

HSM: A Hybrid Streaming Mechanism for Delay-

Tolerant Multimedia Applications

Dissertation

Submitted in partial fulfillment of the requirement for the degree of

Master of Technology

By

Annanda Th. RATH
(Roll No: 04329202)

Under the guidance of

Prof. Sridhar Iyer

Kanwal Rekhi School of Information Technology

Indian Institute of Technology, Bombay

2006

Dedicated to my family

 i

Dissertation Approval Sheet

This is to certify that the dissertation entitled

HSM: A Hybrid Streaming Mechanism for Delay-

Tolerant Multimedia Applications

By

Annanda Th. RATH

(Roll no. 04329202)

Is approved for the degree of Master of Technology

Prof. Sridhar Iyer

(Supervisor)

Prof. Anirudha Sahoo

(Internal Examiner)

Prof. Om Damani

(Additional Internal Examiner)

Prof. Abhay Karandikar

(Chairman)

Date: __________

Place: __________

 ii

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

CERTIFICATE OF COURSE WORK

 This is to certify that Mr. Annanda Thavymony RATH was admitted to the candidacy of

the M.Tech. Degree on 1th July 2004 and has successfully completed all the courses required

for the M.Tech Program. The details of the courses work done are given below

 Sr. No Course No Course Name Credits

 Semester 1 (Jul-Nov 2004)

 1 HS 699 Communication and Presentation Skills 4

 2 IT 601 Mobile Computing 6

 3 IT 605 Computer Networks 6

 4 IT 619 IT Foundation Lab 10

 5 IT 623 Foundation Course of IT Part II 6

 6 IT 694 Seminar 4

Semester 2 (Jan-April 2005)

 7 EE 701 Introduction to MEMS 6

 8 IT 604 Human Computer Interaction Design 6

 9 IT 620 New Trends in Information Technology 6

 10 IT 628 Information Technology Project Management 6

 11 IT 680 Systems Lab 6

 Semester 3 (Jul-Nov 2005)

 12 CS 681 Performance Analysis of Computer

 Systems and Network 6

 13 IT 653 Network Security 6

 Semester 4 (Jan-April 2006)

 14 IT 610 Quality of Service in Networks 6

 M.Tech Project

 15 IT 696 I Stage Project 18

 16 IT 697 II Stage Project 30

 17 IT698 III Stage Project 42

I.I.T Bombay Registrar (Academic)

Date:……..

 iii

 Abstract

Streaming is a technique for transferring data such that it can be processed as a steady and

continuous stream. In a content dissemination network, typically a central server at the source

streams the content in response to client requests. We term it as Pure Streaming Mechanism

(PSM). Considering that in a dissemination network controlled by a Content Service Provider

(CSP), the backbone links are highly provisioned, using a streaming server at the source leads

to underutilization of these links. Also the links are occupied for the duration of play out of the

multimedia content. This is because according to the streaming property, the streaming server

sends only the amount of data equivalent to the streaming encoded rate to the client irrespective

of the available bandwidth in the path. Delay-tolerant applications are a special class of on

demand multimedia applications where clients request the start of play back at a time specified

by (t +dti) where t is the current time and dti is the delay tolerance acceptable to client i.

 In this thesis report, we present a novel Hybrid Streaming Mechanism (HSM) for

Delay-Tolerant Multimedia Applications to enhance the following performance parameters: (i)

number of serviced clients, and (ii) delivered stream rate at clients. HSM allows streaming from

strategically chosen intermediate nodes to which the content is dynamically transferred from the

source, using FTP (File Transfer Protocol). As FTP uses the entire bandwidth to transfer the

data, it frees up the high bandwidth links faster for serving requests from other clients sharing

these links, increasing the efficiency of the service. In HSM, transferred contents are temporally

cached at the intermediate node (Streaming Point). Such temporary caching further enhances the

performances of HSM as requests for the same content are serviced from the cache.

 iv

Contents:

Abstract iii

List of figures vi

List of the tables vi

1. Introduction

 1.1 What is Streaming? 2

 1.2 Delay Tolerant Multimedia Applications 2

 1.3 Client’s requirement (Client’s constraint) 2

 1.4 Pure Streaming Mechanism (PSM) 3

1.5 Motivation (Survey of Cambodia Network) 3

 1.6 Problem Definition 4

 1.7 Solution Outline 5

1.8 Organization of the Thesis 9

2. Literature Survey and Related work

 2.1 Literature Survey 11

 2.2 Related Work 15

3. Functional Overview of HSM

 3.1 Top Level Algorithm of HSM 17

 3.2 Three Phased Operation 18

 3.2.1 Client’s Deliverable Stream Rate Calculation 18

 3.2.2 Streaming Point Selection 18

 3.2.3 Content Transferring and Streaming 22

 3.3 Expression Used in HSM 22

 3.3.1 Time to Transfer File using FTP 22

 3.3.2 Equation for deliverable stream at a client 23

 3.4 Caching Management at Relay Nodes 23

 3.4.1 Memory Requirement at Relay nodes 24

 3.4.2 Time to Live of Content (TTLC) in the cache 25

 v

4. HSM based Tool’s Architecture and Simulator Implementation

 4.1 HSM’s Architecture 27

 4.1.1 HSM components 27

 4.1.2 Inputs of the System 28

 4.1.3 Outputs of the System 29

 4.1.4 HSM’s Pseudo code 29

 4.2 Simulator Implementation (Matlab) 30

 4.2.1 PSM Simulator’s Architecture 30

4.2.2 HSM Simulator’s Architecture 33

4.3 Matlab Codes 30

5. Performance Evaluation of HSM

 5.1 Simulation Parameters and Scenario 35

 5.2 Details of Experiments 36

 5.2.1 Number of Serviced Clients VS. Client’s

 Delivered Stream Rate 36

 5.2.2 Impact of Client’s Delay Requirement on

 system Performance 37

 5.3 A Case Study: Gnutella Peer Network 40

 5.4 Analysis of Results 41

5.5 Cost-Benefit Analysis 42

6. Conclusion 43

Bibliography 47

Acknowledgements 51

Appendix 53

 vi

List of Figures

Figure 1.1: A simplify Cambodia Network 4

Figure 1.2: A simple tree network topology 6

Figure 3.1: Example used for deriving the expression in HSM 23

Figure 4.1: Top Level HSM’s Architecture 27

Figure 4.2: HSM’s Pseudo code 29

Figure 4.2: Simulator’s Architecture 31

Figure 4.3: PSM Module (1) 31

Figure 4.4: HSM Module (2) 31

Figure 5.1: Number of serviced clients with identical

 client requirements (class 1) 36

Figure5.2: Percentage of stream rate improvement

 with identical client requirements (Class 1) 38

Figure 5.3: Percentage of serviced clients vs. percentage

 of stream rate improvement 38

Figure 5.4: Impact of client delay tolerance values on HSM 39

Figure 5.5: Impact of client delay tolerance values on PSM 39

Figure 5.6: Percentage of serviced clients vs. percentage of

 stream rate improvement (Class 2) 39

Figure 5.7: Gnutella Peer Network 40

Figure 5.8: Percentage of serviced clients vs. percentage

 of stream rate improvement (Gnutella) 41

List of Tables

Table 1.1: Details of clients requesting the stream 8

Table 1.2: Details of client C1 9

Table 3.1: HSM, Top-Level Algorithm 18

Table 3.2: Details of clients requesting the stream 21

Table 3.3: Notations 22

 1

 Chapter 1

Introduction

Streaming media is expected to become one of the most popular types of web content in the

future. Typically, a central server handles streaming services, is responsible for servicing all

client requests. We term this Pure Streaming Mechanism (PSM), where streaming capability

is available only at the source. In a large-scale network with a large number of concurrent

client requests, streaming from only one source has been proven to be inefficient because of

the limitation of streaming server capacity and link bandwidth constraints in the network

[4][10][3]. To improve the performance of the streaming services as well as to serve more

clients, many techniques have been developed, including content replication, and resource

sharing [6][9][7][5][18][1][3][14]. Content replication is an efficient way to increase the

number of serviced clients, reduce network traffic and workload at central server. However

such techniques require large storage, since typically, the content is downloaded in advance

in anticipation of client requests. Resource sharing strategies increases the number of

serviced clients by exploiting the high skewness in video access patterns. These strategies

can be classified into five main categories: Batching [21][23][27], Patching [10], Piggy-

backing [25], broadcasting [26], and Interval caching [22][24][20]. The resource sharing

techniques come at the expense of requiring every high additional bandwidth and buffer

space at the client (See chapter 2 for more details).

 In this thesis report, we present a Hybrid Streaming Mechanism (HSM) to increase

the efficiency of a Content Service Provider (CSP) by using a combination of FTP and

streaming mechanisms in the context of a special class of on demand applications termed

delay-tolerant multimedia applications [15]. In delay-tolerant applications, clients request for

the multimedia content specifying their requirements, stream quality -- a minimum rate at

which they want to receive the stream, and delay tolerance -- the time they will wait for the

play out of the stream. Applications in distance education and corporate training where

multiple clients at different time slots access the same contents are typical examples that fall

Chapter 1 Introduction

 2

in this category of applications. Note that mechanisms proposed in the literature to efficiently

serve requests for multimedia content assume that play out at clients start immediately

[5][2][18][1][8].

1.1 What is Streaming?

Streaming is a technique for transferring data such that it can be processed as a steady and

continuous stream. Streaming technologies are becoming increasingly important with the

growth of the Internet because most users do not have fast enough access to download large

multimedia files quickly. With streaming, the client browser or plug-in can start displaying

the data before the entire file has been transmitted. For streaming to work, the client side

receiving the data must be able to collect the data and send it as a steady stream to the

application that is processing the data and converting it to sound or pictures. This means that

if the streaming client receives the data more quickly than required, it needs to save the

excess data in a buffer. If the data doesn't come quickly enough, however, the presentation of

the data will not be smooth. One more feature of streaming is that streaming server sends

only the amount of data equivalent to the streaming encoded rate to the client irrespective of

the available bandwidth in the path.

1.2 Delay Tolerant Multimedia Applications

Delay-tolerant applications are a special class of on-demand multimedia applications where

clients request the start of play back at a time specified by (t + dti) where t is the current time

and dti is the delay tolerance acceptable to client i. Examples of delay-tolerant applications

include universities offering their courses to a set of global subscribers and service providers

streaming movies requested by their clients.

1.3 Client’s Requirements (Client’s Constraint)

Client requirements are minimum acceptable requirements for a given client. It consists of

two parameters: (i) stream quality, a minimum rate at which a client wants to receive the

stream, and (ii) Delay-tolerance, a time at which the client wants the play back to start.

1.3 Pure Streaming Mechanism

 3

1.4 Pure Streaming Mechanism

Pure Streaming Mechanism (PSM) is a mechanism where the source node contains the only

streaming server in the network that processes all the requests from clients. Whenever the

client’s request arrives, server establishes the connection and starts streaming to client. The

amount of data for a period equivalent to client’s delay tolerant must be buffered at client

side. In this mechanism there may be underutilization of backbone bandwidth in case the

delivered stream rate at the client is less than bandwidth of links in the backbone. This is

because according to the streaming property, the streaming server sends only the amount of

data equivalent to the streaming encoded rate to the client irrespective of the available

bandwidth in the path. Note that while the source streams the content to the client, the links

from the source to the client are occupied for a period equivalent to the streaming duration;

other clients who share those links can not use the links.

1.5 Motivation (Survey of Cambodia Network)

This section we take a look on a network topology of a small country in southeast Asia,

Cambodia is a country in southeast Asia consists of 24 provinces, there are three main city in

the country, One is Phnom Penh city, the central city for economic and cultural activity, Siem

Reap Province, the city of tourist and ancient monuments and the last one is Sihanouk Ville,

the city of the tourist and economic. Cambodia’s network is a centralized kind of network

architecture, there is only one source at central city, and distributes to all the provinces in the

country. In Cambodia, there are three main Internet Service Providers and source of

information is situated at central city (Phnom Penh). However Cambodia has 24 provinces,

only some of them have the Internet connectivity. Figure (2.2) shows a simplify network

topology of Cambodia. Figure (2.2) shows that there is only one source of information

situated in Phnom Penh city, and connected to all the provincial nodes. In Cambodia, three

types of Internet connection are available, modem, DSL, and Satellite system (rarely used).

There are a lot of connectivity problems, the links are generally slow as there are many users,

but fewer infrastructures and the cost is very high. Streaming video or audio is also available

in Cambodia, but less popular because of the connection is slow and the cost of Internet

service is generally unaffordable. Distance Education Program and Video Conferencing

become popular in the last two years, as many universities and the organizations update the

infrastructure to adjust the new technology. The growth of the Internet Users and Technology

1.4 Motivation (Survey of Cambodia Network)

 4

in Cambodia; give us a hope that in the near future, streaming market in Cambodia would be

a right target.

1.6 Problem Definition

In a content dissemination network, typically a central server at the source streams content in

response to client requests. Considering that in a dissemination network controlled by a

Content Service Provider (CSP), the backbone links are highly provisioned, using a

streaming server at the source leads to underutilization of these links. Note that while the

source streams the content to the client, the links from the source to the client are occupied

for a period equivalent to the streaming duration; other clients who share those links can not

use the links. This leads to the rejection of requests for a period equivalent to the streaming

duration of the content being streamed. Using only one streaming server at the source to

serve all the client requests in the network has some drawbacks. (i) Link bandwidth can be

underutilization because of the streaming property, (ii) Client occupies the link for entire

streaming duration and other client who comes later has to wait till the first client releases the

S

P3P2

P1

Caching Server

Caching Server Caching Server

Phnom Penh City Server

S: Source Streaming object

Pi: Provincial nodes

P6P5P4

P8

P9

Caching Server

Caching Server

P7

Caching Server

Caching Server

Represent the leaf (WAL,LAN)

Transcoding

P10 P11

Figure 1.1: A Simplify Cambodia Network

1.6 Solution Outline

 5

link, (iii) the number of concurrent serviced clients is limited because of the limit capacity of

the streaming server, (iv) the work load is at the server central server, as all the client

requests go to it.

 In order to solve the above problems and to improve the performance of the streaming

system (especially, the number of serviced clients), many techniques have been developed,

including the content replication and resources sharing. However these techniques require a

large storage and high additional bandwidth given the size of multimedia content.

1.7 Solution Outline

In order to solve the above problem, we propose a new streaming mechanism, termed Hybrid

Streaming Mechanism (HSM) to improve the efficiency of the streaming performance and to

maximize the link bandwidth utilization in the backbone network.

