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Abstract

With the advent of increase in the computational complexity of the programs, it seems

conducive to distribute a centralized program written for a standalone system onto a

network of nodes. Application partitioning is one such technique, that aims at division

(allocation) of application components amongst different hosts in the network, thereby

getting a standalone application executed in a distributed setting.

Most of the existing work in application partitioning, uses classes as the basic com-

ponent for partitioning. However, the behavior of an application is determined by the

interaction of its entities at run-time. In an object-oriented program, the run-time enti-

ties are principally objects. We believe that, a more effective and relevant partitioning

mechanism can be created by considering objects as the basic components for distribution.

We also believe that, a truly flexible partitioning system should as far as possible,

postpone the decision regarding the placement of each component to run-time. Any

such decision should try to optimize on both - the number of remote invocations that

a distribution strategy would result in, as well as the load distribution on the available

hosts.

We thus propose a working architecture that exploits the dependency relationships

between the components, to build a model prior to the program execution. At run-time,

the model progressively incorporates the information about already allocated components

and helps in deciding the position of new component.
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Chapter 1

Introduction

Distributed computing has emerged as an inevitable need in the modern world of large-

scale systems and high power networks. Since quite a long while however, the emphasis

has been on client-server programs and to an extent, concurrent programs intended for

parallel programming.

In current-day scenarios where there are multiple complex applications, deployed on

a network of multiple nodes using widely distributed resources, distributed execution

is highly useful. However, coding such an application is not so easy. Programming

languages like C/C++, Java provide RPC1-based RMI2, CORBA and like techniques.

However, these techniques do not provide enough transparency to the prgrammer. It is

thus desirable to have a system which not only automatically distributes a standalone

application, adapting to varying distribution settings, but also provides the advantages

of distributed computing.

1.1 Application Partitioning

Application partitioning refers to, breaking up of the application into components while

preserving the semantics of original application. The source application might be de-

signed, implemented and debugged to run on a standalone system. The resulting compo-

nents however, are distributed so as to take advantage of distributed setting.

1.2 Motivation

Partitioning of Object-Oriented programs is motivated by the following reasons :

• Distribution of program components

Considering the scenario of multiple large-scale, multi-user, heterogeneous applica-

tions using a wide variety of resources in a network. Code for a standalone system

based application, as shown in Figure 1.1 would be monolithic, functioning at some

1Remote Procedure Call
2Remote Method Invocation-The object oriented counterpart

1



2 1.2. Motivation

central node making expensive network calls. A distributed application would how-

ever, have components (fragments) distributed all over the network 1.1, reducing

amount of remote communication overhead, thereby optimizing the program execu-

tion.

Figure 1.1: Standalone to Distributed Application-Reduced network contention and ef-

fective resource utilization

For illustration, consider a large banking application, which has its databases dis-

tributed over geographically separated areas. A standalone code would be per-

forming all the computations at the server end and make expensive network calls,

whereas a distributed application can have computations dispersed according to re-

source distribution. In addition, idle hosts can share the load of a busy system by

hosting a few components. With the increase in the computational complexity of

the programs, as well increase in number of network resources, it makes sense to

have a tool that could distribute a centralized program written for a standalone

system on to a network of nodes. Such an idea comes with the natural advantages

of distributed computing - load reduction, resource sharing and to an extent im-

provement in concurrent execution. Thus, assuming the presence of an underlying

reliable, high-speed computer network, on one hand when we would like to have

distributed components of a single program running at different computer nodes, at

the same time we do not want programmers to worry about the distribution aspects

while coding. In other words, we would like to separate the distribution concerns

from application logic.

• Abstraction over the middleware

Java, C# provide Remote Method Invocation (RMI), CORBA and like mechanisms,
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for developing remotely invocable components. However, these middleware tech-

nologies are complicated to code. They have special coding constructs, and pro-

grammer has to think about the deployment scenario while designing the classes.

Java RMI for example, needs each remote class to be specially defined to extend a

special interface. Creating a remote object and getting its access on remote node is

a tedious job.

• Abstraction over deployment scenarios Primarily been designed to cater to

client-server systems, current middleware technologies also fail to provide enough

abstraction. The programmer has to think and consider the distribution aspects

while designing the application. Finally, these constraints prevent the program

to be re-deployed efficiently in different distributed settings.The above arguments

justify the need of an automatic partitioning system, that optimally partitions source

application written for a standalone system. In other words, a system that helps

separate distribution concerns from application logic.

We have studied and classified existing partitioning mechanisms, identified their

limitations and subsequently designed a working architecture which provides enough

flexibility even at run-time to distribute components(objects). We have designed

a Decision analyzer which aims at placing components intelligently without much

human-intervention, accompanied by a run-time algorithm that uses modification

of an existing backend (Doorastha [Dah00]) for distribution.

1.3 Problem Statement

This thesis proposes a novel architecture for application partitioning - an automated,

object-level, dynamic, run-time partitioning system, more specifically a distribution ana-

lyzer and decision engine. We believe, that proposed architecture, would be an efficient

and flexible solution to the application partitioning problem.

We have identified different issues involved in each component of the architecture and

suggested solutions for the same. The key ideas which make our approach novel, include

the following:

• Finer granularity of components, considering objects and not the classes.

• A statistics-based dependency model to represent interdependencies between appli-

cation components.

• A truly dynamic, run-time allocation scheme for distribution of components

We feel that finer granularity partitioning decisions, would lead to more flexibile and

efficient partitioning mechanism. In addition to the granularity of partitioning, it is also

important to decide the placement of different components on available hosts. Finally, we
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strongly feel that there are numerous factors that can affect object allocation decisions,

some of which come into picture at run-time. The existing systems are limited in the sense,

that they statically decide the component allocation, before the execution of program.

Most of them depend on user-specification and do not emphasize on intial placement

decision. This certainly is not a very good idea for long-running, large-scale programs,

having multiple components.

We have implemented a statistics-based Decision Analyzer. This tries to learn and

represent dependencies as well as independencies (between the components) as a proba-

bilistic model. The run-time algorithm uses and updates this model. It is flexible enough

to account for factors like load distribution, and hence is truly dynamic. We have used

Java for the demonstration of our ideas. However, the ideas discussed are in general

applicable for OO languages.

1.4 Thesis Outline

Chapter 2 discusses related work in application partitioning, based on which we propose

a taxonomy for application partitioning. Chapter 3 discusses the various blocks of pro-

posed O-L partitioning architecture including the vrious design decisions that were taken.

Chapter 4 highlights the implementation details. Finally, we conclude in chapter 5

highlighting some limitations and future work.



Chapter 2

Related Work

2.1 Introduction

The idea of distributed computing was introduced, based on RPC by languages like Java.

