ATCP: Adapted TCP for mobile environments

M.Tech Project Final Stage Presentation

By

Ajay Kumar Singh

Roll No: 00305032

Guide

Prof. Sridhar Iyer

Co-guide

Prof. S.S.S.P. Rao

Dept. of CSE, IIT Bombay

Mobile Wireless Networks FH BS Wired Network MH BS

TCP & MW Networks

- ♦ An assumption
 - o packet loss means congestion
- Does not hold always over Mobile Wireless
 Networks
 - \circ temporary disconnections
 - high bit error rate

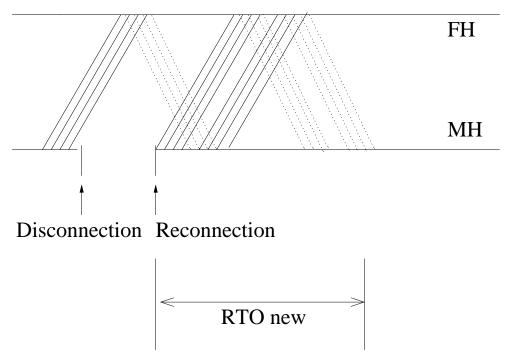
Existing Approaches

- Focusing on temporary disconnection issue
 - ITCP
 - * Split connection at BS
 - WTCP
 - * New congestion control scheme
 - * Modification at FH & MH
 - M-TCP
 - * Split Connection at BS
 - * BS advertise ZERO window when MH gets disconnected
 - * BS advertise FULL window when MH gets reconnected
 - Snoop
 - * Fast Handoff by multicasting data to BSs
 - 3 duplicate Acknowledgements (3DA)
 - * Send 3 dup Ack at reconnection
 - Freeze TCP
 - * Advertise ZERO window just before disconnection (Prediction Reqd)
 - * Send 3 dup Ack at reconnection

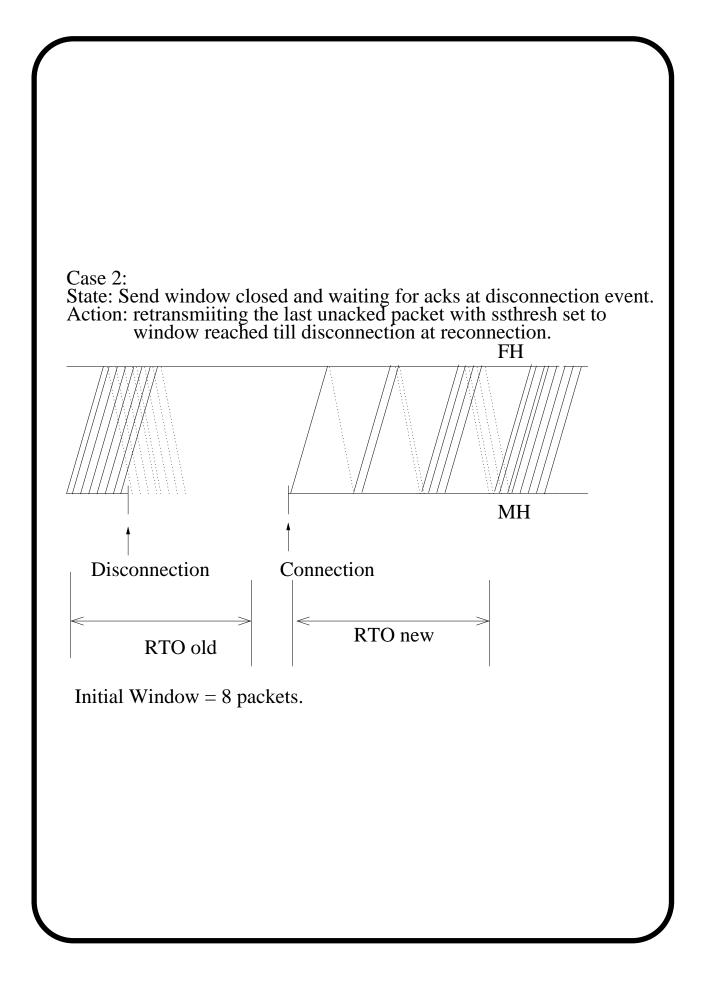
Motivation for Our Approach

- ♦ FH modification
 - o not easily feasible
- ♦ BS Support
 - o Difficulty in
 - interoperability
 - scalability
 - o encrypted traffic
 - o different acknowledgement path
- ♦ MH Modification
 - o none of the above disadvantage
 - but 3DA, Freeze TCP have some limitations