 HSM allows streaming from strategically chosen intermediate note, termed Streaming

Point, to which the content is dynamically transferred from source, using FTP (File Transfer

Protocol). As FTP uses the entire link bandwidth, it frees up the high bandwidth link faster

for serving requests from other clients sharing these links, increasing efficiency of service. In

HSM, transferred content are temporally cached at the streaming point. Such temporally

cached further enhances the performance of HSM as requests from the same content are

serviced from the cache. The advantages of HSM are: (i) improving the performance of

streaming service, (ii) maximizing the number of serviced clients, (iii) maximizing the

bandwidth utilization in the backbone network, (iv) improving the delivered stream rate at

the client, (v) Reducing the traffic in the network as well as the work load at central server.

 Simulation results demonstrate that by combining the FTP and streaming mechanism

intelligently, on average performance improvement of 40% is achieved compared with PSM.

 Our scheme works under the following assumptions: (i) the links have dedicated

bandwidth provisioned for the given application; (ii) the selected intermediate nodes have the

streaming capability and (iii) multicasting is also supported in the given network topology.

1.7.1 Hybrid Streaming Mechanism

Hybrid Streaming Mechanism is the combination of FTP and streaming mechanisms, HSM

allows selected relay node with streaming capability to stream the content instead of central

server. In HSM, data flow is divided into two parts: (i) a FTP flow from source to

1.6.2 An Illustrative Example

 6

strategically chosen intermediate node(s) and (ii) a streaming flow from that node to client(s)

in the sub trees rooted at that node. As FTP uses the entire link bandwidth, it frees up the

high bandwidth links faster for servicing requests from other clients sharing these links,

increasing the efficiency of service. Central to HSM are the strategies used for selecting

appropriate intermediate nodes as streaming points to enhance the system performance.

1.7.2 An Illustrative Example

In this chapter, we present an example to illustrate the differences in PSM and HSM and

motivate the need for the proposed hybrid streaming mechanism.

A simple network model in Figure (1.2) represents a heterogeneous dissemination

network as a tree, with the source S at the root and the clients C1, C2,…, C14 at the leaves. All

other intermediate nodes serve as relay nodes. A node that directly serves a group of clients

is termed a region node. We use the term region to refer to the sub tree that contains the

region node and the clients it serves. For example in Figure (1.2), the network has 5 regions

with nodes 7, 9, 10, 11, and 12 serving as region nodes. We refer to the network from S to

the region nodes as the backbone of the content dissemination network. Let us assume that at

Figure 1.2: A simple tree network topology

 384 Kbps

1.6.2 An Illustrative Example

 7

time zero, client C1 joins the network. Client C2 joins 10 minutes later and clients C6, C9,

and C12 join 75 minutes later. Table 2.1 gives the details of clients requesting the stream.

 We illustrate the difference between PSM and HSM by considering the above arrival

pattern, as discussed below:

Case 1: PSM

In a streaming application where clients do not tolerate any startup delay, the weakest link in

a client’s path dictates the encoding rate of the stream to provide loss-free transmission to

that client.

In PSM, the source node contains the only streaming server in the network that

processes all the requests from clients. In this mechanism, there may be underutilization of

backbone bandwidth in case the delivered stream rate at the client is less than bandwidths of

links in the backbone. This is because according to streaming property, the streaming server

sends only the amount of data equivalent to streaming encoded rate to the client irrespective

of the available link bandwidth in the path. For example if the streaming object is encoded at

256Kbps, only 256 kb is sent by server to client every second even when the link bandwidth

is greater than 256 Kbps. In delay-tolerant applications, the delivered stream rate at a client

can be enhanced using buffers in the nodes in the path of the client [].

 Considering client C1 which requests the stream at t=0. Let the play out duration of

the stream be 2 hrs. We first calculate the delivered stream rate at C1, considering its delay

tolerance. C1 gets 320 Kbps. (The formula used is derived in Section 3.3.2). When the

streaming server is placed at the source, stream flows from S to C1 along the path (S-1-2-4-

10-C1). The server sends the stream encoded at 320 Kbps, which occupies the path for 2 hrs,

the play out duration. Table 1.2 shows the available link bandwidths in the path of C1 when

it is being serviced using PSM.

 C14 joins the network at time t=10. Since C14 shares links (S-1-2-4) with C1, its

request cannot be serviced. Client C6 joins network at t=75. It shares links (S-1-2) with C1.

Given its requirements, C6 can get only a stream rate of 240 Kbps. Since this rate is below

C6’s minimum required rate, request from C6 is also rejected. Similarly, clients C9 and C12

also get rejected. Thus, using PSM, only one out of five clients is serviced by the CSP. HSM

allows selected relay nodes with streaming capability to stream the content instead of central

server (source). When a request arrives at the central server, it determines the stream rate that

1.6.2 An Illustrative Example

 8

can be provided to the client given the client’s delay tolerance requirement and the location

of the streaming server, termed streaming point. The central server then starts sending data

by using FTP to the chosen streaming point and allows it to serve the clients.

 Table 1.1: Details of clients requesting the stream

Clients Request Time

(Minutes)

Requirements

(Delay-Tolerant,

 rate)

PSM HSM

C1 0 (30,256) Served Served

C14 10 (60,256) Not served Served

C6 75 (30,256) Not served Served

C9 75 (05,480) Not served Served

C12 75 (30,256) Not served Served

Case 2: HSM

As FTP uses the entire bandwidth for transferring data, the links between the central server

and the streaming point are fully utilized. As a result, these links are freed earlier compared

with PSM. In HSM, the data sent by source to the streaming point is cached at that node for

a period equivalent to the streaming duration, in the interest of future requests for the same

content. We term this period Time To Live of the Content (TTLC). TTLC at a relay node is

extended when a new request is made for the same content before the original TTLC

expires. For a detailed discussion refer to section 3.4.2.

 Consider the same scenario presented in Table 1.1 with HSM. As before, the

delivered stream rate at C1 is 320 Kbps. But now we choose node 4 as the streaming point.

(Details of streaming point selection are presented in Section 3.2.2) FTP mechanism is used

to transfer data from the source to the streaming point along the path (S-1-2-4). Table 1.2

shows the available link bandwidths in the path of C1 when it is being serviced using HSM.

 C14 joins the network 10 minutes after C1. Since C14 shares links (S-1-2-4) with C1,

it is not possible for C14 to initiate a new stream from S. However, since C14 is requesting

for the same streaming object, as the object is being cached at node 4, its request can be

serviced from node 4. C14 gets the stream at 320 Kbps which is greater than it minimum rate

requirement. Note that C14 doesn’t join C1’s ongoing streaming; a new stream is sent to

1.7 Organization of Thesis

 9

C14 from node 4. Clients C6, C9, and C12 join the network at time t=75. At t=75, C1’s

transmission across links S-1 and 1-2 are finished and the links become free. All three

clients C6, C9, and C12 get serviced with a stream rate of 480Kbps, their streaming points

being at nodes 5, 1, and 8 respectively. As a result, under HSM all 5 clients are serviced. In

this the above example, we assume that the file size of the streaming content requested by the

client C1 with 320 Kbps is 2250 MB.

 The above example we demonstrate that HSM performs better than PSM in terms of

number of serviced clients. This is because in HSM, links from the source to the streaming

point are freed sooner than PSM. Another important feature of HSM is that the copy of the

content is temporarily cached at the streaming point. Requests for the same content from

other clients in the sub tree can be serviced from the cache. This property allows HSM to

improve not only the number of serviced clients but also the traffic in the network.

Table 1.2: Details of client C1

1.8 Organization of the Thesis

The origination of the thesis is as follows: chapter 2 presents about the literature survey in the

area of multimedia network and the related work, chapter 3 presents about the functional

overview of the HSM and the HSM’s components. Chapter 4 talks about HSM based tool

architecture and the implementation. We present the performance evaluation of HSM in

chapter 5 and the conclusion and the future works in chapter 6.

Unused
bandwidth
(Kbps)

Link busy period
(Minutes)

Links in
the path
of client
C1

Link
Bandwidth
(Kbps)

Delivered
stream
rate at C1
(Kbps) PSM HSM PSM HSM

S -1 768 320 448 0 120 50

1-2 512 320 192 0 120 75

2-4 256 320 0 0 150 150

4-10 384 320 64 64 120 120

4-C1 256 320 0 0 150 150

 10

 11

Chapter 2

Literature Survey and Related Work

In this chapter we discuss about the literature survey and the related work that we have done

so far. Our goal for this chapter is to present some areas of the multimedia network and

research that has been done so far in this area. We present some literature that is related to

our works in section 2.2.

2.1 Literature Survey

Streaming media is a broad area where many researches have been conducted; the aim of the

research is to improve the existing system performance as well as to provide the good

streaming quality to the clients. In this section we focus on some literature which is relevant

to our work and the area of the multimedia network. We have done the literature survey

based on some specific areas in the multimedia network, such as caching location in

multimedia network, caching strategies in multimedia streaming, transcoding mechanism, the

placement of the multimedia object solution in the hybrid data replication and some

techniques used for reducing the playout buffering delay. All these techniques aim at

improving the number of serviced clients as well as the streaming quality.

2.1.1 Cache Location Problem

In the literature, a cache location problem in [13], studies the problem of where to place the

network caches, emphasis is given to caches that are transparent to the clients since they are

easier to manage and they require no cooperation from the clients. The goal is to optimize the

gain for the system by minimizing the overall traffic in the network and reducing the average

delay to the clients.

Chapter 2 Literature Survey and Related Work

 12

With the given number of caches in the network, it tries to find the best location of

the given caches by placing the caches along the routes from clients to servers and the caches

are placed transparently to the servers and clients. An en-route cache intercepts any request

that passes through it, and either satisfies the request or forwards the request toward the

server along the routing path.

2.1.2 Caching Strategies in Transcoding-Enabled Proxy

The literature in [1], caching strategies in transcoding-enabled proxy system for streaming

media distribution network, introduces the caching strategies for streaming media

distribution network over Internet, this strategies designed for efficient delivery of rich media

web content to heterogeneous network environment and client capabilities. The proxy in this

system performs transcoding as well as caching. The proxy transcodes the requested video

into an appropriate format and deliver it to the user. One potential advantage of this system

is that the content origin servers need not to generate different bit-rate versions, and the

heterogeneous clients with various network condition will receive video that are suited for

their capabilities, as content adaptation is more appropriately done at network edges.

2.1.3 Proxy Prefix Caching

The literature presented in [17], proxy prefix caching for multimedia streams, presents about

the proxy prefix caching to reduce the initial latency at the clients as well as to improve the

streaming quality. A prefix caching technique whereby a proxy stores the initial frames of

popular clips. Upon receiving a request for the stream, the proxy initiates transmission to the

client and simultaneously requests the remaining frames form the server. In addition to

hiding the delay, throughput, and loss effects of a weaker service model between the server

and the proxy. This prefix caching technique aids the proxy in performing work ahead

smoothing into the client play back buffer. By transmitting large frames in advance of each

burst, work ahead smoothing substantially reduces the peak and variability of the network

resource requirement along the path from the proxy to the client.

 Storing the initial frames of each continuous media stream is motivated by the

observation that audio and video applications typically experience poor performance due to

the unpredictable delay, throughput, and loss properties of the Internet.

2.1 Literatures Survey

 13

2.1.4 Batched Patch Caching

The literature in [5], a batched patch caching for streaming media, is the combination of

batch patching at an origin server and prefix/interval caching at an edge server receiving the

clients’ requests. A regular channel delivers the full video from start to finish while a

patching channel delivers only the missing part of the video from the start till the point at

which the clients join the regular channel. The client receives both the patch and the ongoing

stream and buffers the latter while playing back the former. One the patch is exhausted, the

client switches to the buffered regular multicast. The usage of edge servers can reduce the

transmission costs by offering a caching opportunity close to the clients. Most of the caching

schemes are either based on full caching (the complete video stream is stored at the proxy) or

prefix caching. Additionally, caching the prefix hides the startup latency and jitter in the

network, and thus allows for user-transparent request batching.

2.1.5 Multicast Technique for True Video-on-Demand Services

The literature presented in [10], multicast technique for true video-on-demand services, is an

efficient way to improve the number of serviced clients, as the same streaming object can be

sent to differences destinations at the same time, hence, more concurrent clients can serviced.

Streaming server can service the clients that access the same streaming object at the same

time by using only one streaming flow which goes to different destination clients in the

network. This technique is more applicable for distance education program and the

cooperative training where the clients from differences places start the course at the same.

2.1.6 Multimedia Object Placement Solution

In this literature [9] presents about the multimedia object placement solution for hybrid

transparent data replication, the aim of the placement is to bring the content close to the

clients, reducing the initial startup delay and work load as well as the traffic in the network.

In this scheme, the differences encoded rate of the multimedia object are placed in the

intermediate node according to its popularity, transmission cost and access cost. This paper

works on an optimization based approach by developing the cost function [13] to find out the

appreciate place for the multimedia object. The cost function consists of three parameters: (i)

popularity of the object or the access frequency, (ii) cost for transferring the content, (iii) cost

2.1.6 Delay Reduction Technique for Playout Buffering

 14

of accessing the object. The idea is simple; first, for each object at each node, find the value

of the cost functions, second minimizing the cost function. The placement of the streaming

object is decided according to the cost function value, the cost function value must be

minimized.

2.1.7 Delay Reduction Technique for Playout Buffering

The literature presented in [2], delay reduction technique for playout buffering provides a

delay sensitive solution for playout buffering. This technique works on the delay prediction

by using the recorded historical information, and use the historical information to make

short-term prediction about network delay with the aim of not reacting too quickly to short-

lived delay variations. This allows an application-controlled tradeoff of packet lateness

against buffering delay, suitable for applications which demand low delay but can tolerate or

conceal a small amount of late packet. In this technique, aging techniques is used to improve

the effectiveness of the historical information and hence, the delay prediction. The result of

the technique gives the smooth streaming flow as the short-lived delay variation is ignored.

2.1.8 Multipath Routing for Video-delivery over Bandwidth-limited

In the literature, multipath routing for video-delivery over bandwidth-limited network [19],

provides the solution to improve the performance of the streaming service such as the

number of serviced clients and the streaming quality providing to the clients. The idea of

multipath routing is that the streaming data is sent through many paths from source to client

instead of one path. The streaming object is divided into the segments and sent it to the

clients, as it uses more paths to send the data, it can send the data faster, hence, reduce the

delay and provide the better stream rate to the client. As different part have difference links

bandwidth, so the time for the packet to reach the client may be different, hence packet may

be disordered. To solve this problem, they provide one scheduling mechanism at the server to

make sure that the packet that has been sent by server to client arrives on time. The scheduler

calculates the exact time that each segment of the streaming object should be sent to client

and its arrival time. This technique is an efficient way to increase the number of serviced

clients and improve the streaming quality.