RMI 1, CORBA in Java or DCOM in C++, allowed user to access remote objects, and

execute methods on them. However, all these are more suited for designing client-server

paradigm based architectures. After these, there came up systems, which were built over

middlewares like RMI/CORBA. They enable easy code generation, for remote objects.

These were then built upon by front-end systems which used some partitioning strategies

to identify components to be distributed.

The problem of partitioning in literature has also be dealt with mechanisms that work

by modifying the execution environment of application. This has been referred to as the

implicit approach in [Spi02]. These systems do not rely on the programming language.

Instead, they use a Distributed Shared Memory(DSM) environment. DSM mechanisms

involve caching and replication, which can be done at different levels like page and object.

Though they make things more transparent, as discussed in [Spi02], the efficiency of these

systems is not very commendable. Also, they are often non-standard and cannot be

extended to different machine architectures.

Thus, we have restricted our focus to what has been referred to as explicit approach

in [Spi02]. To explain briefly, explicit approach works from within the programming

language, rather than modifying execution environment. Thus all the solutions that

we discuss, actually form a layer above the standard middleware of the corresponding

programming language, and hence are more standard.

The related work has been discussed under four heads. Section 2.2 discusses in brief

about existing standard middlewares. Section 2.3 discusses the work done on the distribu-

tion infrastructures. Distribution infrastructures implement distribution policy, suggested

by the partitioning strategy. Section 2.4 discusses the existing work on partitioning strate-

gies and mechanisms.

1Remote Method Invocation

5



6 2.2. Existing Middleware Technologies

2.2 Existing Middleware Technologies

Popular programming languages like C++, Java, .NET provide distributed constructs for

remote execution. This design is greatly influenced by the RPC mechanism. In the RPC

mechanism, the caller invokes a dummy procedure(stub) on local machine, and this in-

turn sends network message to the server which gets the method executed on actual object

and returns the results. RMI does this at object-level. Each remote object has a stub

which acts as a proxy at the client site for transferring the call to the actual object. RMI

[RMI96] is Sun’s proprietary client-server oriented distribution technology for the Java

language. It allows the programmer to create remote classes, i.e. classes that implement

the java.rmi.Remote interface. The user also provides an interface listing all the methods

that may be called remotely which enforces such methods to be public. It uses the concept

of registry or name server, which hosts the objects. Each object is bound with a specific

name on the server. When queried, the object server then returns a remote reference of

object. This reference can then be used to invoke remote methods. Once the objects

are registered by the RMI system, they are represented as network references and remote

objects are always passed by-refvalue. The backend used in current implementation is

based on RMI.

CORBA is based on the same basic principle, except that its more useful for inter-

operability between different platforms. DCOM for C++, again uses the same concept of

interfaces and stubs.

The essence is that using existing middleware standards, coding a distributed applica-

tion requires a lot of planning in the design phase of application itself, concerning where

different objects and classes should be created and how they should be accessed. Moreover,

it is a lot of hassle to actually code such an application, because of special remote-enabled

code constructs.

2.3 Distribution Infrastructures

We define Distribution Infrastructures as systems that form a thin layer over the middle-

ware. These when provided with detailed distribution policy specification, usually work

by code transformation and some extra code generation. These systems have to deal with

issues a little more specific to the middleware being used. Most of the systems based on

Java use RMI.

2.3.1 Issues Related with RMI

RMI constructs in Java try to minimize the difference between distributed and non-

distributed syntax. Thus method invocation syntax is similar to that of general non-

distributed Java programs. However, there are certain issues that arise when we try to
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use it for distributing a general-purpose OO program. First of all, each remote class

should necessarily have an interface and an implementation. In addition, the exception

handling is not very convenient. Actually RMI was basically designed for client-server

applications and so is not very convenient to program a general OO system with inter-class

relationships. Below is a list of few issues that arise when RMI is used for programming

a general OO program.

• Static and final methods cannot be defined in RMI implementation classes. RMI

only permits the use of public and abstract modifiers for the method declaration in

remote interfaces. Also in cases where class is hosted on multiple nodes, handling

static fields is a problem if they are not constants.

• Consistency of Object References(Identity of Objects)

– Equality operator for remote objects(equals or == ) may not work properly.

For e.g. If two remote references of same object obtained from different sites,

the == operator only compares references, and does not work according to OO

semantics.

– Reference translation does not happen when object is moved amongst multiple

hosts. To explain further, if an object is passed from site 1 to 2 and then 3;

when referenced from site 3, the object would be referred via site 2. Local

object reference retrieved from a remote host as a RMI reference has to be

accessed via indirect path.

• System Classes (with and without native code).

Source code for system classes is not available. Thus we cannot expect system

objects to be remotely accessible. But objects of system classes like Vector, if be

defined remotely can help improving performance.

• Inheritance

Super class needs to extend UniCastRemoteObject, even if sub-class needs to be

made remote-capable. This does not seem to be quite correct if we go by OO

semantics.

– All implementation classes need to extend from UniCastRemote Interface. In

Java, only single inheritance is allowed. This implies all super classes need to

be modified (OO paradigm violation). Transformations may cause breaks in

inheritance chain and instance of, sub-classing may not work as in a centralized

program.

– In case of classes extending system classes, this too is not possible.

• Methods with package scope have to be made public as the interface methods have

to be public, or otherwise all package references should be guaranteed local.
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• Arguments

By default a non-RMI object is passed by-value. System Objects cannot be made

remotely accessible. If all the objects are made remote capable, we can handle usual

pass-by-reference semantics of Java programs. However, this may be too expensive

in some cases. Based on these considerations for remote execution in addition to

usual passing modes(by-value, by-reference) following modes can be defined.

– By reference value(ref value)

The callee operates on the original object via the given reference and thus may

alter its state. However, the reference cannot be modified. This mode is used

when a centralized Java program runs.

– By copy

The callee operates on a (deep) copy of the original object which itself remains

unaffected.

– By visit

The object is moved back, after the invocation returns.

– By move

Here, the runtime system moves the object physically into the callee address

space, and redirects any old references.

• Handling of synchronized classes

RMI does not allow synchronized methods to be declared in interface defined for

the public class.

• Slow marshalling and de-marshalling process

- RMI stubs serialize all the parameters being passed(except network references) on

a remote invocation. This process is very time consuming.

2.3.2 Distribution Infrastructures - A backend

These distribution infrastructures, have been used as backends. The partitioning schemes

as discussed in section 2.4, generate a distribution or a partitioning policy, which is imple-

mented at run-time by these backends, with remote enabled code, over the middleware.

These systems allow specification of distribution policy for each class and its methods.