Limitations of 3DA & Freeze TCP

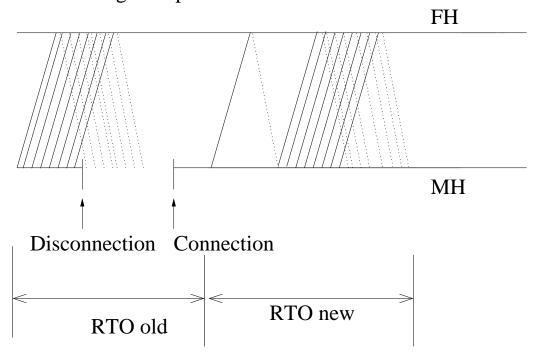

- ♦ 3DA
 - Does not always reduce response time
 - some time degrades the throughput
- ♦ Freeze TCP
 - Future prediction of impending disconnection
 - Throughput enhancement depends on this prediction period
- No specific action for MH to FH data transfer

Our Approach: ATCP


MH to FH data transfer

Case 1:

State: Send window open at disconnection event.
Action: Start sending new packets at reconnection and set new rtx timer.


Initail Window = 8 packets.

State: send window was closed and waiting for acks at disconnection event.

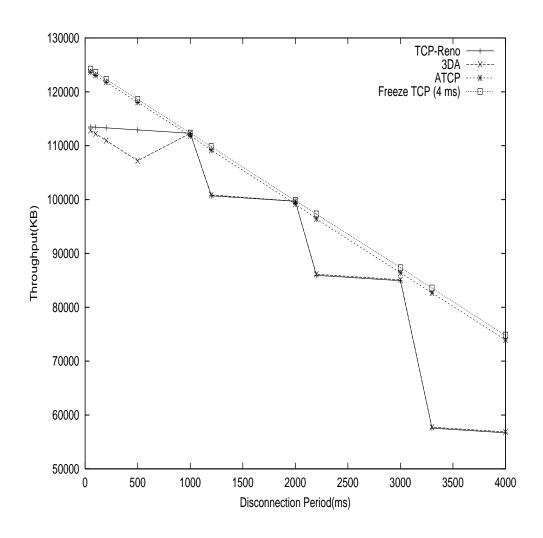
Action: lost packet retransmitted without invoking congestion control mechanism as a disconnection event has occurred during wait period of the ack.

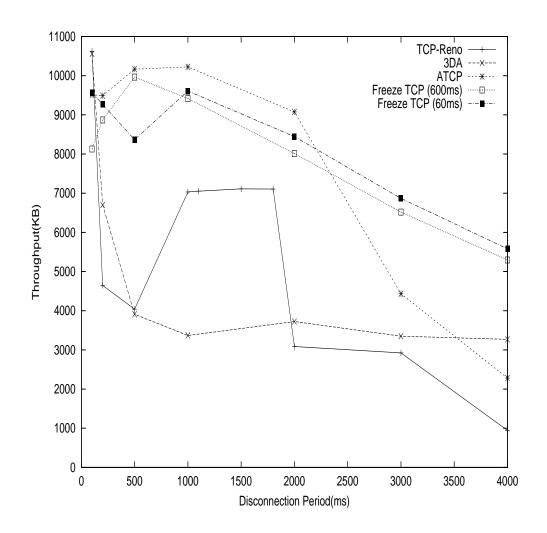
Initail Window = 8 packets.