2.2 Related Work

 15

2.2 Related Work

Most of the research in the area of multimedia dissemination treats delivery of multimedia as

real time application [2][18], which can tolerate a small delay for the purpose of solving the

delay jitter problem. Mechanisms proposed in the literature focus on minimizing this start up

delay [2]. When we consider multimedia delivery over the Internet, there were reasons for

using streaming with minimal start up delay: (i) caching or buffering the content was high

due to the size of multimedia files: many mechanisms, [17][13][9][7] have been proposed for

efficient content management (ii) price of Internet connection was high: many mechanisms

have been proposed for effective use of bandwidth, including [4][11][6][3][16][14].

 Resource sharing strategies is one of the efficient techniques to increase the number

of the serviced clients by exploiting the high skewness in video access patterns. These

strategies can be classified into five main categories: Batching [21][23][27], Patching [10],

Piggy-backing[25], broadcasting [26], and Interval Caching[22][24][20]. Batching off-loads

the storage subsystem and uses efficiently server bandwidth and network resources by

accumulating the request for the same videos and serving them together by utilizing the

multicast facility. Patching is similar to batching, but it expands the multicast tree

dynamically to included new requests, thereby improving resource sharing, but it requires

additional bandwidth and buffer space at the client. Piggy-backing offers similar advantages

to patching, but it adjusts the playback rate so that the request catches up with a preceding

stream, resulting in a lower-quality presentation of the initial part of the requested video.

Broadcasting techniques divide each popular video into multiple segments and broadcast

each segment periodically. The improved resource sharing here comes at the expense of

requiring every high additional bandwidth and buffer space at the client. Interval caching

caches interval between successive streams for the same video in the main memory of the

server. It does not sacrifice the quality of playback, does not lengthen the waiting time, and

does not expect much resource from the client. It has also become more cost-effective with

the falling prices of semiconductor memories.

 In the recent literature, an optimal chaining scheme proposed in [19] for a Video-on-

Demand application uses the concept of collaborative networks. In this mechanism, clients

store fragments of streaming content shared between them. This mechanism is not realistic

when Internet is used in the dissemination network. Multi-path routing for video delivery

over bandwidth-limited networks [20] is another mechanism in which quality of streaming

2.2 Related Work

 16

service and the numbers of serviced clients are improved as data is sent faster than one way

routing. In this mechanism, links are freed sooner allowing other clients to get the services.

But this scheme has a drawback of high computational overhead when the number of client

requests increases, as the streaming server performs the scheduling function also.

Mechanisms proposed in [13], explore the caching location problem and propose

strategies to reduce the traffic in the network and to improve the efficiency of streaming

service, the following techniques including: Prefix Caching, Full object and permanently

caching, and object caching based on it popularity [9]. However these techniques lead to high

storage requirement given the size of the streaming content. In our proposed scheme, we

introduce a caching mechanism with a small overhead; the content is cached in the cache

memory at the relay node for a period of time equivalent to the streaming during for the

interest of the new request of the same object. We also introduce the possibility to extend the

time to live of the content in the cache when new requests are made for the same content.

 In the recent times with the drop in the prices of memory and connectivity, and

abundance of network bandwidth, clients demand convenience while accessing content.

Today’s content dissemination networks exhibit heterogeneous characteristics, as networks

have combinations of satellite, terrestrial, and Internet links from the source to the clients.

Our work focuses on such heterogeneous networks and explores ways of combining different

mechanisms for effective and efficient content dissemination, when clients specify their

delay tolerance. We present HSM, a simple hybrid streaming mechanism in the context of

delay tolerant applications, considering the current trend in multimedia dissemination

focusing on users’ convenience, to maximize bandwidth utilization and number of serviced

clients.

 17

Chapter 3

Functional Overview of HSM

In this chapter, we discuss the functional overview of HSM, the top level algorithm of HSM

and the expression used in HSM. We assume that the links have dedicated bandwidth

provisioned for the given application and the selected intermediate nodes have the streaming

capability. Multicasting is also supported in the given network topology.

3.1 Top-Level Algorithm of HSM

In this section we present the top-level algorithm of HSM to understand how the HSM works

and what are the components in the HSM.

Table 3.1: HSM, Top-Level Algorithm

 Algorithm:
 When a client’s request arrives /* client specifies minimum rate required and its delay Tolerance */

 Determine the stream rate delivered to client considering its delay tolerance

 /* Equation (2) from Section 3.3.2 is used */

 If stream rate < client’s minimum rate requirement

 Reject request

 Else

 If the link is free

 /*streaming point selection*/

 If the stream rate <= the weakest link in the path from source to region node

 . Use Strategy 1 for streaming point selection /* refer to Section 3.2.2*/

 Else

 . Use Strategy 2 for streaming point selection /* refer to Section 3.2.2*/

 End

 . Transfer the content by using FTP from source to selected streaming point (SP)

 stream from SP to client

 . Find the time to transfer the contents to SP /* Equation (1) from Section 3.3.1 */

Else /* Link is not free*/

 If the same content is already cached at streaming point

 . Accept request and stream from cache

 . Update TTLC /* refer to Section 3.4.2 */

 Else

 . Reject request

 End

 End

 End

 End

 Chapter 3 Functional Overview of HSM

 18

3.2. Three Phased Operations

In general, HSM contains three main phased operations: (i) the rate calculation: this

happens at the first step when client sends the request to server, (ii) the streaming point

selection; in this phase, server determines the streaming point for the client based on some

strategies, (see section 3.2.2) and (iii) using the new streaming point location, server starts

transferring the content by using FTP from source to the selected steaming point and starts

streaming the content to the client.

3.2.1. Client’s Deliverable Stream Rate Calculation

When client requests for the service, client sends its requirements to the central server. The

server then determines the possible deliverable stream rate for the client. If the deliverable

stream rate is greater than the client’s rate requirement, server sends an accept message to

the client, otherwise, a reject message is sent to the client. This first step is very important

as the client can specify its requirement consisting of its delay-tolerance – a time at which

it wants to play back and its rate’ requirement -- the minimum delivery streaming rate that

it wants to get. If the server finds that the deliverable rate of the client is less than its

minimum requirement, it sends the rejection message to the client without proceeding to

the next step.

Example: referring to figure (1.2), assuming the streaming duration is 2 hours and client

C1 accesses the streaming object with 256 Kbps as its minimum delivery stream rate

requirement and 30 minutes delay tolerance. (S-1-2-4-10-C1) is the path from server to C1.

Referring to table (1.2), we get weakest link in the path of C1 is 256 Kbps. By using

equation (2), we can calculate the delivery stream rate of C1 as follow:

30*60*256/2*3600 + 256 = 320 Kbps.

3.2.2 Streaming Point Selection

In HSM, a selected relay node serves as the steaming point for all the clients in its sub tree

instead of the central server. Thus the streaming point selection strategy is an important

part of HSM. In this section, we present two selection strategies based on the following

criteria: (i) the position of the streaming point should help to improve the number of

serviced clients and /or (ii) the position of the streaming point should help to improve the

3.2.2 Streaming Point Selection

 19

stream rate for other requests which come from the regions serviced by that streaming

point.

3.2.2.1 Selection Strategies

Strategy 1: At a relay node having maximum number of out going links (Improving

the number of serviced clients)

 Considering a network topology where all the links in the path from source to the region

node are provisioned with high bandwidth. Suppose the clients in this network have very

low bandwidth connections to the region node (the “last mile” problem). In such as case, if

the delivered stream rate at a client is less than or equal the weakest link in the backbone,

we select the relay node with the most number of out going links as the streaming point. A

step-by-step approach to find out the streaming point in strategy 1 is presented below:

The reasoning for this strategy is as follows:

� When the stream rate is <= bandwidth of the weakest link in the path from the source

to region node, the stream will flow without introducing any delay up to the region

node. Hence, any node in the client’s path can be chosen as the streaming point.

� However, when the relay node with most out going links is chosen, more clients can

be serviced concurrently.

Strategy 2: At any node below the weakest link in the path (Enhancing the stream

rates)

In this strategy, any node below the weakest link in the path from source to the region node

serving the client is chosen as the streaming point. A step-by-step approach to find out the

streaming point in strategy 2 is presented below:

When client arrives

 Find the weakest link in the path from the source to region node of the client

 Find the client’s delivered stream rate

 If the client’s delivered stream rate is less than or equal to weakest link

 Choose the node with the maximum outgoing link as the streaming point

 End

 End

3.2.2.2 Example to Illustrate these Strategies

 20

The reasoning for this strategy is as follows:

� The weakest link in a client’s path uses up most of the client’s delay tolerance.

� When the client’s delivered stream rate is greater than the weakest link rate up to the

region node, the streaming point is chosen below this weak link. This enables service

of other requests from clients in the sub tree made within TTLC to get the stream at

that rate, as the stream’s flow is not subjected to the weakest link. This strategy may

improve the stream rates for the clients.

3.2.2.2 Example to Illustrate these Strategies

Consider a simple network model in Figure (1.2). We present two scenarios to illustrate the

streaming strategies. Table 3.2 gives the details of clients requesting the stream.

Illustration of strategy 1: Considering the clients in Table 3.2 (strategy1). Client C2

specifies a delay tolerance value of 90 minutes. Stream rate that can be delivered to this

client is 224 Kbps. This rate is less than the weakest link (256 Kbps) in the path from source

to the region node serving this client. As per strategy 1, we choose the streaming point at

node 2. To validate this idea, we study two different cases: first we consider node 4 as the

selected streaming point for client C2. Requests of clients C4, C14, C11 arrive at 15 minutes

after C2 when the link (S-1-2) is being occupied by C2. Hence requests from C4 and C11 get

rejected. Only C14’s request can be serviced from the cached content in node 4. Now we

consider the same scenario with node 2 as the streaming point. In this case client C4 and C11

can be serviced concurrently. Thus according to strategy 1, when the stream rate of the first

client who accesses the stream is less than or equal to the weakest link in the path from the

source to region node, the streaming point should be at a node which have the most out going

links. This allows serving more client requests concurrently.

When client arrives

 Find the weakest link in the path from the source to region node of the client

 Find the client’s delivered stream rate

 If the client’s delivered stream rate is greater than the weakest link

 Choose the node below the weakest link as the streaming point

Apply the strategy 1 to choose the node below the weakest link as a

streaming point

 End

End

3.2.2.3 Remarks

 21

Illustration of strategy 2: Let us consider the clients in Table 3.2 (strategy2). Client C1

allows delay tolerance of 90 minutes. The delivered stream rate at C1 is 448 Kbps. This rate

is greater than the weakest link in the path from source to the region node serving this client.

According to Strategy 2, we choose the streaming point at node 4. All the clients C1, C3, and

C13 get 448 Kbps. This is because the content requested by C1 is stored at node 4 and since

C3 and C13 are requesting the same content before the TTLC expires, both these clients can

be served by node 4. The stream flowing from node 4 is not subject to the weakest link in the

path. Note that if we stream from the source or any node above node 4, the delivered rates at

C1, C3, and C13 are 448Kbps, 320 Kbps and 320 Kbps respectively, as the weakest link rate

is 256 Kbps.

 Table 3.2: Details of clients requesting the stream

Clients Request

(Minutes)

Client’s requirement

(Delay-tolerant, rate)

Service

Strategy

C2 0 (90,128)

C4 15 (30,128)

C11 15 (30,128)

C14 15 (60,128)

Strategy 1

C1 0 (90,256)

C3 100 (30,256)

C13 110 (30,256)

Strategy 2

3.2.2.3 Remarks

According to the two strategies presented above, there are two possible places for streaming

point: (i) at the node, which has the maximum outgoing links and (ii) at the node below the

weakest link from the source to region node. Given the random nature of the clients’ request

and its requirements, it is hard to predict the delivered stream rate at the client, it may happen

that some time, delivered stream rate is less than the weakest link and some time it is greater

than the weakest link. Hence, in order to cover the two cases, in HSM mechanism we deploy

two streaming points for one region, one at the node which has the maximum outgoing links

and other at the node below the weakest link. Note that one streaming point may serve more

than one region.

3.3 Expression used in HSM

 22

 In conclusion, we can say that in HSM, central server knows the position of the two

streaming points in the region from where the request originated, but what server must

determine is which of the two streaming points should be turned on for servicing the client.

3.2.3. Content Transferring and Streaming

Content transferring and streaming is the last step in the HSM after the selection of the

streaming point and the delivered stream rate calculation. The streaming content is

transferred by using FTP from source to streaming point, where it is temporally cached for

further request of the same content.

3.3 Expression used in HSM

In this section we first derive the expression for time to transfer the file from source to

streaming point and then the expression for delivered stream rates at clients given their delay

tolerance values. The notation using to derive the expression is given in table 3.3.

3.3.1. Time to transfer file-using FTP

With reference to Figure (3.1), let there be n relay nodes 1, 2, …, n from source S to the

streaming point SP. Let B1, B2, …, Bn+1 be the link bandwidths in the path from S to SP. Time

to transfer the file across the weakest link (Tw) from S to SP is given by:

Let d1, d2, …, dn be the queuing delays at nodes 1, 2,…,n.

Table 3.3: Notations

3.3.2 Equation for Delivered stream rate at a client

 23

Assuming that propagation delay is negligible and there is no other competing traffic. Hence,

the total queuing delay is given by:

Total time to transfer file from S to SP is:

3.3.2 Equation for Deliverable stream rate at a client

In delay-tolerant applications, clients specify two parameters: minimum rate at which they

want to receive the stream and their delay tolerance, time they can wait to receive the stream.

The deliverable stream rate at client i is given by the expression:

We derive the expression with reference to Figure (3.1) below:

Let Lmin be the minimum of link bandwidths L1, L2, …, Lm+1 , in the path between SP and

client Ci. When the stream is encoded at Lmin, client receives it without any loss.

Let CDi be the client delay tolerance of Ci. Ci waits for time CDi before the play out starts.

However, during this waiting time, an amount of data can be streamed to Ci given by: Lmin

*CDi. The amount of extra data that Ci gets per second is where SD is the

total duration of the stream. Thus, the deliverable stream rate at Ci,

 Figure 3.1: Example used for deriving the expression in HSM

3.4 Caching Management at Relay Nodes

In HSM, when the content is transferred from the source to the streaming point, it is

temporarily cached. We need to determine the memory requirement for the cache and a

Bn+1

1

Lm+1

S SP

C
L1

B1

d1

n

 1

dn

m

3.4.1 Memory Requirement at Relay Nodes

 24

mechanism to manage the cache. In Section 3.4.1, we present the cache requirement at a

selected streaming point in the network based on the link bandwidth and the number of links

connected to that point. We present a simple cache management mechanism with very little

overhead in Section 3.4.2.