The specification details some of the following:

1. Location of the class, if needed to be fixed on one node J-Orchestra[TS02]

2. Location of an object when being instantiated Doorastha[Dah00]

3. Parameter passing mode(visit, move, copy) for formal arguments for each method.
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4. Classes can be tagged as migratable in which case at run-time their instances can

migrate to other nodes as arguments or return values during a remote method

invocation.

Most of the systems have used statically determined positions computed by analysis or

specified by the user. Thus run-time system never has to bother about the position of

object. Some of the ways used to specify the distribution policy include the following:

1. Additional Constructs : Additional keywords and constructs extending Java lan-

guage are provided to declare remotely accessible classes. Java Party[PZ97]

2. Comments : Comments written above the classes in a specified format. Doorastha[Dah00]

3. Configuration File: Have configuration file per class. J-Orchestra[TS02], uses an

XML config file, Addistant [TSCI01] uses a special configuration file, indexed by

hosts for the same.

These systems have a translation component which processes the distribution policy and

transforms the source code into remote-enabled code accordingly. Another major task

is to handle the various issues related to the middleware (RMI). There are a number of

systems that provide such infrastructure support. Javaparty[PZ97], Doorastha[Dah00],

J-Orchestra backend[TS02], Coign Backend[HS99], Addistant[TSCI01]..

Most backends try to solve the issues highlighted above. We are discussing the archi-

tecture of Doorastha in detail, as it has been modified and used as distribution backend

in our architecture.

2.3.3 Doorastha

Doorastha [Dah00], has a compiler subsystem that uses annotations within the source

code (as comments), to generate the RMI equivalent code.

2.3.3.1 Translator

The Doorastha translator, apart from code conversions necessary to handle the RMI

issues as discussed in section 2.3.1 is responsible for maintaining transparency between

remote and local object communication The key principle, which has also been used

in javaparty[PZ97], J-Orchestra backend [TS02] is a proxy-based approach shown in

Figure 2.1. This approach tries to maintain the transparency between local and remote

references of an object being accessed by making use of elicit mechanism of inheritance

and polymorphism. More details can be referred from [Dah00]. The translator generates

the necessary code to implement the same.
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Figure 2.1: Proxy-Based Approach-Transparent handling of remote and local references

2.3.3.2 Runtime System

Doorastha run-time is a distributed algorithm, where run-time entities sit at each host

and interact. This sub-system manages translation of object references at run-time. It

provides object factories at each host. Also, it maintains references of all objects, instan-

tiated on a particular node. It manages network-related issues like resolving host-names

etc. It manages the start-up and running of run-time systems at all the hosts. It also

helps managing different argument-passing modes by providing support for migration.

2.4 Partitioning Schemes

The distributed infrastructures discussed in section 2.3 expect a detailed specification

about component. Specification in literature [TS02] has been defined as - the location of

component instantiation, its mobility, and if it is defined migratable, a migration policy

describing when it will move. This can be defined by specifying the parameter-passing

mode(visit/move, reference, value) in the configuration file for each function. We have

mainly concentrated on initial placement as of now. Thus the distribution policy too

considers the same.

A partitioning scheme tries to use some heuristics to generate a distribution policy.
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Higher distribution causes more components to be distributed across different hosts. With

increase in distribution, more local interactions are converted into remote. Remote in-

vocations increase network overhead. Thus though various reasons suggested above in

section 1.2 motivate to distribute, the tradeoff is that distribution increases remote com-

munication overhead. A partitioning mechanism should try to balance between these two

contradicting factors. We have identified some factors, that can be used to characterize a

partitioning scheme.

2.4.1 Features of a Partitioning Scheme

2.4.1.1 Granularity of Distribution Component

Usually an OO program comprises of classes and objects, and hence on the basis of

granularity of partitioning component we can classify the existing partitioning schemes.

1. Class-Level Partitioning

This kind of partitioning aims at grouping closely interacting classes together. The

source code comprising of different classes can be divided across the hosts. Some

systems may also support replication of classes. This kind of partitioning is based

on the assumption, that objects of a single class exhibit similar behavior, and will

be using same resources and hence should be instantiated on the same host. In a

nutshell, all objects of one class are created on same host. Moreover, classes are

clustered into groups.

2. Object-Level Partitioning

This kind of partitioning aims at clustering of objects. Object level partitioning

stems from the arguments like - reusability being an important aspect of OO pro-

gramming, objects from the same class may exhibit different behaviors when they

interact with different objects. Also, allocating all objects of one class to one node

is a great limitation. Thus O-L Partitioning, does not primarily aim at division of

source code, but division of objects across the hosts.

2.4.1.2 Analysis Techniques

The partitioning scheme needs to identify closely interacting components so that they

can be co-located. This involves program analysis, to identify dependency relationships

between the components. The analysis can be static which can in turn be at source level or

bytecode level. Alternatively, profiling can be used, to study the component interactions

and subsequent logs be then analyzed and classified.

1. Static Analysis

Involves techniques like, call-graph creation and doing dependency analysis based on

it. Available libraries for code analysis can be used. Source-code level analysis are
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more easy to understand, whereas Bytecode level analysis techniques are extendible

to system classes.

2. Dynamic Analysis

Involves instrumentation of the existing code, to profile application runs. This

profiling again can be of two types. It might be on the standalone code itself, or

remote-enabled code.

2.4.1.3 Allocation Decision

This feature is based on the time of actual allocation decision. All the systems we know

of, work by pre-deciding the component allocation before the execution of program starts.

1. Offline

Component allocation is decided and specified in some configuration file or in the

form of annotations within the program.

2. Online

Component allocation decision is postponed till run-time. As per our knowledge,

there are not any such systems using online techniques as yet.

2.4.2 Addistant and J-Orchestra

J-Orchestra [TS02] is a class-based partitioning mechanism. J-Orchestra also has a back-

end as discussed in section 2.3. Addistant[TSCI01] has a configuration file, which can be

indexed by hosts. This file is used by the backend for code generation. For each host, a

class-level or package level specification may be done.

J-Orchestra too has a similar configuration file, where-in for each class, properties can

be specified. For J-Orchestra however, partitioning mechanism, is expected to generate

this file. Once the host specification has been provided, J-Orchestra allows user to drag

and drop classes to different hosts. The classes however get allocated in groups. A static

analyzer and profiler component are used to each time verify the goodness of partitioning

by profiling. It reports statistics on the interdependencies, based on which an efficient

configuration can be decided.

Major contribution of addistant and j-orchestra has been to enable distribution of

legacy software. Operating at bytecode level, they try to make objects mobile at run-

time in the presence of unmodifiable code (like that of JNI).

2.4.3 Coign

Coign [HS99] is implemented for COM-DCOM systems. It can support object-level

partitioning. Input to the Coign system, is a COM application. Coign instruments

and profiles this application by invoking DCOM code, to actually calculate the cost, if
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components were distributed. A component can be a class or an object. Coign supports

different types of classifiers. The system can thus be configured to define an appropriate

component. Two of them for eg are -

• Static type Classifier : Classification descriptor is just the type.

