



1. For a rate vector r, the fairness index is given by

N (2T, x,')2

myL, af

. If the rates to different STs are equal, then fairness index would be 1, and it decreases as the rates
are made unfair. The plots for maximum » ", r;, maximum )", logr; and by maximising the
average rate to each ST are shown. It can be seen that maximising the sum rate gives high overall
capacity, but poor fairness. On the other hand, maximising the average rate to each ST gives good
fairness, but low sum capacity. Maximising >_7" , log r; gives a good tradeoff between maximising
the system capacity and providing fairness. It is interesting to note that in maximum ) ", logr;
case, the sum capacity is higher when fairness is lower and viceversa. For example, at 6 = 10, we
can see that the sum rate is close to 4. The fairness index is also close to 1. So, we may choose this
orientation as optimum
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