3.4.1 Memory Requirement at Relay Nodes

We derive the formula for cache size at a streaming point by finding the maximum amount of

data that can flow through each sub tree originating at the streaming point. A step-by-step

approach is presented below:

• Find the number of sub trees rooted at the streaming point. Let this be N.

• Find the number of regions in each sub tree. Let this number be R.

• For each sub tree

o Find the weakest link for region j, Bminj

o Find the max of weakest link across all regions R, Wi= Max (Bminj), j=1, ..,R

and i= 1, …, N

o The maximum amount of data that can flow in the sub tree i = Wi*SD, where

SD is the stream duration.

• Let FSmax be the maximum file size across all content files stored at S. Since clients in

the regions can specify delay tolerance, we must find the largest file size that need to

be cached. Thus, the cache size for a sub tree is given by:

 Max(Wi * SD, FSmax)

• The cache size at streaming point in node g, considering all the sub trees is given by:

Example: (With the reference to figure 2.1)

Let SD= 2hours (7200 seconds)

FSmax= 2 GB.

Let node 2 be the chosen streaming point.

We calculate the cache size at node 2 as follows:

Number of sub trees rooted at node 2, N=3

For sub tree 1, Number of regions, R=1; Bmin1= Min (384, 512)=384;

3.4.2 Time to Live of Content (TTLC) in the Cache

 25

Max(Bmin1)= 384.

For sub tree 2, Number of regions, R=2; Bmin1= Min (256, 384) =256;

Bmin2= Min (256, 256) =256; Max (Bmin1, Bmin2)= (256, 256)= 256.

 For sub tree 3, Number of regions, R=1; Bmin1= Min (384, 512, 512)=384;

Max (Bmin1) = 384

Cache size at node 2 (CS2) =

Max (384*7200, 2 GB) + Max (256*7200, 2 GB) + Max (384*7200, 2 GB) = 7.36 Gb

3.4.2 Time to Live of Content (TTLC) in the Cache

In HSM, content is temporarily cached at the chosen streaming point. We use a simple

method to determine the value of Time To Live of Content (TTLC) such that the cache

management has no additional overheads. Let us consider a client i with delay tolerance CDi

requesting for a stream with duration SD. The client’s transmission starts at time = t0+CDi.

The client finishes its transmission at (t0+CDi+SD). Hence the stream needs to be active for

the duration CDi+SD.

 We choose this value as the TTLC for the stream in the cache at the streaming point.

When multiple clients access the same stream at the same time, we choose the maximum of

the delay tolerance values of the clients in the above expression.

Note that the TTLC can not less than CDi+SD because if it is, the content will be removed

before client finishes the stream. When there is a new request for the same stream before the

TTLC expires, it is extended to Tc+ CDk-(Tc-tk)+SD, where Tc is the TTLC of the current

content, tk is the time when client k’s request arrives and CDk is the delay tolerance of client

k. Example: Let client C1 with 30-minute delay tolerance is requesting a stream with 2 hours

duration. TTLC for this stream is T = 30 + 120 =150 minutes. Let a new request for the same

stream comes from client C2 at t=90. C2’s delay tolerance is 90 minutes. The extended value

of TTLC for the stream is: 150 + 90 - (150 - 90) + 120. Thus, the content is alive till t=300

minutes.

 26

 27

Chapter 4

HSM based Tool Architecture and

Implementation

This chapter, we discuss about the HSM’s architecture and the main components of HSM.

We also present the HSM Simulator which is implemented in the Matlab for evaluating the

general performance of HSM and PSM.

4.1 HSM’s Architecture

In HSM, there are three main components as presented in the Chapter 3: (i) the deliverable

stream rate calculation, (ii) streaming point selection and (iii) the content transferring and

streaming. These three phased operations form the core of HSM. We divide HSM’s

architecture into three modules: (i) inputs module, (ii) operation module that contains all the

three phased operations mentioned above and (iii) outputs module.

4.1.1 HSM’s Components

 Operation Module

Network topology
and specific link
bandwidth

Object name
(Movie Title) and
the region that
client belongs to

Clients’
requirements
(Delay-Tolerance,
Minimum Rate)

 Deliverable Stream Rate Calculation

+ Weakest link along the path detection
+ Stream Rate Calculation

 Streaming Point Selection

+ Weakest link along the path detection
+ Node with the maximum outgoing
links detection

Content Transferring and streaming

+ Calculation time to transfer the
content across all the links in the path
+ Setting the TTLC

Outputs Module

+ Delivered stream
rate at the clients

+ Link Busy Period
along the path from
source to client.
+ TTLC

+ Streaming Point
Position
(Intermediate Node
number)

2

1

Figure 4.1: Top Level HSM’s Architecture

1: Delivered Stream Rate 2: Streaming Point Position

 Inputs Module

Chapter 4 HSM based Tool Architecture and Matlab Implementation

 28

4.1.1.1 Deliverable Stream Rate Calculation Module

This module is responsible for calculating the deliverable stream rate at the client given the

client’s requirements and network topology. When the request arrives, server determines the

weakest link along the path from source to client. Given the weakest link along the path and

the client’s delay tolerance, server is able to determine the delivered stream rate at the client

by applying the formula in section 3.3.2. Next step is to find out the position of the streaming

point for the given request.

4.1.1.2 Streaming Point Selection Module

This module is responsible for determining the position of the streaming point. This module

requires the delivered stream rate and the path from source to client as inputs. To determine

which node along the path from source to client, is the streaming point, first server needs to

figure out what is the weakest link along the path from source to region node, and then apply

the streaming point selection strategies presented in section 3.2.2.

4.1.1.3 Content Transferring and Streaming Module

The last module is responsible for content downloading and streaming. Given the delivered

stream rate and the position of the streaming point; server then starts transferring the content

to the streaming point by using FTP and starts streaming from that point to the client. The

transferred content is temporally cached at that streaming point and its TTLC is also set here.

4.1.2 Inputs Module

There are three major inputs for HSM:

• Network Topology - In HSM, server needs to know the characteristic of all links in

the entire network. We assume that the given network topology is a tree based

network, meaning, there is no cycle in the network.

• Clients’ Requirements – clients’ requirements consists of two parameters: (i) delay-

tolerance-- the maximum waiting time acceptable to the client and (ii) rate

requirement -- the minimum stream rate acceptable to the client.

• The object name and the region node - the object name (example the movie title

requesting by the client) is given by the client while requesting the stream, the region

node can be extracted from the path of the client in the given network topology.

4.1.3 Outputs Module

 29

4.1.3 Outputs Module

There are three output parameters: (i) the delivered stream rate at the client, (ii) the streaming

point position and (iii) the link busy period along the path from source to the requesting

client. All these three output parameters are monitored by the central server. Central sever

has a database that stores: (i) the current state of the links, (ii) nodes which are acting as the

streaming point and (iii) the objects that are being cached at each streaming point. This

information is important for serving the further requests.

4.1.4 HSM’s Pseudo Code

 ?

Client’s request and
its requirements

Links is free?

Yes No

Stream rate <= weakest
link?

 ?

Yes No

Stream rate calculation

Stream rate >= client’s
rate requirement?

 ?

Accept Reject

No Yes

Strategy 1 Strategy 2

Transferring the
content and stream

Is the content is being
cached?

 ?

No Yes

Stream from cache and
update TTLC

Figure 4.2: HSM’s Pseudo code

4.2 Simulator Implemented in Matlab

 30

4.2 Simulator Implemented in Matlab

In this section, we present the design of the simulator to evaluate the performance of PSM

and HSM. Our goal is to compare the performance of HSM to PSM in terms of (i) number of

serviced client and (ii) the delivered stream rate improvement. The implemented simulator

consists of two functionalities: (i) performs as PSM like simulator and (ii) HSM like

simulator. The implementation of PSM is for the purpose of the comparison between PSM

and HSM. Figure 4.2 shows the functional overview and the components of the simulator

that we have implemented in Matlab and the details of each component are presented below.

• Static Network Topology – refers to the existing network topology given by the user,

for example Gnutella network topology or any real network topology in the Internet

nowadays.

• Network Topology Generator – This module allows user to generate the network

topology according to given inputs, such the number of nodes in the network, the

depth of the network and the bandwidth of the links in the network. It gives the

completely random network topology for the experimentation.

• PSM Module – This module performs as the PSM simulator and it is responsible for

finding out the number of serviced clients and the percentage of stream rate

improvement for a given client arrival pattern.

• HSM Module – This module performs as the HSM simulator and it is responsible for

finding out the number of serviced clients and the percentage of stream rate

improvement for a given client arrival pattern.

• Outputs – the outputs of the simulator are the number of serviced clients and the

percentage of stream rate improvement of clients.

4.2.1 PSM Simulator’s Architecture

• Request Arrival Rate – Number of the client requests per second.

• Observation period – Period over which the clients are monitored.

• Delay-Tolerant (Interval) – This is the interval of the client’s delay tolerance value.

For example if the interval value is [15 minutes – 120 minutes], clients’ delay

tolerance is chosen between 15 to 120 minutes randomly.

4.2.1 PSM Simulator’s Architecture

 31

Network Topology Generator Static Network Topology

. Static network
topology
. Number of nodes in
the network.
. Number of links in the
network
. Link bandwidth
. Level Number

 Output
. Number of serviced clients
. Percentage improvement of client stream rate

 PSM Module (1)
. Client’s request pattern generator
. Client’s requirements generator
. PSM like operation module
. Number of serviced client calculation module
. Percentage of stream rate improvement
calculation module

 HSM module (2)
. Client’s request pattern generator
. Client’s requirements generator
. HSM like operation module
. Number of serviced client calculation module
. Percentage of stream rate improvement
calculation module

Link Bandwidth
Generator Module

. Number of nodes in
the network

Topology Generator
Module

. Level Number
(The depth of the
network)

. Link bandwidth
interval (Min - Max)

 Figure 4.3: Simulator’s Architecture

 Figure 4.4: PSM Module (1)

. Request arrival rate

. Observation period

. Network topology

. Delay-tolerant
interval (Min - Max)
. Rate requirement
interval (Min-Max)

 Client’s requests pattern generator

. Client’s arrival pattern

. Client’s arrival time

. Client’s requirements

 Stream rate calculation

. Weakest link along the path detection

. Stream rate calculation

 Number of serviced client and Percentage of stream rate

 improvement calculation

4.2.2 HSM’s Simulator Architecture

 32

• Rate requirement (Interval) – This is the interval of the client’s rate requirement

value. For example if the interval value is [128 Kbps – 256 Kbps], clients’ rate

requirement is chosen between 128 to 256 Kbps randomly.

• Client’s requests pattern generator – This module generates the clients’ request

pattern with the given inputs such as the client’s delay interval, rate requirement

interval. The output parameters of this module are: (i) the client’s arrival time, (ii) the

client’ requirements and (iii) the region at which the client belongs to. All the values

are randomly distributed

• Stream Rate Calculation – This module calculates the delivered stream rate at the

client given the network topology, client’s requirements and the requested object.

• Number of serviced clients and percentage improvement of the stream rate – This

module is responsible for calculating the number of serviced clients and their stream

rate improvement within the observation period.

 Figure 4.5: HSM Module (2)

. Request arrival rate

. Observation period

. Network topology

. Delay-tolerant
interval (Min - Max)
. Rate requirement
interval (Min-Max)

 Client’s requests pattern generator
. Client’s arrival pattern
. Client’s arrival time
. Client’s requirements

 Stream rate calculation

. Weakest link along the path (source-client) detection

. Stream rate calculation

 Number of serviced client and Percentage of stream rate

 improvement calculation

 Streaming point selection
. Weakest link along the path (source-region node)
detection
. Applying the streaming point selection strategies

 Content downloading and streaming
. Link busy period calculation

. TTLC calculation

 4.3 Matlab Codes

 33

4.2.2 HSM Simulator’s Architecture

• Streaming Point Selection – This module is responsible for figuring out which node

should be acting as the streaming point for the client in the particular region in the

network. The output of this module is the information of the node at which the stream

must start from.

• Content Transferring and Streaming – This module is responsible for calculating the

link busy period in the path from the source to client, this information is necessary for

the central server to monitor the links status in the network. It also calculates the

TTLC of all the content that are being cached at the intermediate nodes.

4.3 Matlab Codes

In this section, we present the snapshot of the Matlab Code that we have developed so far.

The Simulator implemented in Matlab consists of five differences components, (i) Network

Topology Generator, (ii) Client Request Pattern Generator, (iii) PSM module and (iv) HSM

module. For more details see the appendix.

 34

 35

Chapter 5

Performance Evaluation of HSM

In this section we present the results of simulations evaluating the performance of PSM and

HSM, using Matlab. Our objective is to compare the performance of the two mechanisms

under various network topologies and client requirements. The following performance

metrics are used: (i) the number of serviced clients, and (ii) percentage improvement of

client’s stream rate as compared with its minimum rate requirement.

 We define the parameters used in the simulations in Section 5.1 and present details of

our experiments in Section 5.2. In Section 5.4, we discuss the results of our simulations.

5.1 Simulation Parameters and Scenario

The following parameters remain same across all our experiments: (i) Multimedia play out

duration is set to 2 hours, (ii) Without loss of generality, queuing delay and propagation

delay are set to zero, (iii) Period over which client arrivals are monitored, termed observation

period, is set to 4 hours and (iv) Arrival rate of the clients’ requests is varied from 1 to 30 per

minute.

 Performance of HM depends on the network topology, links characteristics, and client

requirements. In order to study the impact of these parameters on the performance of HSM,

we have taken 100 differences topologies that fall into two classes:

• The first 50 topologies are in Class 1; these topologies have high bandwidth at the

links from source to region node. The bandwidths are chosen randomly from the

range (256 Kbps – 768 Kbps).

• Next 50 topologies are categorized into Class 2 topologies that have low bandwidth

(weak links) in the upper part of the network from source to region node. The

bandwidths are chosen randomly from the range (128 Kbps – 256 Kbps).

 Chapter 5 Performance Evaluation of HSM

 36

All topologies have total number of nodes in the range 100 to 500, where the number of

nodes is selected randomly. For each topology, we have done 100 times simulation with

different client request time, and the result of each topology is an average across the results

given by the 100 times simulation. The final result is the average of the 50 results

represented the 50 topologies mentioned above. This scenario is repeated for both the classes,

class 1 and class 2 networks.

5.2 Details of Experiments

In the first set of experiments, we use Class 1 topologies to evaluate the performance of PSM

and HSM.

5.2.1 Number of Serviced Clients VS. Client’s Delivered Stream Rate

Experiments 1 (Class 1): Set the clients’ minimum rate to 128 Kbps and delay tolerance

values to 30 minutes for all clients. We find the number of serviced clients and the

percentage improvement of clients’ stream rates under PSM and HSM. The result given in

figure (5.1) and (5.2) is an average across all the results given by the 50 network topologies

and 100 times simulation for each topology.