• I3C Classifier : Classification descriptor is full component call chain of instantiation

request, concatenated with static type.

Coign then creates a component graph, where nodes include the different component

descriptors and edges represent the communication costs, calculated during profiling. As

Coign considers communication between remotely located components by-copy, all the

functional arguments add up to communication costs.

This graph can then be partitioned using a standard graph partitioning algorithm,

into number of partitions equal to number of hosts. The system has been mainly tested,

for client-server applications.

2.4.4 Pangaea

Pangaea [Spi02] uses Doorastha [Dah00] as the backend. Pangaea does a primitive level

of Object-level Partitioning. It uses a graphical tool to represent the program structure

as an object-graph. This object-graph is built using purely static analysis of the code. An

object graph Figure 2.2, represents the following:

- The type information (data type) is considered

Figure 2.2: Pangaea - Object Graph

and the data flow at the type-level is represented as

a graph.

- Different types of objects - static and dynamic

(Concrete and indefinite) are identified, for each

class. The concrete are the ones which are cer-

tain to take specific value on creation. The in-

definite ones may assume one amongst a range of

values. Eg. Producer in producer/consumer exam-

ple is concrete whereas an integer could be indef-

inite. Different constructs of the program - Con-

structors, static initializers, main(), Thread.run()

etc have been used to categorize all the objects into

the above categories. Such objects become the nodes of the graph

- Edges encode the following relationships between the objects - Creation, Usage, ref-

erence(import, export). These can be identified by the analysis of method arguments,

return types etc.

- The object definitions are applied recursively and added to the graph. Eg. For each

concrete object, concrete and indefinite objects are added for the fields etc accordingly.
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- Finally, the references are propagated transitively.

Once the object graph 2.2 is constructed its displayed to user, and user can assign ob-

jects to different hosts. For numerous objects round-robbin allocation is done amongst

the hosts. Pangaea then generates the actual annotated code that can be interpreted by

Doorastha.

2.5 Application Partitioning - A Taxonomy

Based on our study and analysis, we present a taxonomy of possible application parti-

tioning approaches in Figure 2.3. Application partitioning can be dealt with implicit or

explicit mechanisms. Explicit mechanism based solution should have a partitioning strat-

egy and a distribution backend. Distribution backend implements a partitioning policy

specified by the partitioning strategy. Partitioning strategy again can be classified on the

basis of granularity of partitioning component, allocation decision and analysis technique.

Figure 2.3: Application Partitioning Taxonomy

The related work has been partly concentrated on distribution infrastructures - Doorastha

[Dah00], Javaparty [PZ97], Addistant [TSCI01]. Though J-Orchestra does some static
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analysis, its major contribution has been on the distributed infrastructures front. Pan-

gaea [Spi02] advocated O-L partitioning in a very limited sense. It needs user to specify

allocation details. Coign[Hun98] is O-L system, but has other drawbacks as discussed in

section 2.4.3. Its primarily designed for COM but still tries to eliminate human interven-

tion. COM does dynamic analysis(profiling), but its done on DCOM based code.

As per our knowledge, there does not exist any system which takes run-time allocation

decisions. Also, none of the systems have a sophisticated analysis technique. Pangaea and

J-Orchestra do static analysis and are highly user dependent. Coign does dynamic analysis

and profiling but has the limitation that passes all arguments by complete copying.

In the next chapter3, we discuss our architecture for an object-level, dynamic analysis,

and run-time allocation-decision based automatic partitioning system.



Chapter 3

Object-level Partitioning -

Architecture and Design

3.1 Introduction and Motivation

This section discusses the detailed design of an object-level, dynamic, automatic parti-

tioning system which takes run-time allocation decisions. The key motivation behind this

architecture is, that we want to exploit as much information as possible (available), offline

and yet provide enough flexibility at run-time, to relocate object allocations depending

upon load distributions. Dynamics of an application are decided at the run-time, where

objects are most relevant to partition. O-L partitioning as discussed in Section 2.4.1.1

aims at clustering closely interacting objects, to optimize on network overhead, while

the application is distributed across a network of hosts. We strongly believe that O-L

partitioning is an efficient partitioning technique motivated by the following reasons:

• Importance of has-a relationships Class represents the behavior of a program

component, whereas an object is its instance, actually functional at run-time. Class-

level partitioning systems view program as a collaboration of classes and ignore the

has-a relationships. A class can have multiple instances. Multiplicity of objects is

one aspect which cannot be considered while doing a class-level partitioning.

• Instance Behavior In literature, most of the work has been on partitioning the

application by placing its classes on different nodes. However, an important point

here to note is that in a large application, one class may be interacting with many

other classes, which in turn may not be related at all. To explain with an example,

we can consider distribution of a program comprising of Vector class 3.1 being used

by two totally unrelated classes for storing objects. Now keeping Vector class and

all related classes on one node or making remote references for all classes is not

a good idea. The key point to note here is that instances of vector class may be

useful in two totally different contexts and hence we argue that a distribution policy

considering distribution of objects is more plausible.

• Argument Passing Modes Another point to be considered is that in class-level

partitioning systems, while defining properties of the class-methods, we fix the

16
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Figure 3.1: Class vs Object Level Partitioning

parameter-passing mode (call-by-visit/call-by-move/copy) for each method. Mul-

tiple invocations of the same method however by different classes, may make more

sense to have different calling modes at runtime. Specially, if the class can be used

in different contexts and its different instances are distributed.

O-L partitioning surely provides greater flexibility as far as the partitioning and dis-

tribution is concerned, but is complex to implement. In a large-scale program, however,

where there are heavy objects, it certainly makes sense to consider different application

scenarios, and object level interactions and then place the object. Section 3.2 describes

an overview of architecture partitioning system. Subsequent sections then elaborate on

different blocks of the same.

3.2 Architecture for Object Level Partitioning

As discussed above in section 2.4, none of the existing schemes provide much flexibility.

We have tried to make this as flexible so that it can be further extended to incorporate as

many as factors possible at run-time. The system as shown in figure 3.2 begins with the

input of application source code, written for standalone environment. This code is analyzed

by the dependency analyzer to generate a model representing dependency relationships

between the objects. The dependency analyzer also plays the role of identifying different
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Figure 3.2: System Overview

contexts in which objects may be created. This code is then given to a translator, that

uses some code analysis/manipulation library to generate a remote enabled code. At run-

time then, as progressively objects are allocated, all the available information is used to

predict the most suitable location for object allocation. The run-time sits as a layer above

RMI. In the next few sections, we discuss each of the blocks of the proposed architectures

in detail accompanied with a tested example to illustrate our architecture.