Our Approach: ATCP

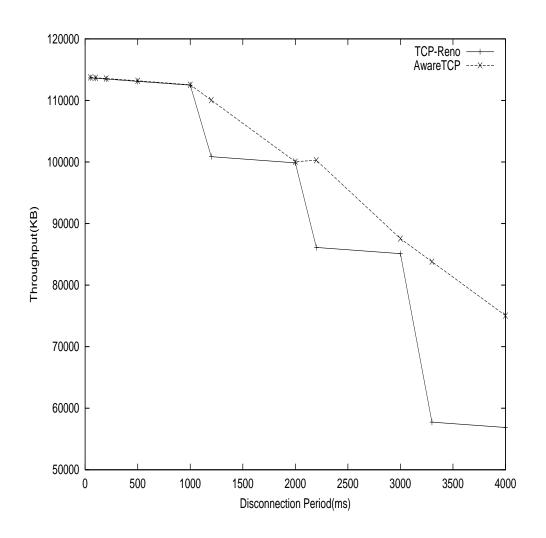
FH to MH data transfer

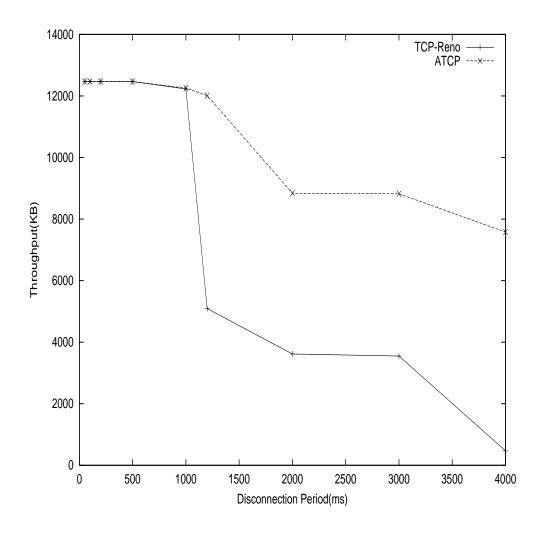
- \diamond Delay the acknowledgement of last 2 bytes by 'd' msec.
- ♦ At reconnection event
 - o send ZWA & FWA
 - * ZWA: freezes FH sender
 - * FWA: unfreezes FH sender
 - Result: retransmission without invoking congestion control mechanism


Simulations


For Simulating WLAN c = 10 Mbpsd = 1 msec

For Simulating WWAN c = 100 Kbpsd = 150 msec


♦ Simulation Setup


- \diamond FH to MH data Transfer: RTT $\approx 5 \text{ms}$
- TCP-Reno throughput has step-wise behaviour against disconnection period
- ♦ 3DA approach does not always improves response time
- ♦ In WLAN environment, ATCP and Freeze TCP performs almost equally well

- \diamond FH to MH data transfer: RTT $\approx 700 \mathrm{ms}$
- In WWAN environment, ATCP performs almost equal to Freeze TCP for small disconnection period
- Freeze TCP throughput is sensitive to prediction period variation
- ♦ 3DA, ATCP, Freeze TCP approach some times degrades the throughput

- \diamond MH to FH data Transfer: RTT $\approx 5 \text{ms}$
- TCP-Reno throughput has step-wise behaviour against disconnection period
- The enhancement in throughput increases as the duration of a single disconnection increases

- \diamond MH to FH data Transfer: RTT $\approx 700 \mathrm{ms}$
- Large Improvements in throughput for large RTT connections

 \diamond FH to MH: ATCP throughput for various value of variable d

Comparison

Table 1: Comparison of various approaches

Approach	FH TCP	BS Support	MH Protocol	Scalable	Interoperable
	modification	$_{ m required}$	stack		
			modification		
3DA	No	No	Yes	Yes	Yes
Freeze TCP	No	No	Yes	Yes	Yes
Freeze 1CF	INO	NO	ies	ies	ies
M-TCP	No	${ m Yes}$	Yes	Difficult	No
WTCP	Yes	No	Yes	Yes	Yes
I-TCP	No	${ m Yes}$	Yes	Difficult	No
Snoop	No	${ m Yes}$	Yes	Difficult	No
ATCP	No	No	Yes	Yes	Yes

Table 2: Comparison of various approaches

Approach	End to end	Data transfer	Encrypted	Different	Comments
	semantics	direction	IP traffic	acknowledgement	
	preserved	enhanced	supported	path supported	
3DA	Yes	FH to MH	Yes	Yes	Focus on reducing idle
					time after reconnection
Freeze TCP	Yes	FH to MH	Yes	Yes	Requires MH to predict
					${ m disconnections}$
M-TCP	Yes	FH to MH,	No	Yes	Split connection approach
		MH to FH			
WTCP	Yes	FH to MH,	Yes	Yes	New algorithms at FH, MH
		MH to FH			Focus on WWANs
I-TCP	No	FH to MH,	No	Yes	End to end semantics not preserved
		MH to FH			Split connection approach
Snoop	Yes	FH to MH,	No	No	Improves routing protocol
		MH to FH			to reduce the handoff time
					and packet loss
					Focus on both way
ATCP	Yes	FH to MH,	Yes	Yes	data transfer performance
		MH to FH			(delay and throughput)