 Figure 5.1: Number of serviced clients with identical

 client requirements (class 1)

Figure (5.1) shows that when the request rate increases, the number of serviced clients

decreases for both the mechanisms. This is as expected. However, the decrease is more

pronounced in PSM compared to HSM. While the number of clients gradually decreases in

Number of serviced clients

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of client requests per minute

P
e
rc

e
n

ta
g

e
 o

f
s
e
rv

ic
e
d

c
li

e
n

ts

HSM PSM

 5.2.2 Impact of Client’s Delay Requirement on System Performance

 37

HSM, it drops more rapidly in PSM. Also, the difference between the number of serviced

clients in PSM and HSM keeps widening as the number of requests increases.

 The results given in figure (5.2) show that whenever the number of client requests

increases, the percentage improvement decreases for both the mechanisms. From this graph,

we see that PSM services clients with better stream rates compared with HSM. However,

PSM rejects 78% of client requests compared with 30 % of requests rejected by HSM. In

order to observe both the parameters – number of serviced clients and stream rate

improvement at the clients - we present Figure (5.3). In this figure, X-axis represents the

number of client requests per minute and Y-axis (on the left) represents the percentage of

clients serviced and Y-axis (on the right) represents percentage of stream rate improvement.

5.2.2 Impact of Client’s Delay Requirement on System Performance

In the next set of experiments, we use Class 1 topologies to evaluate the impact of clients’

delay tolerance on the number of serviced clients using PSM and HSM.

Experiments 2 (Class 1): In this set of experiments, we use Class 1 topologies to evaluate the

impact of clients’ delay tolerance on the number of serviced clients using PSM and HSM.

We set the clients’ minimum rate to 128 Kbps. For each network topology, we run four

experiments 100 times each: for each experiment the delay tolerance values of all clients are

equal. The values of delay tolerance chosen for experiments 1-4 are 30, 60, 90, and 120

minutes respectively. This result is an average across all the results given by the 50 network

topologies and 100 times simulation for each topology.

 Results in Figure (5.4) demonstrate that as clients’ delay tolerance increases, the

performance of HSM gets better. When the client delay tolerance is equal to the streaming

duration, HSM services nearly 100% of the clients’ requests. In the case of PSM, as shown in

figure (5.5), client delay tolerance has very little effect on the number of client requests

serviced. This show that HSM performs better and better than PSM when the client’ delay

tolerance increases.

Experiments 3 (Class 2): In this set of experiments, we use Class 2 topologies to evaluate the

performance of PSM and HSM. We set the clients’ minimum rate to 128 Kbps and delay

tolerance values to 15 minutes for all the clients. We find the number of serviced clients and

the percentage improvement of clients’ stream rates under PSM and HSM. . The result given

 5.2.2 Impact of Client’s Delay Requirement on System Performance

 38

in figure (5.6), is an average across all the results given by the 50 network topologies and 100

times simulation for each topology.

Figure (5.6) displays the number of service client and the percentage of stream rate

improvement under PSM and PSM. Results in Figure (5.6) demonstrate that, in class 2

network topology, HSM still performs better than PSM in term of number of serviced clients,

but only marginally. It is also happened to client stream rate, where PSM performs slightly

better than HSM. In general HSM performs well for class 1 topology.

Figure5.2: Percentage of stream rate improvement

 with identical client requirements (Class 1)

Figure 5.3: Percentage of serviced clients vs. percentage

 of stream rate improvement

Stream rate improvement

130
135

140
145

150
155

160
165

170

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of client requests per minute

P
e
rc

e
n

ta
g

e
 o

f
s
tr

e
a
m

ra
te

 i
m

p
ro

v
e
m

e
n

t

HSM PSM

5.3 A Case Study of Gnutella Peer Network

 39

Figure 5.4: Impact of client delay tolerance values on HSM

 Figure 5.5: Impact of client delay tolerance values on PSM

 Figure 5.6: Percentage of serviced clients vs. percentage of

 stream rate improvement (Class 2)

Number of serviced clients

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of client requests per minute

P
e
rc

e
n

ta
g

e
 o

f
s
e
rv

ic
e
d

c
li

e
n

ts

30 mns 60 mns 90 mns 120 mns

Number of serviced clients, PSM

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of client requests per minute

P
e
rc

e
n
ta

g
e
 o

f
s
e
rv

ic
e
d

c
li
e
n
ts

30 mns 60 mns 90 mns 120 mns

Serviced clients VS stream rate

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of client requests per minute

P
e
rc

e
n
ta

g
e
 o

f

s
e
rv

ic
e
d

c
li
e
n
ts

11.9
12
12.1
12.2
12.3
12.4
12.5
12.6

P
e
rc

e
n
ta

g
e
 o

f

s
tr

e
a
m

 r
a
te

im
p
ro

v
e
m

e
n
t

Serviced clients, HSM Serviced clients, PSM

Stream rate, HSM Stream rate, PSM

5.3 A Case Study of Gnutella Peer Network

 40

5.3 A Case Study: Gnutella Peer Network

In this section, we present a case study on the Gnutella Peer Network []. We simplify the

original network topology (figure 5.7) to a tree-based network by removing cycles in the

topology. Our approximated Gnutella Peer Network backbone contains 510 nodes. In this

simulation, we set the clients’ minimum rate to 128 Kbps and delay tolerance values to 30

minutes for all clients. We observe the number of serviced clients and the percentage of

clients’ stream rates improvement under PSM and HSM. The result given in figure (5.8) is an

average across the 100 times simulation with different client request time for the Gnutella

Peer network.

 Figure (5.8) displays the number of serviced clients and the percentage of stream rate

improvement. With the given results, we observe that HSM performs better than PSM in

term of number of serviced clients, but less in the percentage of stream rate improvement.

Note that when the number of client requests reaches 30 per minute, HSM performs 20

percent better than PSM. While PSM rejects more client requests, it provides stream rate that

are on average 5 percent better than HSM.

Figure 5.7: Gnutella Peer Network

 5.4 Analysis of Results

 41

Figure 5.8: Percentage of serviced clients vs. percentage

 of stream rate improvement (Gnutella)

5.4 Analysis of Results

Performance of HSM depends on the following factors: (i) network topology with specific

link bandwidths, and (ii) clients’ requirements. We observe that for Class 1 topologies where

the link bandwidths are provisioned such that the upper links from the source to the regional

nodes have high bandwidth, HSM is a better scheme as the available bandwidth can be better

utilized with this mechanism. In class 2 topologies links from the source to the region nodes

have low bandwidths. In this case, using FTP to transfer the file to a relay node does not

provide any advantage, as the time for transferring the file is same even when streaming

server is placed at the source. The only advantage of HSM is that by choosing a streaming

point appropriately, requests from clients for the same content can be serviced from the

cached contents. Thus, we observe only marginal improvement in the number of clients

serviced with such topologies.

 To summarize, HSM works well with Class 1 topologies because of the impact of

FTP property used in HSM. If the dissemination network falls in Class 2 category, PSM is

preferred as the costs involved in enabling relay nodes with streaming capability may

outweigh the benefits.

Serviced clients VS stream rate

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of client requests per minute

P
e
rc

e
n

ta
g

e
 o

f
s
e
rv

ic
e
d

c
li

e
n

ts

142

144

146

148

150

152

154

156

158

160

162

P
e
rc

e
n
ta

g
e
 o

f
s
tr

e
a
m

ra
te

 i
m

p
ro

v
e
m

e
n

t

Serviced clients, HSM Serviced clients, PSM

Stream rate, HSM Stream rate, PSM

5.5 Costs-Benefit Analysis

 42

5.5 Costs-Benefit Analysis

In this section we present a simple analysis the trade-off between cost of putting streaming

capability at relay nodes and the benefit from improved client services. Our goal is to find the

break-even point, time taken for the CSP to cover the cost of putting streaming capability at

the relay nodes by the revenue from improved client services.

 Cost of providing streaming capability at the relay nodes is given by: N*C, where N

is the number of relay nodes with the streaming capability and C is the cost per streaming

server. Let NH be the number of serviced clients per unit time when HSM is used. Let NP be

the number of serviced clients per unit time when PSM is used. Note that when PSM is used

only one streaming server is placed at the source. By using HSM, the increase in number of

clients serviced is given by (NH-NP). The additional revenue the CSP makes by servicing

these clients is given by P*(NH-NP), where P is the price a client pays for the service.

The break-even point in unit time is given by: Y= N*C/P*(NH-NP)

Example: Consider a network with 20 selected relay nodes with streaming capability. If we

use PSM, we serve 200 out of 400 clients per day using only one central server. If we use

HSM, 300 out of 400 clients are served per day. Suppose one streaming server costs $2000

and a client pays $4 for the service,

Y=20*2000/4*(400-300) = 100 days.

 43

 Chapter 6

Conclusion

Leveraging clients’ delay tolerance, better stream rates can be delivered to clients, even when

links are constrained in their path from the source. Typically in a content dissemination

network controlled by a CSP, weak links are at the edge of the network closer to the clients.

By using a combination of FTP and streaming mechanisms, provisioned links in the CSP’s

backbone can be fully utilized, serving more client requests when compared to a centralized

server handling all the streaming requests. HSM, the proposed hybrid streaming mechanism

uses this idea to improve the performance and hence the revenue for a CSP.

 We have shown that by intelligently choosing an appropriate relay node as streaming

point, on the average 40% more requests can be serviced using HSM as compared with PSM.

In HSM, the transferred content is cached temporarily at the streaming point, used to service

future requests for the same content. This feature further enhances the performance of HSM

when class 1 topologies with highly provisioned backbone are used in the simulations. With

class 2 topologies having weak links in the backbone, we observe only marginal

improvement in the performance of HSM resulting from additional requests serviced from

the caches at streaming points. The future work is to extend HSM from static to dynamic link

bandwidth assumption. Next section, we present HSM extensions.

6.1 HSM Extensions

In this section, we discuss HSM extensions to improve the delivered stream rates at clients as

well as to minimize the number of the nodes with the streaming capacity. For instance, HSM

works with the dedicated link bandwidth assumption; meaning, bandwidths are stable

whenever the accepted request has been sent to client. This assumption is not very suitable

with the Internet scenario. For the extensions of HSM, we propose following three additional

features for HSM to improve the performance of HSM as well as to minimize the resource

 44

utilization such as streaming server and link bandwidth utilization: (i) Admission Control, (ii)

extension of static bandwidth to dynamic bandwidth and (iii) optimal placement of streaming

point.

6.1.1 Admission Control

In this section, we present about the functionality and the purpose of the admission control in

HSM. Our proposed HSM is working with First Come First Serve (FCFS) scenario, where

the first client requests the stream, gets its best streaming rate and client coming later must

adjust the stream quality with the first request. FCFS is not an efficient way to provide the

good quality of the stream to client because clients in the network have different link

bandwidth and requirements; hence. We give a simple example below to illustrate the

disadvantages of FCFS in HSM and to illustrate the need of the admission control.

 Considering the scenario having 10 clients’ request per 10 minutes and let say those

10 clients are C1, C2, …, 10 get the delivered stream rate at 128, 384, 384, 448, 512, 384,

449, 512, 384, 512 Kbps respectively. Assuming C1 to C10 request the stream at t=0, t=1,

t=2, …, t=10 minutes respectively. Let consider the above arrival pattern, for instant, HSM

performs as follow:

First C1 is accepted as it arrives first, and then the immediate accepted message is sent to C1.

In this case C2 to C10 have to follow C1’s stream rate, C2 to C10 gets 128 Kbps. However

C2 to C10 can get higher rate if C1’s request gets rejected. Note that Central server can not

initiate the same stream object with different flows and encoded rate to the clients, because

while serving one client, links are busy, it is not possible to serve others that are sharing the

links with the client being serviced.

 To rectify the above problem, we propose an additional feature for HSM. The idea is

as follows: First we determine the admission control window; this window is a time for

which the central server waits for collecting the client requests. Central server does not send

the accepted or rejected message to clients till the end of the admission control time. In this

case, client has to wait for sometime in order to get the response from the server. In the worst

case, client will wait for the period equivalent to the admission control window size and in

the best case; it will get the reply immediately, if it requests the stream just a moment before

the admission control time expires. When the admission control time expires, server starts

counting the number of requests and their delivered stream rate and then it applies some

 45

statistical analysis to find out the common delivered stream rate for all the requested clients.

The median and mode are used. A step-by-step approach to figure the common delivered

stream rate is as follows: find out what is the median and mode value of the given sample

(delivered stream rate). If the mode value is greater than 50% (this is a threshold value, it can

be any value determine by CSP) than the common delivered stream should be applied with

the majority. If not, the median is applied to find out what is the common rate for all those

clients. We illustrate the approach by using the example below.

 Example, let take the same arrival pattern given in the above example, the same client

C1 to C10, with the delivered stream rate 128, 384, 384, 448, 512, 384, 449, 512, 384, 512

Kpbs respectively. Assuming that, the admission control window size is 10 minutes. We find

the median and mode for the given 10 elements (Delivered stream rate), mode is 4 (384Kbps)

and median is 416 Kbps. As the mode value is 40%, which is less than 50%, so the common

delivered stream rate at the client should be applied to median, which is 416Kbps. Hence, the

common delivered rate for all the 10 clients is 416 Kbps.

6.1.2 Extending from Static to Dynamic Links Bandwidth

For instance, HSM is working only with the assumption of the static link bandwidth or

dedicated links bandwidth. So in this section we discuss about the idea of converting HSM

with static link bandwidth to HSM with dynamic link band width. First we assume that the

link bandwidth vary in the interval L = [Bmin, Bmax], it has never exceeded the maximum

and never dropped below the minimum. Let Bt is the current available link bandwidth when

client requests the stream. The idea is that instead of serving the client with the current

available link bandwidth, we serve them with the link bandwidth equivalent to (Bmin +

Bt)/2. This prevents the interruption of the stream when the link goes down. This allows us to

have the additional data to adjust to the situation when the links go down. This scheme is

working under the assumption, the link bandwidth decrease linearly, not exponentially;

otherwise the amount of extra data may not sufficient to adjust the lost due to the drastically

drop of the link rate.

6.1.3 Optimal Placement of the Streaming Point

For instance, we assume that there are two possible streaming points in each region, one at

the node with the maximum outgoing links and other at the node below the weakest link

 46

along the path from source to region node. The central server chooses one of them by

performing the selection strategy presented in chapter 3. The idea of the optimal placement is

to minimize the number of the streaming point in the entire network by using the statistical

analysis based on the history of the clients’ request from each region, for example, in a given

network topology with 100 regions. For some regions, we know that the client’s link is very

low as compared with the backbone network and base on the history, client’s delivered rate

has never exceeded the weakest link in the backbone network. In this case, the streaming

point below the weakest link may not be required. Hence, we can take it out. By using this

mechanism, we can minimize the number of streaming point in the entire network.