3.3 An example

This is a very simple program as depicted by the class-diagram in figure 3.3. The source

code for the example is attached in the appendix A. We assume that there are three

hosts available for placement. We will walk through this section illustrating this example

to explain the functioning of each block.
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Figure 3.3: An Example

3.4 Dependency Analyzer

The goal of a dependency analyzer is to learn application patterns, dependency relation-

ships between the different components and represent it in a model that can be used at

run-time. Figure 3.4 shows the architecture of our dependency analyzer. The standalone

code is instrumented and profiled to generate dependency related information. There can

be several such runs of the program. These can then be used by a learner to learn object

dependencies.

Section 3.4.1 explains the need of a distribution analyzer. Subsequent sections mainly

elaborate on the learner, illustrating our analytical model and justifying its applicability.

3.4.1 Significance of initial placement

We feel strongly that there is a need for an optimal partitioning strategy, if partitioning

process has to be completely automated. Even if backend provides migration support,

migration of heavy objects can often be a network overhead. Thus, a good partitioning

software must try to optimize initial placement of object. Now there are several factors

that may influence placement of an object O .

• Location of other objects that invoke methods on O

• Resources accessed by O . This is more class-dependent
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Figure 3.4: Dependency Analyzer

• Control flow of the program, which might influence creation of other objects, that

may be accessed by O and thus indirectly the placement of O itself.

• Host-load scenario

3.4.2 Statistical Approach to O-L Partitioning

O-L partitioning aims at optimal placement of components - instances, to the most optimal

position in the network at run-time, so as to minimize the communication overhead as

well as use the distributed environment. Component interactions can be minimized, if

highly interacting components are co-located as discussed in Section 2.4.1. We propose a

slightly different approach to this problem, based on machine learning. We suggest the use

the prior knowledge available from profiling and represent it as a model. A probabilistic

model is apt because if we have numerous runs of an application and a large profiling data,

a dependency model fitting most of the runs of the application can be built. Thus we

suggest the applicability of dependency-based classification techniques for this problem.

The idea is to train a classifier from the profiling runs for an application. This classifier

can be used to classify the instances at run time to different hosts. We however think, that

this should be a case of active learning classification as depending upon the environment,
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Figure 3.5: BBN - An Example network

the model should keep on adapting.

3.4.3 Bayesian Belief Networks - Applicability

Before explaining the details of the model, we would like to specify clearly what a com-

ponent denotes in our design. Each component in our system is identified by its unique

call-trace(the exact sequence of method calls which led to the creation of the instance).

It has a class-type(the class of which it is an instance). Thus one class can have mul-

tiple components represented. We are trying to model the relationships between these

components, on the basis of references.

Bayesian Belief Networks [BBN98] is a well-known statistical modelling technique.

BBNs model relationships between the different variables by representing the condi-

tional dependence as well as independence between them. Structurally, BBN is a set

of nodes and arcs. Nodes represent the variables. Each variable can assume a set of

values(discrete/continuous). These values are also termed as class attribute1 sometimes.

Arcs between the nodes represent dependency relationships. Each node is annotated with

a probability table. Each row of this table, denotes a probability - the chance of variable

to assume a value conditioned on different values assumed by its parents 2. Each combi-

nation of values of variable and its parents is a separate row. An example BBN could be

as shown in Figure 3.5.

The BBN can easily be used to represent the following:

• Conditional dependence as well as independence of objects on other objects.

1BBN is a well-known classification technique
2Parents of node A, include nodes having an outgoing edge to A
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• Cumulative effect of already allocated objects on other objects.

• Communication Overhead can be incorporated into the probability tables of nodes.

• We assume that objects are always passed-by-reference between components(as

against Coign2.4.3). However, the interaction between the arguments passed when

componentA invokes a method on componentB, passing componentC as argument,

can be accounted as interaction between C and B. Thus DAG very aptly capture

the dependency relationships between the objects.

• BBNs can be extended to also handle, different application control flows, and incor-

porate them using probabilistic BBN learning algorithms.

Dependency information gathered from different profiling runs, can be combined by a

learner to develop a model. BBN learners can use this data as training data. Each profiling

runs’ output suggests a different BBN structure. The BBN learning would therefore be a

kind of search amongst these structures, for an appropriate model.

3.4.4 Dependency Model

We model each component(as defined in 3.4.3) in our system as a Bayesian Node. The set

of hosts represent the class attribute for each node. Thus each arc represents dependency

between the components. Each row of the probability table denotes one configuration 3

of parent objects and the corresponding node.

According to the approach proposed, if we have large logs indicating instantiation

histories over several runs of the program, a BBN learning algorithm [Bou94] could be

applied to learn a model that would be true representative of the application behavior for

most runs. This would include the following :

• Number of times that component occurs in all runs, and for each such existence,

number of times a reference from a particular incoming parent was made.

• Average communication overhead. This overhead would involve :

– Number of times the two components communicate

– Cost of exchange of immutable parameters like String 4 and others that are

passed by total copy(if any)

• Location Constraints can be modelled in probability tables. By location constraint

we mean that instances of a few classes may be constrained to be anchored on

particular hosts.

3object to host mapping
4Java.lang.String
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3.4.4.1 Simplistic Version of the Model

For the purpose of demo and to maintain simplicity, we have considered a single flow of

application. For this single flow we try to develop a model, without using specialized

learning algorithm.

As per our simplistic version of the sophisticated dependency model, arcs of BBNs

represent the referred to and referred by components for each node(component). We also

consider communication overhead between two components as just the number of remote

invocations.

3.4.4.2 Mathematical Formulation of the CPT

Let the number of interactions of a component Ci with component Cj be Ni,j. where Cj ∈
parent of(Ci) Number of rows in the CPT,

sizeof(CPT ) = num of hostsnum parents+1 (3.1)

For a particular configuration(allocation) - Ai,k, involving Ci and its parents5, represent-

ing the kth row of the CPT, where H(Ci) represents the host allocated to component Ci

Number of remote invocations,

RAi,k
=

∑
H(Ci) 6=H(Cj) and Cj ∈ parent of(Ci)

Ni,j (3.2)

Chance of a configuration k denoted by chanceAi,k
is then computed as

chanceAi,k
=

sizeof(CPT )∑
t=1

RAi,t

1 + RAi,k

(3.3)

The CPT value Pi,k for the kth row can then be computed as

Pi,k =
chanceAi,k

sizeof(CPT )∑
t=1

chanceAi,t

(3.4)

For our example illustration, dependency analyzer takes as input the original source code

of appendix A and generates a model as shown in appendix B.4. Further detail will be

explained with implementation details in the chapter 4

5This represents one row of the CPT
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3.5 Translator

The translator transforms the program to incorporate remote capabilities. This compo-

nent is dependent to a great extent, on the middleware being used. . Following are the

main features of a translator.