Conclusion

- ♦ ATCP
 - Focus on both way data transfer
 - Does not require future prediction
 - Improve data transfer throughput
 - Require modification only at MH

Future Work

- ♦ Implementing ATCP in protocol stack
- ♦ Real life scenario testing
- Various TCP implementations behaviour in case of negative window
- Various way of informing mobility status to TCP layer

References

- [1] S. Mascolo and Claudio Casetti, TCP Westwood: Bandwidth Estimation for Enhanced Transport over Wireless Links, ACM SIGMOBILE 7/01 Rome italy, ACM ISBN 1-58113-422-3/01/07, July 2001.
- [2] H. Balakrishnan, V.N.Padmanbham and R.Katz Improving Reliable Transport and Handoff Performance in Cellular Wireless Networks, Wireless Networks, vol.1. no.4., Dec 1995.
- [3] P. Sinha, N. Venkitaraman, R. Sivakumar and V. Bharghavan, WTCP: a reliable transport protocol for wireless wide-area networks, Proceedings of ACM MOBICOM 99, Seattle, Washington, August 1999.
- [4] N. H. Vaidya, M. Mehta, C. Perkins, G. Montenegro, Delayed Duplicate Acknowledgements: A TCP-unaware Approach to Improve Performance of TCP over Wireless, Technical Report 99-003, Computer Science Dept., Texas A&M University, February 1999.
- [5] Bikram S. Baksi, R. Krishna, N.H. Vaidya, and D.K. Pradhan, Improving performance of TCP over wireless networks, In 17th International conference on distributed computing systems, May 1997.
- [6] K. Ratnam and Ibrahim Matta, WTCP: An Efficient Mechanism for Improving TCP Performance Over Wireless Links, Proc. IEEE ISCC, 1998.
- [7] Ajay Bakre, B.R. Badrinath *I-TCP: Indirect TCP for Mobile Hosts*, Tech Rep., Reuters university, May 1995, http://www.cs.rutgers.edu/badri/journal/contents11.html.
- [8] H. Balakrishnan, V. N. Padmanabhan, S. Sechan and R.H. Katz, A Comparison of Mechanisms for Improving TCP Performance over Wireless Links, IEEE/ACM Transactions on Networking, December 1997.
- [9] Ramon Caceres and Liviu Iftode, Improving the performance of reliable transport protocol in mobile computing environments, IEEE JSAC Special Issue on Mobile Computing Network, vol. 13, no. 5, June 1995.
- [10] Tom Goff, James Moronski, D. S. Phatak, Freeze-TCP: A true end-to-end TCP enhancement mechanism for mobile environments INFOCOM 2000.

- [11] K. Brown and S. Singh M-TCP: TCP for Mobile Cellular Networks, ACM Computer Communications Review, vol27, no.5, 1997.
- [12] Roger Kalden, Ingo Meirick and Michal Meyer, Wireless Internet Access Based on GPRS, IEEE Personal Communications, April 2000.
- [13] George Xylomenos, G.C. Polyzos, Petri Mahonen and Mika Saaranen, TCP Performance Issues over Wireless Links, IEEE Communications Magazine, April 2001.
- [14] Van Jacobson, Michael J. Karels, Congestion Avoidance and Control, ACM Computer Communication Review, Proceedings of the Sigcomm '88 Symposium in Stanford, CA, August, 1988.
- [15] W. Richard Stevens TCP/IP Illustrated, Volume 1, The Protocols, AWL, 1994.
- [16] Jochen Shiller, Mobile Communications, Addison-Wesley, 2000
- [17] S. Kent, R. Atkinson RFC 2401: Security Architecture for the Internet Protocol, November 1998.
- [18] C. Perkins, RFC 2002: IP Mobility Support, October 1996.
- [19] V. Paxson, M. Allman, RFC 2988, Computing TCP's Retransmission Timer, November 2000.
- [20] R. Braden, RFC 1122 Requirements for Internet Hosts Communication Layers, October 1989.
- [21] J. Postel, RFC 793 Transmission Control Protocol, September 1981.
- [22] The network simulator ns-2.1b8a/,http://www.isi.edu/nsnam/ns.