 47

Bibliography

[1] Bo Shen, Sung-Ju Lee and Sujoy Basu. Caching strategies in transcoding-enabled proxy

systems for streaming media distribution networks. IEEE Transaction on Multimedia,

6(2):375{386, June 2000.

[2] Cormac J. Sreenan, Jyh-Cheng Chen, Member, IEEE, Prathima Agrawal and B.

Narendran. Delay reduction techniques for playout buffering. IEEE Transaction on

Multimedia, 2(2):88{97, June 2000.

[3] Danjue Li, Chen-Nee Chuah, Gene Cheung and S. J. Ben Yoo. Yoo. Muvis: Multi-source

video streaming service over wlans. KIC, 2003.

[4] W. Z. Y.-Q. Z. a. J. M. P. Depeng Wu, Yiwei Tomas Hou. Dapeng Wu, Yiwei Thomas

Hou, Wenwu Zhu, Ya-Qin Zhang and Jon M. Peha. IEEE Transaction on circuit and system

for video technology, 11(3):282{300, March 2001.

[5] P. Frossard and O. Verscheure. Batched patch caching for streaming media. IEEE

COMMUNICATION LETTER, 6(4):159{161, April 2002.

[6] Guan-Ming Su and Min Wu. Efficient bandwidth resource allocation for low-delay multi-

user video streaming. IEEE Transaction for Circuits and Systems for Video Technology,

15(9):1124{1137, September 2005.

[7] Jianliang Xu, Bo Li and Dik Lun Lee. Placement problem for transparent data replication

proxy service. IEEE Journal on Selected Areas in Communications, 51(6):1383{1398, 2002.

[8] X. C. Jiangchuan Liu and J. Xu. Proxy cache management for grained scalable video

streaming. IEEE IFOCOM, 2004.

[9] Keqiu Li , Hong Shen, Francis Y. L. Chin and Liusheng Huang. A multimedia object

placement solution for hybrid transparent data replication. Japan Advanced Institute of

Science and Technology and University of Hong Kong, 2005.

[10] S. S. Kien. Hua, Ying Cai. Multicast technique for true video-on-demand services. ACM

Multimedia, pages 191-200, 1998.

[11] D. K. Mohamed, M. Hefeeda, Bharat Bhargava. A hybrid achitecture for cost-effective

on-demand media streaming. Department of Computer Science, Purdue University, West

Lafayette, October 2003.

[12] G. of Cyberspace Directory. http://www.cybergeography.org/.

 48

[13] Danny Raz, P.Krishnan and Yuval Shavitt. Caching location problem. IEEE/ACM

Transactions Networking, 8(5):795{825, October 2000.

[14] W. Z. Qian Zhang and Y.-Q. Zhang. Resource allocation for multimedia streaming over

the Internet. IEEE Transaction on Multimedia, 3(3):339{355, September 2001.

[15] Saraswathi Krihivasan and Sridar Iyer. Enhancing QoS for Delay-tolerant Mutimedia

Applications: Resource utilization and Scheduling from a Service Provider’s Perspective.

[16] Y.-S. M. Sang-Ho Lee, Kyu-Young Whang and I.-Y. Song. Dynamic buffer allocation

in video-on-demand systems. IEEE Transactions on knowledge and data engineering,

15(6):1535{1551, 2003.

[17] J. R. Subhabrata Sen and D. Towsley. Proxy prefix caching for multimedia streams.

IEEE Transaction on Multimedia, pages 1310{1318, 1999.

[18] C.-L. C. Te-Shou Su, Shih-Yu Huang and J.-S. Wang. Optimal chaining scheme for

video-on-demand applications on collaborative networks. IEEE Transactions on multimedia,

7(5):972{980, October 2005.

[19] S.-H. G. C. Victor O.K, Li Jiancong Chen. Multipath routing for video delivery over

bandwidth-limited network. IEEE Trans, 22(10):1920{1932, 2004.

[20] J. Almeida, D.Eager, and M. Vernon. A Hybrid Caching Strategy for Streaming Media

Files. In Proceedings of the SPIE/ACM Conference on Multimedia Computing and

Networking, January 2001.

[21] A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling Policies for an On-Demand Video

Server with Batching. In Proceedings of the ACM Conference on Multimedia, pages 391-

398, October 1994.

[22] A. Dan, D. M. Dias, R. Mukherjee, D. Sitaram, and R.Tewari. Buffering and Caching in

Large-Scale Video Servers. In Digest of Papers. IEEE International Computer Conference,

pages 217-225, March 1995.

[23] A. Dan, P. Shahabuddin, D. Sitaram, and D. Towsley. Channel Allocation under

batching and VCR Control in Movie-on-Demand Servers. Journal of Parallel and Distributed

Computing, 30(2): 168-179, November 1995.

[24] A. Dan and D. Sitaram. A Generalized Interval Caching Policy for Mixed Interactive

and Long Video Workloads. In Proceedings of Multimedia Computing and Networking

Conference (MMCN), pages 344-351, January 1996.

[25] L. Golubchik, J. C. S. Lui, and R. Muntz. Reducing I/O Demand in Video-On-Demand

Storage Servers. In Proceedings of the ACM SIGMETRICS Conference on Measurements

and Modeling of Computer Systems, pages 25-36, May 1995.

[26] Kien A and Hua Simon Sheu. Skyscraper Broadcasting: A New Broadcasting Scheme

for Metropolitan Video-on-Demand System. In Proceedings of the ACM Conference on

Applications, Technologies, Architectures, and Protocols for Computer Communication

(SIGCOMM’97), pages 89-100, September 1997.

[27] N. J. Sarhan and C. R. Das. A Simulation-Based Analysis of Scheduling Policies for

Multimedia Servers. In Proceedings of the Annual Simulation Symposium, pages 183 - 190,

March 30 - April 2, 2003.

49

 50

 51

Acknowledgments

I express my sincere gratitude towards my guide Prof. Sridhar Iyer for his constant support

and encouragement. His invaluable guidance has been instrumental in the successful

completion of the project work

 I would like to thank Mms. Saraswathi Krithivasan for her help in the completion of

my project work.

Last but not the least; I would like to thank the entire KReSIT family for making my

stay at ITT Bombay a memorable one.

 52

 53

Appendix

 Topology Generator

numnodes= input('Enter number of nodes in the network:');

%Enter the level of the network

levelnum= input('Enter the number of level:');

%clientnum= input('Enter the client number:');

%Verifying the number of the level

while (levelnum > numnodes) && (numnodes~= 1)

 levelnum=input('Number level should be less than number of nodes:')

end

%global/general vaviable storing,

%nodenum row 1, second row, third row region number,forth clientnum

 generalvar= ones(5,1);

 generalvar(1,1)= numnodes;

 generalvar(2,1)= levelnum;

 %Table numbering the link

 Number_link= ones(numnodes);

 %End creating the table numbering the link.

 relaynodes= ones(numnodes); % declare the relay nodes matrix n*n

 M=triu(relaynodes,1); % take the upper triangular

 levelnodes= ones(numnodes,1);

 region= ones(numnodes,2);

 Links=triu(Number_link,1);

 %Intial zero to the matrix

 for i=1:numnodes

 for j=i+1:numnodes

 M(i,j)= 0;

 Links(i,j)=0;

 end

end

% initial the levelnodes matrix to zero

for p=1:numnodes

 for h=1:2

 region(p,h)= 0;

 end

end

%Start generating the random topology N*N matrix

linknumber=1;

levelnodes(1,1)= 1;

i= 1;

while i~= numnodes

 position= round(i*rand(1,1));

 if position== 0

 position= 1;

 end

 if levelnodes(position,1)== levelnum

 %will do pick the random number again

 else

 %linknode= round(8*rand(1,1));

 linknode= round(3*rand(1,1));

 if linknode== 0

 linknode= 1;

 end

 halfnodes= round(numnodes/2);

 halflevel= round(levelnum/2);

 54

 if (max(levelnodes)< levelnum) && (levelnum> halfnodes)

 j= 1;

 while j~= numnodes

 if levelnodes(j,1)== max(levelnodes)

 position= j;

 break

 end

 j= j+1;

 end

 else

 if (max(levelnodes)< levelnum) && (i>= halfnodes)

 j= 1;

 while j~= numnodes

 if levelnodes(j,1)== max(levelnodes)

 position= j;

 break

 end

 j= j+1;

 end

 end

 end

 levelnodes(i+1,1)= levelnodes(position,1)+1;

 if max(levelnodes)< round(halfnodes)

 M(position,i+1)= 256*linknode;

 else

 M(position,i+1)= 128*linknode;

 end

 Links(position,i+1)= linknumber;

 linknumber=linknumber+1;

 region(i+1,1)= position;

 region(i+1,2)= 0;

 region(position,2)= i+1;

 i= i+1;

 end

end

% End generating the random nodes N*N martix

generalvar(5,1)= numnodes-1; %record the link number in the gengeral variables

 Total_level= max(levelnodes)

 csvwrite('NtoNmatrix.dat',M);

 csvwrite('nodeslevel.dat',levelnodes);

 csvwrite('suce_pred_node.dat',region);

 csvwrite('Link_number.dat',Links);

 %Generate the client to each region

 count= 0; % count is the number of the region in the entire network topology

 for r=1: numnodes

 if region(r,2)== 0

 count= count+1;

 end

 end

%Enter the number of client

 Total_number_in_region= count

%Client number input

clientnum= input('Enter the client number:');

generalvar(3,1)= count;

generalvar(4,1)= clientnum;

while clientnum< count

 clientnum= input('Enter new number, number of client should be greater or equal to number

of region:');

end

clientregion= ones(clientnum+1,count); % declare the client-region based matrix

 55

regionbased= ones(count,levelnum+2); % declare the region-based matrix

 % levelnum+1 column is the number of client in the region

 % levelnum+2 column is the number of

 % intermediate node in the path

%initial the client region matrix with value zero

 for ir=2:clientnum+1

 for ic=1:count

 clientregion(ir,ic)= 0;

 end

 end

 rp=1;% region position index

 for r=1: numnodes

 if region(r,2)== 0

 clientregion(1,rp)= r;

 rp= rp+1;

 end

 end

% Generate number of client in each region randomly

% initial region based matrix to zero

 for rr=1:count

 for rc=1:levelnum

 regionbased(rr,rc)= 0;

 end

 end

% ri is the region index for loop 'for'

 temp= clientnum-count;

 temp1= clientnum-count;

 clientc= 0; % countc the number of client that have been distrituted

 for ri=1:count

 halfregionnum= round(count/2);

 if temp>= 1

 if ri== count

 regionbased(ri,levelnum+1)= temp1-clientc+1;

 else

 cn= round((temp/halfregionnum)*rand(1,1));

 regionbased(ri,levelnum+1)= cn+1;

 clientc= clientc+cn;

 end

 else

 regionbased(ri,levelnum+1)= 1;

 end

 end

%Ditributing the link bandwith randomly to the clients in each region

 startpoint=2;

 for id=1:count

 for k=startpoint:regionbased(id,levelnum+1)+startpoint-1

 linkvalue= round(8*rand(1,1)); % the link bandwith vary from 64 to 512 kbps

 if linkvalue== 0

 linkvalue= 1;

 end

 clientregion(k,id)= 64*linkvalue;

 end

 startpoint= startpoint+regionbased(id,levelnum+1);

 k= startpoint;

 end

%Start from this point, finding the path.

%from node in the region to S

%count is the region number in the entire network

 56

 for i=1:count

 R= clientregion(1,i);% assign the number of the region to varable R

 numpath= levelnodes(R,1);

 regionbased(i,numpath)= R;

 regionbased(i,levelnum+2)= numpath-1;

 regionbased(i,1)= 1;

 while (R~= 1)

 k= 1;

 while (k~= numnodes)

 if M(k,R)~= 0

 numpath= numpath-1;

 regionbased(i,numpath)= k;

 R= k;

 break

 end

 k= k+1;

 end

 end

 end

%End finding the path from the node covered the region to source(S)

%Writing to data file, exporting the matrix client in each region matrix

%to client-in-each-region.dat file

%and exporting data from region-based matrix to region-based.date file

csvwrite('client_in_each_region.dat',clientregion);

csvwrite('region_based.dat',regionbased);

csvwrite('generalvariable.dat',generalvar);

%Build the clients'contraints table

%The table consites of the rate constraint, delay constraint and optimal rate

%the rate constraint is between 64 to 256 kbps

%the delay is between 15 mns to 60 mns

%generate the clients'constraints randomly

clientconstraint= ones(clientnum,5);

 for i=1:clientnum

 rate= round(4*rand(1,1)); % generate the rate constraint

 if rate== 0

 rate= 1;

 end

 clientconstraint(i,1)= rate*64;

 delay= round(6*rand(1,1));% generate the delay constraint

 if delay== 0

 delay= 1;

 end

 clientconstraint(i,2)= delay*30;

 clientconstraint(i,3)=0; % initial the optimal rate to zero

 end

csvwrite('client_constraints.dat',clientconstraint);

%End generating the clients'constraints

 57

 Client Request Pattern Generator

%Finding the optimal rate for the client in the network given its rate

%constraint and delay constraint

NtoNmatrix=csvread('NtoNmatrix.dat'); % Random intermediate nodes matrix

clientregion=csvread('client_in_each_region.dat');%client in each region matrix

regionbased=csvread('region_based.dat');% Regionbased matrix storing the region and the path

clientconstraint= csvread('client_constraints.dat'); %Client constraint table

weakness_link_region= csvread('weakness_link_region.dat');

temporary_caching_place=csvread('temporary_caching_place.dat');

generalvar= csvread('generalvariable.dat');

Link_number_m= csvread('Link_number.dat');

a_r=csvread('rate.dat');

S_d=csvread('simulation_time.dat');

average_arrival_r=a_r(1,1);

Simulation_duration=S_d(1,1);

nodesnum= generalvar(1,1);

levelnum= generalvar(2,1);

regionnum= generalvar(3,1);

clientnum= generalvar(4,1);

link_number= generalvar(5,1);

Total_clients= round(average_arrival_r*Simulation_duration*60);

%Creating the client's request table

Client_request= ones(Total_clients,6);

Client_Pro= ones(Total_clients,3);

%snap_shot for the duration of 10 minutes

Snap_shot= average_arrival_r* 10;

%St is a start up time

 st=0;

loop= Simulation_duration*60/10;

client_number=1;

for i=1:loop

 destination= client_number+Snap_shot-1;

 for j=client_number:destination

 %Distributing the link bandwidth

 %linkvalue= round(4*rand(1,1)); % the link bandwith vary from 64 to 512 kbps

 linkvalue= round(1*rand(1,1)); % the link bandwith vary from 64 to 512 kbps

 if linkvalue== 0

 linkvalue= 1;

 end

 Client_request(j,1)=128*linkvalue; %Client_request(j,1)=128*linkvalue;