• Translator makes code remote-enabled. It takes code targetted for a standalone

system, and transforms the classes, generating the interfaces and middleware related

code. Following code instrumentations are needed:

– Object creation - Each new() has to be transformed to a query to run-time

analyzer and followed by call to remote/local run-time system.

– Method invocation - A function call will have to handle parameter passing

modes or may have to make a previously local object remotely enabled etc.

Similarly a return may need to create a remote reference to an existing local

object

– Method Return

• Limitations of the middleware e.g. those for RMI, highlighted in section 2.3.1 have

to be handled. Code transformations may need to be made for the same. Code

replacements Eg. Replace direct field accesses by getters and setters, package-scope

access modifiers, handling ==, .equals operator etc. In addition it also involves

handling of some specific constructs Eg. static, synchronization, threads, inner

classes, reflection etc.

Translation can be again done at source code level 2.4.4as well as bytecode level as in

2.4.2. The latter has the advantage that it can handle system classes as application classes

except those using machine-dependent constructs. However, the techniques discussed

above should be applicable to both. We do not consider machine-dependent classes.

J-orchestra2.4.2 exploits all the details for the various combinations of modifyable and

unmodifiable code and also discuss the solutions for the same. Code transformations from

J-Orshestra can be added to a translator to increase the flexibility of object allocation

amongst the hosts. For the purpose of demo, we have only included application class

objects for distribution.

3.6 Run-time Analyzer and Query Engine

3.6.1 Object allocation decision

Runtime decision on object allocation has been motivated for us by following reasons:
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Figure 3.6: Runtime-Analyzer

• Postponing the final allocation decision increases the flexibility in allocation. It can

help adjusting to varying load scenarios on the host nodes.

• It can also help adapting to situations like those of varying resource locations(E.g.

Database Migration).

• Different control flows can lead to different sets of instantiations and hence, a more

accurate placement, influenced by already allocated objects will be taken.

At run-time, we would like to use all decisions made regarding the components already

instantiated, to be used as evidences. The load balancer feedbacks can be incorporated

as weights of hosts. This updation can be an external feedback from load-balancer, which

obviously would present the actual load condition of the system.

3.6.2 Functioning of Run-time Analyzer

We have used, JavaBayes [jav98]. The functioning of the run-time analyzer has been

explained in Figure 3.6. This component plays the most important role in making the

architecture flexible. The run-time analyzer as in our architecture is like a central oracle,

for the system. It maintains the model learnt during the offline phase. Runtime analyzer,

is queried by the run-time system 3.2of each host whenever an object has to be created.

Run-time analyzer uses the dependency model learnt by analyzer, propagates the current
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allocation as evidence in the BBN and updates the structure. We can use a standard

BBN Inferencing software. We have used JavaBayes [jav98]

3.7 Run-time System

We briefly explain the working of our runtime architecture with our illustration. As

specified in section 3.3 there are three hosts available. Figure 3.7 illustrates the working

of runtime. Runtime is a distributed component sitting on each of the hosts. For the

purpose of illustration, we fix analyzer - the central oracle at Host-1. Suppose the main()

of the program starts at Host-3. When Host-3 gets a request for new object, it invokes

the analyzer on Host-1 in step-1, sending the current stack trace of the thread. Host-1

uses the runtime-analyzer and returns with some host say Host-2 in step-2. Following

this, Host-3 invokes the runtime object factory at Host2 in step-3 that instantiates a new

object of specified type and return a remote reference in step4.

Run-time system offers the necessary support during execution to get the program

executed in distributed fashion.

Figure 3.7: Illustration of the runtime

It is a distributed component present on each node where objects can be hosted.

• It interacts with the run-time analyzer, passing it necessary parameters like creator

class, method, stacktrace of the thread, etc.

• Once the location of an object be decided, run-time provides object factories- one

per node, binded as a well-known object. These factories handle creation requests

for local as well as remote sites.
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• It handles translation of references as the objects are passed as arguments to meth-

ods.

• Ideal run-time system will support object migration as well and support modes like

- call by visit/move and copy

• It maintains the information needed like stacktrace of the thread over the distributed

nodes in a distributed fashion.

• Run-time systems at all nodes act as peers, managing object creation and references.

3.8 Comparison with the Related Work

We expect that the above architecture would be more efficient and prove more flexible

than the existing softwares. In this section we try to compare our proposed approach to

existing mechanisms.

In literature [TS02], [Dah00],[PZ97], much importance has been given to the backend

systems, that manage object references at runtime and provide support for migration.

Firstly, the analytical model that we propose using statistical approach is a novel idea.

Most of the systems in literature as discussed in Section 2.4 do static analysis. Dynamic

analysis has been done in Coign 2.4.3 with DCOM enabled code. We emphasize the

significance of initial placement of the component. Most systems namely, [Spi02], [TS02]

believe in user specifying the initial position of the component(object/class). Though this

provides room for user customization, a truly automated partitioning system can actually

do some intelligent work on this placement. We have identified some factors as discussed

above and we incorporate them in our model.

Secondly, none of the existing systems we know, support run-time decision based

allocation. The usual design of existing systems has been, to do some analysis (mostly

class-based dependency), and generate an allocation/partitioning policy offline. Pangaea-

Doorastha, section 2.4.4 and 2.4.4 for example, would let specification of each object

as annotation within the code. However, this means that whenever a particular new

instantiation has to be done it will be on a fixed host. J-Orchestra, section 2.4.2 on the

other hand, tries best to make each object mobile(system class objects), so that it can be

passed around as when instantiated from one host to other when functions are invoked.

We argue that relying on migration is not a very good idea.

Most work has been on the backend front, where policy is highly dependent on user

specification. The system closest to our design is Coign [Hun98]. However, Coign mainly

designed for COM-based systems is mostly targetted for client-server architectures has

other shortcomings as highlighted in Section 2.4.3. Our idea of object classification is

influenced by Coign’s I3C classifier.
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Implementation Details

We have shown the feasibility of this architecture, by implementing different blocks. This

section highlights a few details of the implementation.

We have implemented the entire architecture of the decision analyzer, as discussed

in Section 3.2. The translation algorithm is straightforward. We assume thus hand-

coded instrumented code to be the input of our implemented run-time algorithm. The

design of translator is discussed in Future extensions at the end of this chapter. The run-

time analyzer uses a standard bayesian inferencing software. The run-time infrastructure,

is a modification of Doorastha [Dah00]. It provides some features that our architecture

proposes as a part of the run-time system. This has been discussed earlier with distributed

infrastructures as explained in section 2.3. We have modified Doorastha run-time to

provide basic run-time support.