 %End distributing the link bandwidth

 %Distributing the rate constraint

 %rate= round(4*rand(1,1)); % generate the rate constraint

 rate= round(1*rand(1,1)); % generate the rate constraint

 if rate== 0

 rate= 1;

 end

 Client_request(j,2)= rate*128;

 %End distributing the rate constraint

 %Distributing the delay constraint

 delay= round(4*rand(1,1));% generate the delay constraint

 % delay= round(1*rand(1,1));% generate the delay constraint

 if delay== 0

 delay= 1;

 end

 Client_request(j,3)= delay*90;

 %End distributing the delay constraint

 58

 %Request time

 r_time= round(10*rand(1,1));% generate the delay constraint

 Client_request(j,4)= r_time+st;

 Client_Pro(j,1)= j;

 Client_Pro(j,3)= r_time+st;

 %End distribution request time

 %Optimal rate

 Client_request(j,5)=0;

 %End initiating the optimal rate

 %Distributing region number

 region= round((regionnum)*rand(1,1));

 if region==0

 region=1;

 end

 Client_request(j,6)= region;

 Client_Pro(j,2)= region;

 %End distributing region number

 end

 client_number= destination+1;

 st=st+10;

end

Client_Pro1= sortrows(Client_Pro,3);

csvwrite('client_request1_s.dat',Client_Pro1);

csvwrite('client_request1_ftp.dat',Client_Pro1);

csvwrite('client_request_s.dat',Client_request);

csvwrite('client_request_ftp.dat',Client_request);

Tc= ones(1,1);

Tc(1,1)=Total_clients;

csvwrite('Total_clients.dat',Tc);

PSM module

%Pure streaming mechanism (PSM)

NtoNmatrix=csvread('NtoNmatrix.dat'); % Random intermediate nodes matrix

clientregion=csvread('client_in_each_region.dat');%client in each region matrix

regionbased=csvread('region_based.dat');% Regionbased matrix storing the region and the path

clientconstraint= csvread('client_constraints.dat'); %Client constraint table

weakness_link_region= csvread('weakness_link_region.dat');

Total_clients=csvread('Total_clients.dat');

temporary_caching_place=csvread('temporary_caching_place.dat');

generalvar= csvread('generalvariable.dat');

Link_number_m= csvread('Link_number.dat');

nodesnum= generalvar(1,1);

levelnum= generalvar(2,1);

regionnum= generalvar(3,1);

clientnum= generalvar(4,1);

link_number= generalvar(5,1);

%global Total_clients;

Client_Pro1=csvread('client_request1_ftp.dat');

Client_request=csvread('client_request_ftp.dat');

 59

% Link numer and its busy period

link_busy_period= ones(link_number,4);

%Server Side object table

for i=1:link_number

 link_busy_period(i,1)=0;

 link_busy_period(i,2)=0;

 link_busy_period(i,3)=0;

 link_busy_period(i,4)=0;

end

Server_side= ones(regionnum,6);

for i=1:regionnum

 Server_side(i,1)=0;

 Server_side(i,2)=0;

 Server_side(i,3)=0;

 Server_side(i,4)=0;

 Server_side(i,5)=0;

 Server_side(i,6)=0;

 Server_side(i,7)=0;

end

%Start doing simulation

%Link_number_m : maintain the link number matrix

%Server_side: maintain the information about the object being streaming

%Client_request: maintain the information about the client's request

%link_busy_period : maintain the link status, busy or free

%Client_Pro: maintain the current client property

%weakness_link_region: maintain the weakness link in the region

%temporary_caching_place: streaming position of reach region (1,regionnum)

%regionbased: maintain the path from s to region node

%%%%Streaming

Movieduration= 120*60;

Threshold_period=0; % We can vary this value

start_up_time= Client_Pro1(1,3);

 for i=1:Total_clients

 Client_number= Client_Pro1(i,1);

 Client_region= Client_Pro1(i,2);

 Client_request_time= Client_Pro1(i,3);

 Client_delay= Client_request(Client_number,3);

 Client_rate_c= Client_request(Client_number,2);

 region_start_streaming_from= Server_side(Client_region,5);

 region_end_streaming_at= Server_side(Client_region,6);

 previous_client_request_time=Server_side(Client_region,7);

 waiting_time= Client_request_time+Client_delay;

 Client_start= waiting_time;

 Client_end= waiting_time+120;

 Weaklink=Client_request(Client_number,1);

 if (Client_request(Client_number,1)>weakness_link_region(Client_request(Client_number,6),1))

 Weaklink= weakness_link_region(Client_request(Client_number,6),1);

 end

 % In case of client join other request

 if Client_request_time < region_start_streaming_from && region_end_streaming_at> waiting_time

 %Current_client_start= Client_request_time+Client_delay;

 if Client_request_time== previous_client_request_time

 client_rate= Server_side(Client_region,2);

 if client_rate>= Client_rate_c

 delay= ((client_rate-Weaklink)*7200/Weaklink)/60;

 if delay <= Client_delay

 Client_request(Client_number,5)=client_rate;

 else

 60

 Client_request(Client_number,5)=-11; %first case delay constrait violated

 end

 else

 Client_request(Client_number,5)=-12; % second case rate constraint violated

 end

 else

 Client_request(Client_number,5)=-111; % Special case

 end

 % In case it needs to start a new stream or join with other region

 else

 %Check the link status, whether we can initiate the stream or

 %not

 if Client_request_time> region_start_streaming_from && waiting_time < region_end_streaming_at

 Client_request(Client_number,5)=-13;% third case

 end

 % In case of client wait till the old stream finish and

 % initiate a new stream or joint with others

 if Client_request_time> region_start_streaming_from && waiting_time > region_end_streaming_at

 remaining_delay= waiting_time - region_end_streaming_at;

 expected_rate= remaining_delay*60*Weaklink/7200+ Weaklink;

 link_is_free=1;

 Remaining_bandwidth= ones(1,levelnum-1);

 for k=1:levelnum

 Reamining_bandwidth(1,k)= 100000;

 end

 for in=1:levelnum-1

 if (regionbased(Client_region,in+1)~=0)

 LinksN= Link_number_m(regionbased(Client_region,in),regionbased(Client_region,in+1));

 V_bandwidth= NtoNmatrix(regionbased(Client_region,in),regionbased(Client_region,in+1));

 if link_busy_period(LinksN,2)> waiting_time

 link_is_free=0;

 end

 Remaining_bandwidth(1,in)= link_busy_period(LinksN,3);

 end

 end

 if link_is_free==1

 for in=1:levelnum-1

 if (regionbased(Client_region,in+1)~=0)

 LinksN= Link_number_m(regionbased(Client_region,in),regionbased(Client_region,in+1));

 V_bandwidth= NtoNmatrix(regionbased(Client_region,in),regionbased(Client_region,in+1));

 link_busy_period(LinksN,1)= Client_request_time;

 %end_time= expected_rate*7200/V_bandwidth;

 link_busy_period(LinksN,2)= Client_start+ 120; %(end_time/60);

 link_busy_period(LinksN,3)= V_bandwidth-expected_rate ;

 link_busy_period(LinksN,4)= Client_region;

 end

 end

 if expected_rate>= Client_rate_c

 Client_request(Client_number,5)=expected_rate;

 Server_side(Client_region,2)= expected_rate;

 Server_side(Client_region,3)= temporary_caching_place(1,Client_region);

 Server_side(Client_region,4)=7200;

 Server_side(Client_region,5)=Client_start;

 Server_side(Client_region,6)=Client_end;

 Server_side(Client_region,7)=Client_request_time;

 else

 Client_request(Client_number,5)=-14; %fourth case

 end

 61

 else %being else here

 % Find out which region that client can join

 if min(Remaining_bandwidth)>0 && min(Remaining_bandwidth)>= expected_rate

 for in=1:levelnum-1

 if (regionbased(Client_region,in+1)~=0)

 LinksN= Link_number_m(regionbased(Client_region,in),regionbased(Client_region,in+1));

 V_bandwidth= NtoNmatrix(regionbased(Client_region,in),regionbased(Client_region,in+1));

 link_busy_period(LinksN,1)= Client_request_time;

 %end_time= expected_rate*7200/V_bandwidth;

 link_busy_period(LinksN,2)= Client_start+ 120;%(end_time/60);

 link_busy_period(LinksN,3)= link_busy_period(LinksN,3)-expected_rate ;

 link_busy_period(LinksN,4)= Client_region;

 end

 end

 if expected_rate>= Client_rate_c

 Client_request(Client_number,5)=expected_rate;

 Server_side(Client_region,2)= expected_rate;

 Server_side(Client_region,3)= temporary_caching_place(1,Client_region);

 Server_side(Client_region,4)=7200;

 Server_side(Client_region,5)=Client_start;

 Server_side(Client_region,6)=Client_end;

 Server_side(Client_region,7)=Client_request_time;

 else

 Client_request(Client_number,5)=-15; %fifth case

 end

 else % start begin1

 preferable_rate=-1;

 for h=1:regionnum

 Region_encoded_rate= Server_side(h,2);

 Streaming_start= Server_side(h,5);

 if Client_start>= Streaming_start

 remaining_delay1= waiting_time-Streaming_start;

 delay_c= ((Region_encoded_rate-Weaklink)*7200/Weaklink)/60;

 if delay_c<=remaining_delay1

 if preferable_rate< Region_encoded_rate

 preferable_rate= Region_encoded_rate;

 end

 end

 end

 end

 if preferable_rate~=-1

 expected_rate= preferable_rate;

 for in=1:levelnum-1

 if (regionbased(Client_region,in+1)~=0)

 LinksN= Link_number_m(regionbased(Client_region,in),regionbased(Client_region,in+1));

 V_bandwidth= NtoNmatrix(regionbased(Client_region,in),regionbased(Client_region,in+1));

 link_busy_period(LinksN,1)= Client_request_time;

 %end_time= expected_rate*7200/V_bandwidth;

 link_busy_period(LinksN,2)= Client_start+ 120; %(end_time/60);

 link_busy_period(LinksN,3)= V_bandwidth-expected_rate ;

 link_busy_period(LinksN,4)= Client_region;

 end

 end

 if expected_rate>= Client_rate_c

 Client_request(Client_number,5)=expected_rate;

 Server_side(Client_region,2)= expected_rate;

 62

 Server_side(Client_region,3)= temporary_caching_place(1,Client_region);

 Server_side(Client_region,4)=7200;

 Server_side(Client_region,5)=Client_start;

 Server_side(Client_region,6)=Client_end;

 Server_side(Client_region,7)=Client_request_time;

 else

 Client_request(Client_number,5)=-16; %sixth case

 end

 else

 Client_request(Client_number,5)=-17;%seventh case

 end

 end %end begin1

 end %end else here

 end

 % In case we can initiate the new stream

 % New stream

 if Client_request_time>= region_end_streaming_at

 expected_rate= (Client_delay*60*Weaklink)/7200 + Weaklink;

 for in=1:levelnum-1

 if (regionbased(Client_region,in+1)~=0)

 LinksN= Link_number_m(regionbased(Client_region,in),regionbased(Client_region,in+1));

 V_bandwidth= NtoNmatrix(regionbased(Client_region,in),regionbased(Client_region,in+1));

 link_busy_period(LinksN,1)= Client_request_time;

 %end_time= expected_rate*7200/V_bandwidth;

 link_busy_period(LinksN,2)= Client_start+ 120; %(end_time/60);

 link_busy_period(LinksN,3)= V_bandwidth-expected_rate ;

 link_busy_period(LinksN,4)= Client_region;

 end

 end

 if expected_rate>= Client_rate_c

 Client_request(Client_number,5)=expected_rate;

 Server_side(Client_region,2)= expected_rate;

 Server_side(Client_region,3)= temporary_caching_place(1,Client_region);

 Server_side(Client_region,4)=7200;

 Server_side(Client_region,5)=Client_start;

 Server_side(Client_region,6)=Client_end;

 Server_side(Client_region,7)=Client_request_time;

 else

 Client_request(Client_number,5)=-18; % huit case

 end

 end

 end

 end

csvwrite('link_busy_period_s.dat', link_busy_period);

csvwrite('Server_side_table_s.dat', Server_side);

csvwrite('client_request1_s.dat',Client_Pro1);

csvwrite('client_request_s.dat',Client_request);

sum=0;

accepted_client=0;

rejected_client=0;

percentage_improvement=0;

for j=1:Total_clients

 if Client_request(j,5) > 0

 accepted_client=accepted_client+1;

 sum=sum+Client_request(j,5);

 improve=(Client_request(j,5)-Client_request(j,2))*100/Client_request(j,2);

 percentage_improvement=percentage_improvement+improve;

 else

 rejected_client = rejected_client+1;

 63

 end

end

%sum

%global Average_s;

%global percentage_r_s;

%global percentage_a_s;

s_info= ones(1,4);

Average_s= sum/accepted_client;

%accepted_client

percentage_a_s= (accepted_client/Total_clients)*100;

%rejected_client

percentage_r_s= (rejected_client/Total_clients)*100;

percentage_im=percentage_improvement/accepted_client;

s_info(1,1)=Average_s;

s_info(1,2)=percentage_r_s;

s_info(1,3)=percentage_a_s;

s_info(1,4)=percentage_im;

csvwrite('s_info.dat',s_info);

 PSM module

%Finding the optimal rate for the client in the network given its rate

%constraint and delay constraint

NtoNmatrix=csvread('NtoNmatrix.dat'); % Random intermediate nodes matrix

clientregion=csvread('client_in_each_region.dat');%client in each region matrix

regionbased=csvread('region_based.dat');% Regionbased matrix storing the region and the path

clientconstraint= csvread('client_constraints.dat'); %Client constraint table

weakness_link_region= csvread('weakness_link_region.dat');

Total_clients=csvread('Total_clients.dat');

temporary_caching_place=csvread('temporary_caching_place.dat');

generalvar= csvread('generalvariable.dat');

Link_number_m= csvread('Link_number.dat');

nodesnum= generalvar(1,1);

levelnum= generalvar(2,1);

regionnum= generalvar(3,1);

clientnum= generalvar(4,1);

link_number= generalvar(5,1);

%global Total_clients;

Client_Pro1=csvread('client_request1_ftp.dat');

Client_request=csvread('client_request_ftp.dat');

% Link numer and its busy period

link_busy_period= ones(link_number,4);

%Server Side object table

for i=1:link_number

 link_busy_period(i,1)=0;

 link_busy_period(i,2)=0;

 link_busy_period(i,3)=0;

 link_busy_period(i,4)=0;

end

Server_side= ones(regionnum,6);

for i=1:regionnum

 Server_side(i,1)=0;