4.1 Standalone Profiling

As discussed in Section 3.4, we use dynamic analysis or profiling for dependency analysis,

but do it offline, with standalone code. We have used Java Virtual Machine Tool Interface

[jvm04] with JNI support. Profiling works by code instrumentation and event trapping. In

other words, jvmti provides us an API through which we can define our agents and execute

necessary code on notification of different events like - JVM start/end. The code has

partly been written in Java and partly in C. The Appendix B details further. Appendix

B.1 is the Tracker class. The standalone code for profiling is instrumented to invoke

methods of this class. The actual profiling which involves object tracing, method tracing,

object-stacktrace maintenance and dependency matrix generation is done in native code.

The other options considered for profiling were - JVMPI [jvm], java.lang.instrument

API [jdk96]. The former is now out-of-date and latter did not provide object tagging

which C interface allows. There exist some profiling tools yajp [yaj], [ejp], but most of

them provide class based information and not object based. Figure 4.1, shows the main

logic used in the profiler. We have used bytecode instrumentation, to record method

invocation and object creation events. The output of profiling is :

28
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Figure 4.1: Profiling Flow

1. Object Information table - Unique stack traces encountered and their ids. Appendix

B.3 shows the output of a sample run on the Motor car example.

2. Dependency Matrix - M(caller,callee) is number of times object id caller invoked a

method on callee. Appendix B.3.2 shows a part of the matrix learnt.

4.2 Coding the object model - BBN

For simple demo of the system, we have demonstrated Model learning for a particular flow

of the application. We have implemented a simplistic model as discussed in section 3.4.4.1

The dependency data is just based on standalone profiling runs, and hence is independent

of host knowledge.

However, as discussed in section 3.4.4.1, the run-time will query the model for best

location. Thus, the learner has to have a small component which we call BBNgenerator.

The BBNgenerator, computes different combinations on object allocation based on each

parent and calculates the CPTs for each node. In our system with simplistic model, it

implements the algorithm discussed in section 3.4.4.1. This coding is done in C. The

Bayesian network learnt is represented in standard BIF(Bayesian Interchange Format)
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Figure 4.2: BBN Generator

[bif98].

4.3 Run-time Issues

We have modified the Doorastha [Dah00] to incorporate object-level partitioning run-time

algorithm. We needed to add support for interfacing with the analyzer engine. We have

added support for maintaining the thread stacktrace during the distributed execution,

which is needed by the analyzer to index object creation requests in the object repository.

4.4 Extensions to the current Implementation

Here we highlight the designs of the components which could not be implemented, due to

constrained time.

4.4.1 Code Translation and Instrumentation for Run-time

Translator has the responsibilities as stated in section 3.5. Translator needs to perform

the following functions broadly. Appendix C shows the translated code - supporting
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classes and modified original class, which is expected by the runtime system as input.

1. Instrument each class with additional instant fields, to store - stacktrace at the time

of creation and host-id representing the host on which instance is hosted.

2. Needs to generate extra supporting classes needed for the implementation of proxy-

based approach 2.3.1 and stacktrace maintenance.

3. Each new(), has to be replaced, with a call to Analyzer, and then the code for

instantiation on required host, for obtaining proxy etc.

4. Method return needs to be modified to check if the reference obtained in return is

a remote reference of a local object.

5. Routine checks and transformations, to ensure there is no violation of RMI semantics

2.3.1.

Doorastha [Dah00] handles a few of these. The implementation of translator can be

done using a standard bytecode analysis library like Barat [BS98]. Barat represents

the entire program in the form of an AST1 structure. Each Class, Method, code blocks

(object-allocation, etc), are represented as the subclass of a main base class Node.

Barat implements visitor pattern 4.3 whereby,

Figure 4.3: An example vistor pat-

tern.

each program element is represented as a Node,

overriding accept() method. This accept() method

in turn invokes all the methods related to sub-nodes

(methods, fields etc), implemented in Vistor passed

as reference to accept. It then provides some ab-

stract vistor classes, which can be extended to write

a visitor of own. It provides handle to every pro-

gramming construct needed, very easily. Using these

hooks one can transform the code. It then, also pro-

vides support for code generation.

1Abstract Syntax Tree



Chapter 5

Conclusion and Future Work

Application Partitioning is a promising concept, significantly useful for distributed com-

puting. An automated partitioning software, handling component allocation and reloca-

tion transparently, is certainly desirable. With increasingly programs becoming larger,

complicated, time-consuming, a highly flexible architecture, like the one proposed by us,

would lead to better utilization of idle computer times and load distribution.

We have classified the existing partitioning mechanisms 2.3, and subsequently pro-

posed a flexible partitioning architecture. Our key contributions include

• Detailed study and classification of existing partitioning mechanisms

• Proposing a complete architecture for application partitioning, emphasizing on place-

ment of components.

• We have designed and implemented a Decision Analyzer based on statistics, to

model component dependence and independence relationships. At run-time, this

model also incorporates already allocated components as evidences and progressively

provides dependency based inference for new allocations

• Our dynamic placement strategy, postpones the component allocation decisions to

run-time, making this architecture the most flexible of all.

• Our model is flexible enough to incorporate factors like load-balancing when deciding

the allocation at run-time.

• We have also modified existing Doorastha source code to use as a distributing in-

frastructure for our partitioning scheme.

This however, is just a very preliminary implementation of a large system to show the

feasibility of the whole architecture.

We would like to suggest a few enhancements to our implementation

• Program analysis can be further researched in detail, and a machine learning al-

gorithm incorporating different profiling runs, based on the belief network can be

modelled.This algorithm would use each dependence matrix obtained from profiling

as a different BBN structure. The learning algorithm having lots of profiling data

would then could be a heuristic structure search.

32
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• Though the run-time analyzer algorithm has been implemented as a centralized

entity, if one could propagate the encoded BBN probabilities values( it is an XML

File), with function calls, we can surely make the system distributed. However, this

has to be implemented carefully and related issues may need to be further handled

at run-time.

• Garbage collection mechanisms have to be taken care of.

• In current implementation, though we decide at run-time where the allocation has

to be made for the first time when object request for a particular object, associated

with stacktrace arrives, subsequent allocations would go to the same node. This

limitation can be overcome if we can keep track of live and dead objects, and flush

the values in the BBN accordingly.

• A more sophisticated BBN algorithm can also incorporate network topology details

and can learn probability vectors accordingly. A more complicated formula can be

implemented in BBN generator, considering sizes of copyable objects.

• We have not considered migration in any of the analysis or run-time algorithms.

Effect of migration, on the overall placements has to be looked into. Object sizes

encountered in profiled runs can be used to decide whether migration has to be

made and if so the migration modes.