 Server_side(i,2)=0;

 Server_side(i,3)=0;

 Server_side(i,4)=0;

 Server_side(i,5)=0;

 Server_side(i,6)=0;

 64

end

%Start doing simulation for ftp

%Link_number_m : maintain the link number matrix

%Server_side: maintain the information about the object being streaming

%Client_request: maintain the information about the client's request

%link_busy_period : maintain the link status, busy or free

%Client_Pro: maintain the current client property

%weakness_link_region: maintain the weakness link in the region

%temporary_caching_place: streaming position of reach region (1,regionnum)

%regionbased: maintain the path from s to region node

%%%%Streaming

Movieduration= 120*60;

Threshold_period=0; % We can vary this value

%start_up_time= Client_Pro1(1,3);

 for i=1:Total_clients

 Client_number= Client_Pro1(i,1);

 Client_region= Client_Pro1(i,2);

 Client_request_time= Client_Pro1(i,3);

 Client_delay= Client_request(Client_number,3);

 Client_rate_c= Client_request(Client_number,2);

 region_start_streaming_from= Server_side(Client_region,5);

 region_end_streaming_at= Server_side(Client_region,6);

 waiting_time= Client_request_time+Client_delay;

 Client_start= waiting_time;

 Client_end= waiting_time+120;

 Weaklink=Client_request(Client_number,1);

 if (Client_request(Client_number,1)>weakness_link_region(Client_request(Client_number,6),1))

 Weaklink= weakness_link_region(Client_request(Client_number,6),1);

 end

 % In case of client join other request in the same region

 if Client_request_time < region_start_streaming_from && region_end_streaming_at > waiting_time

 client_rate= Server_side(Client_region,2);

 if client_rate>= Client_rate_c

 delay= ((client_rate-Weaklink)*7200/Weaklink)/60;

 if delay <= Client_delay

 Client_request(Client_number,5)=client_rate;

 else

 Client_request(Client_number,5)=-11; %first case delay constrait violated

 end

 else

 Client_request(Client_number,5)=-12; % second case rate constraint violated

 end

 % In case it needs to start a new stream or join with other region

 else

 %Check the link status, whether we can initiate the stream or

 %not

 if Client_request_time> region_start_streaming_from && waiting_time < region_end_streaming_at

 Client_request(Client_number,5)=-13;% third case

 end

 % In case of client wait till the old stream finish and

 % initiate a new stream or joint with others

 if Client_request_time> region_start_streaming_from && waiting_time > region_end_streaming_at

 remaining_delay= waiting_time - region_end_streaming_at;

 expected_rate= remaining_delay*60*Weaklink/7200+ Weaklink;

 link_is_free=1;

 Remaining_bandwidth= ones(1,levelnum-1);

 for k=1:levelnum

 Reamining_bandwidth(1,k)= 100000;

 65

 end

 for in=1:levelnum-1

 if (regionbased(Client_region,in+1)~=0)

 LinksN= Link_number_m(regionbased(Client_region,in),regionbased(Client_region,in+1));

 V_bandwidth= NtoNmatrix(regionbased(Client_region,in),regionbased(Client_region,in+1));

 if link_busy_period(LinksN,2)> waiting_time

 link_is_free=0;

 end

 Remaining_bandwidth(1,in)= link_busy_period(LinksN,3);

 end

 end

 if link_is_free==1

 for in=1:levelnum-1

 if (regionbased(Client_region,in+1)~=0)

 LinksN= Link_number_m(regionbased(Client_region,in),regionbased(Client_region,in+1));

 V_bandwidth= NtoNmatrix(regionbased(Client_region,in),regionbased(Client_region,in+1));

 link_busy_period(LinksN,1)= Client_request_time;

 end_time= expected_rate*7200/V_bandwidth;

 link_busy_period(LinksN,2)= Client_request_time+(end_time/60);

 link_busy_period(LinksN,3)= 0;%V_bandwidth-expected_rate ;

 link_busy_period(LinksN,4)= Client_region;

 end

 end

 if expected_rate>= Client_rate_c

 Client_request(Client_number,5)=expected_rate;

 Server_side(Client_region,2)= expected_rate;

 Server_side(Client_region,3)= temporary_caching_place(1,Client_region);

 Server_side(Client_region,4)=7200;

 Server_side(Client_region,5)=Client_start;

 Server_side(Client_region,6)=Client_end;

 else

 Client_request(Client_number,5)=-14; %fourth case

 end

 else %being else here

 % Find out which region that client can join

 if min(Remaining_bandwidth)>0 && min(Remaining_bandwidth)>= expected_rate

 for in=1:levelnum-1

 if (regionbased(Client_region,in+1)~=0)

 LinksN= Link_number_m(regionbased(Client_region,in),regionbased(Client_region,in+1));

 V_bandwidth= NtoNmatrix(regionbased(Client_region,in),regionbased(Client_region,in+1));

 link_busy_period(LinksN,1)= Client_request_time;

 end_time= expected_rate*7200/V_bandwidth;

 link_busy_period(LinksN,2)= Client_request_time+(end_time/60);

 link_busy_period(LinksN,3)= 0;%link_busy_period(LinksN,3)-expected_rate ;

 link_busy_period(LinksN,4)= Client_region;

 end

 end

 if expected_rate>= Client_rate_c

 Client_request(Client_number,5)=expected_rate;

 Server_side(Client_region,2)= expected_rate;

 Server_side(Client_region,3)= temporary_caching_place(1,Client_region);

 Server_side(Client_region,4)=7200;

 Server_side(Client_region,5)=Client_start;

 Server_side(Client_region,6)=Client_end;

 else

 Client_request(Client_number,5)=-15; %fifth case

 end

 else % start begin1

 preferable_rate=-1;

 for h=1:regionnum

 66

 Region_encoded_rate= Server_side(h,2);

 Streaming_start= Server_side(h,5);

 if Client_start>= Streaming_start

 remaining_delay1= waiting_time-Streaming_start;

 delay_c= ((Region_encoded_rate-Weaklink)*7200/Weaklink)/60;

 if delay_c<=remaining_delay1

 if preferable_rate< Region_encoded_rate

 preferable_rate= Region_encoded_rate;

 end

 end

 end

 end

 if preferable_rate~=-1

 expected_rate= preferable_rate;

 for in=1:levelnum-1

 if (regionbased(Client_region,in+1)~=0)

 LinksN= Link_number_m(regionbased(Client_region,in),regionbased(Client_region,in+1));

 V_bandwidth= NtoNmatrix(regionbased(Client_region,in),regionbased(Client_region,in+1));

 link_busy_period(LinksN,1)= Client_request_time;

 end_time= expected_rate*7200/V_bandwidth;

 link_busy_period(LinksN,2)= Client_request_time+(end_time/60);

 link_busy_period(LinksN,3)= 0 ;

 link_busy_period(LinksN,4)= Client_region;

 end

 end

 if expected_rate>= Client_rate_c

 Client_request(Client_number,5)=expected_rate;

 Server_side(Client_region,2)= expected_rate;

 Server_side(Client_region,3)= temporary_caching_place(1,Client_region);

 Server_side(Client_region,4)=7200;

 Server_side(Client_region,5)=Client_start;

 Server_side(Client_region,6)=Client_end;

 else

 Client_request(Client_number,5)=-16; %sixth case

 end

 else

 Client_request(Client_number,5)=-17;%seventh case

 end

 end %end begin1

 end %end else here

 end

 % In case we can initiate the new stream

 % New stream

 if Client_request_time>= region_end_streaming_at

 expected_rate= (Client_delay*60*Weaklink)/7200 + Weaklink;

 conditions=0;

 for in=1:levelnum-1

 if (regionbased(Client_region,in+1)~=0)

 if regionbased(Client_region,in+1)~=temporary_caching_place(1,Client_region)

 conditions=1;

 end

 if conditions==1

 LinksN= Link_number_m(regionbased(Client_region,in),regionbased(Client_region,in+1));

 V_bandwidth= NtoNmatrix(regionbased(Client_region,in),regionbased(Client_region,in+1));

 link_busy_period(LinksN,1)= Client_request_time;

 % end_time= Client_start+120;

 link_busy_period(LinksN,2)= Client_request_time+120;

 link_busy_period(LinksN,3)= V_bandwidth-expected_rate ;

 link_busy_period(LinksN,4)= Client_region;

 67

 else

 LinksN= Link_number_m(regionbased(Client_region,in),regionbased(Client_region,in+1));

 V_bandwidth= NtoNmatrix(regionbased(Client_region,in),regionbased(Client_region,in+1));

 link_busy_period(LinksN,1)= Client_request_time;

 end_time= expected_rate*7200/V_bandwidth;

 link_busy_period(LinksN,2)= Client_request_time+(end_time/60);

 link_busy_period(LinksN,3)= 0 ;

 link_busy_period(LinksN,4)= Client_region;

 end

 end

 end

 if expected_rate>= Client_rate_c

 Client_request(Client_number,5)=expected_rate;

 Server_side(Client_region,2)= expected_rate;

 Server_side(Client_region,3)= temporary_caching_place(1,Client_region);

 Server_side(Client_region,4)=7200;

 Server_side(Client_region,5)=Client_start;

 Server_side(Client_region,6)=Client_end;

 else

 Client_request(Client_number,5)=-18; % huit case

 end

 end

 end

 end

 %end temp

csvwrite('link_busy_period_ftp.dat', link_busy_period);

csvwrite('Server_side_table_ftp.dat', Server_side);

csvwrite('client_request1_ftp.dat',Client_Pro1);

csvwrite('client_request_ftp.dat',Client_request);

sum=0;

percentage_improvement=0;

accepted_client=0;

rejected_client=0;

for j=1:Total_clients

 if Client_request(j,5) > 0

 accepted_client=accepted_client+1;

 sum=sum+Client_request(j,5);

 improve=(Client_request(j,5)-Client_request(j,2))*100/Client_request(j,2);

 percentage_improvement=percentage_improvement+improve;

 else

 rejected_client = rejected_client+1;

 end

end

%sum

%global Average_ftp;

%global percentage_r_ftp;

%global percentage_a_ftp;

ftp_info= ones(1,4);

Average= sum/accepted_client;

%accepted_client

percentage_a_ftp= (accepted_client/Total_clients)*100;

%rejected_client

percentage_r_ftp= (rejected_client/Total_clients)*100;

percentage_im=percentage_improvement/accepted_client;

ftp_info(1,1)=Average;

ftp_info(1,2)=percentage_r_ftp;

ftp_info(1,3)=percentage_a_ftp;

ftp_info(1,4)=percentage_im;

csvwrite('ftp_info.dat',ftp_info);

 68

Main functions (Simulator)

%global average_arrival_rate;

%global Simulation_duration;

% average rate is starting from 1 to 30

average_rate_ftp=0;

percentage_ftp_r=0;

percentage_ftp_a=0;

average_rate_s=0;

percentage_s_r=0;

percentage_s_a=0;

percentage_im_ftp=0;

percentage_im_s=0;

table_ftp= ones(30,4);

table_s= ones(30,4);

percentage_rate_improvement=ones(30,2);

ftp_streaming_rate=ones(30,2);

ftp_streaming_percentage_a=ones(30,2);

rate=ones(1,1);

si=ones(1,1);

simulation_p=csvread('simulation.dat');

simulation=simulation_p(1,1);

n_times=100;

%average_arrival_rate=input('Average arrival rate');

 for l=1:30

 average_rate_ftp=0;

 percentage_ftp_r=0;

 percentage_ftp_a=0;

 average_rate_s=0;

 percentage_s_r=0;

 percentage_s_a=0;

 percentage_im_ftp=0;

 percentage_im_s=0;

 si(1,1)=simulation;

 csvwrite('simulation_time.dat',si);

 rate(1,1)=l/10;

 csvwrite('rate.dat',rate);

 for j=1:n_times

 streaming_clients

 streaming_ftp

 ftp_in=csvread('ftp_info.dat');

 average_rate_ftp= average_rate_ftp+ftp_in(1,1);

 percentage_ftp_r=percentage_ftp_r+ftp_in(1,2);

 percentage_ftp_a=percentage_ftp_a+ftp_in(1,3);

 percentage_im_ftp=percentage_im_ftp+ftp_in(1,4);

 streaming_info

 s_in=csvread('s_info.dat');

 average_rate_s= average_rate_s+s_in(1,1);

 percentage_s_r=percentage_s_r+s_in(1,2);

 percentage_s_a=percentage_s_a+s_in(1,3);

 percentage_im_s=percentage_im_s+s_in(1,4);

 end

 table_ftp(l,1)=l;

 kl=average_rate_ftp/n_times;

 table_ftp(l,2)=kl;

 ftp_streaming_rate(l,1)=kl;

 table_ftp(l,3)=percentage_ftp_r/n_times;

 table_ftp(l,4)=percentage_ftp_a/n_times;

 69

 ftp_streaming_percentage_a(l,1)=percentage_ftp_a/n_times;

 table_ftp;

 percentage_rate_improvement(l,1)=percentage_im_ftp/n_times;

 table_s(l,1)=l;

 table_s(l,2)=average_rate_s/n_times;

 ftp_streaming_rate(l,2)=average_rate_s/n_times;

 table_s(l,3)=percentage_s_r/n_times;

 table_s(l,4)=percentage_s_a/n_times;

 ftp_streaming_percentage_a(l,2)=percentage_s_a/n_times;

 percentage_rate_improvement(l,2)=percentage_im_s/n_times;

 end

csvwrite('percentage_rate_improvement.dat',percentage_rate_improvement);

csvwrite('ftp_data_table.dat',table_ftp);

csvwrite('streaming_data_table.dat',table_s);

csvwrite('ftp_streaming_rate.dat',ftp_streaming_rate);

csvwrite('ftp_streaming_percentage_a.dat',ftp_streaming_percentage_a);

subplot(1,1,1) %for ploting the graph, monitring the size of the axis

bar(ftp_streaming_rate,'group') % bar chart plotting

title 'Comparision average rate of FTP and Streaming'

saveas(gcf,'ftp_s_rate', 'eps') % save the figure with eps extention

subplot(1,1,1) %for ploting the graph, monitring the size of the axis

bar(ftp_streaming_percentage_a,'group') % bar chart plotting

title 'Comparision percentage of accepted users request FTP and Streaming'

saveas(gcf,'ftp_s_accepted', 'eps') % save the figure with eps extention

subplot(1,1,1) %for ploting the graph, monitring the size of the axis

bar(percentage_rate_improvement,'group') % bar chart plotting

title 'Percentage Rate Improvment'

saveas(gcf,'percentage_rate_im', 'eps') % save the figure with eps extention