• A thorough performance analysis could be done, with different load distributions

as input and seeing the number of objects created parameter vary on the different

hosts.

• A design for translator has been suggested, can be fully implemented

Object-Level Partitioning, emphasizes on careful initial placements, based on the in-

formation from existing allocations and dependency characteristics, not leaving the load

configurations. On one hand, O-L partitioning gives us benefits of utilizing idle systems on

the network and getting a standlone program executed in distributed settings, it certainly

also poses a lot of overhead. As the application size and subsequently the size of the com-

ponents increase, these overheads become insignificant and benefits of O-L partitioning

can be realized.





Abbreviations and Notations

Abbreviations

OO : Object Oriented

O-L : Object Level

RMI : Remote Method Invocation

BBN : Bayesian Belief Network

CPT : Conditional Probability Table
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Appendix A

Example

/∗Class Motors : Has two type s o f v e h i c l e s − Car and Scooter ∗/
public class Motors {

CarModel car ;

Scooter s c oo t e r ;

Motors ( ){
s c oo t e r = new Scooter ( ) ;

car = new CarModel ( ) ;

}
public void rollCarWindows ( ){

Window w = car . g e tLe f t ( ) . getWindow ( ) ;

for ( int i =0; i < 100 ; i++){
w. r o l l up ( ) ;

w. ro l ldown ( ) ;

}
}
public void simUsages ( ) {

car . s imulateCarUsage ( ) ;

s c oo t e r . s imulateScooterUsage ( ) ;

}
public stat ic void main ( St r ing [ ] a rgs ){

Motors motors=new Motors ( ) ;

motors . rollCarWindows ( ) ;

motors . simUsages ( ) ;

}
}
/∗Class Car : I s a v e h i c l e in c l a s s Motor∗/
public class CarModel{

/∗ Required car par t s : 1 Engine , 4 wheels , and 2 doors ∗/
private Engine engine ;

private Wheel wheel1 , wheel2 , wheel3 , wheel4 ;

private Door l e f t , r i g h t ;
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public CarMode l or ig ina l ( ) {
eng ine = new Engine ( ) ;

l e f t = new Door ( ) ;

r i g h t = new Door ( ) ;

wheel1 = new Wheel ( ) ;

wheel2 = new Wheel ( ) ;

wheel3 = new Wheel ( ) ;

wheel4 = new Wheel ( ) ;

}
/∗ Simula tes car usage ∗/
public void s imulateCarUsage ( ) {

% engine . s t a r t ( ) ;

eng ine . rev ( ) ;

wheel1 . a l i g n ( ) ;

eng ine . stop ( ) ;

}
}
/∗Class Car : I s a v e h i c l e in c l a s s Motor∗/
public class Scooter {

private Engine engine ;

private Wheel wheel1 , wheel2 ;

public Scooter ( ) {
eng ine = new Engine ( ) ;

wheel1 = new Wheel ( ) ;

wheel2 = new Wheel ( ) ;

}
public void s imulateScooterUsage ( ) {

eng ine . s t a r t ( ) ;

eng ine . rev ( ) ;

for ( int i =0; i <25; i++)

wheel1 . a l i g n ( ) ;

wheel2 . a l i g n ( ) ;

eng ine . stop ( ) ;

}
}
/∗ Engine : c l a s s e s used to model car / s coo t e r par t s ∗/
class Engine {

public void s t a r t ( ) {
System . out . p r i n t l n ( ” Sta r t the car . ” ) ;
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}
public void rev ( ) {

System . out . p r i n t l n ( ”Rev the eng ine . ” ) ;

}
public void stop ( ) {

System . out . p r i n t l n ( ”Car stopped . ” ) ;

}
}
class Door {

private Window window = new Window ( ) ;

public Window getWindow ( ) {
return window ;

}
public void setWindow (Window window) {

this . window = window ;

}
public void open ( ) {

System . out . p r i n t l n ( ”Open ( ) ” ) ;

}
public void c l o s e ( ) {

System . out . p r i n t l n ( ”Close ( ) ” ) ;

}
}
class Window {

public void r o l l u p ( ) {
System . out . p r i n t l n ( ”Rollup the window . ” ) ;

}

public void ro l ldown ( ) {
System . out . p r i n t l n ( ”Rolldown the window . ” ) ;

}
}



Appendix B

Instrumentation and Profiling

B.1 Tracker Class

/∗∗ Java c l a s s to ho ld s t a t i c methods which w i l l be c a l l e d in by t e

∗code i n j e c t i o n s o f a l l c l a s s f i l e s .

∗/
public class Tracker {

private stat ic int engaged = 0 ;

/∗ Native method t ha t does p r o f i l i n g , t a g s the o b j e c t wi th

∗ i n s t a n t i a t i o n h i s t o r y ( current s t a c k t r a c e )

∗/
private stat ic native void newobj ( Object thread , Object o ) ;

/∗∗ At the s t a r t o f cons t ruc t o r o f Object c l a s s i . e . <i n i t > method

∗ a c a l l to f o l l ow i n g method i s i n j e c t e d .

∗ @param o : r e f e r ence o f o b j e c t

∗/
public stat ic void newobj ( Object o )

{
i f ( engaged != 0 ) {

newobj ( Thread . currentThread ( ) , o ) ;

}
}
/∗ This method does the ob j e c t−s t a c k t r a c e maintenance in na t i v e code ,

∗ pushing new s tack race frames

∗/
private stat ic native void method entry ( Object thr , Object obj ) ;

/∗∗ At the very beg inn ing o f every method , a c a l l to method entry ( )

∗ i s i n j e c t e d

∗ @param o : r e f e r ence o f o b j e c t

∗/
public stat ic void method entry ( Object obj )

{
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i f ( engaged != 0 ) {
method entry ( Thread . currentThread ( ) , obj ) ;

}
}
/∗ This method does the ob j e c t−s t a c k t r a c e maintenance in na t i v e code ,

∗ popping s t a c k t r a c e frames i f needed

∗/
private stat ic native void method ex i t ( Object thr ) ;

public stat ic void method exit ( )

{
i f ( engaged != 0 ) {

method ex i t ( Thread . currentThread ( ) ) ;

}
}

}

B.2 Profiling Implementation

This section just shows some snipplets from the native implementation of profiling. We

are attaching the most important method-tracing profiling code, which shows object-trace

maintenance.

#define M nat ive entry method entry

/∗ The method entry and e x i t codes t r y to maintain a g l o b a l o b j e c t

∗ s t a c k trace , gdata−>objStackw , which keeps on top the current

∗ o b j e c t on which method i s invoked . I t makes e n t r i e s in the dependency

∗ matrix .

∗/
stat ic void M nat ive entry (JNIEnv ∗env , j c l a s s k la s s ,

j o b j e c t thread , j o b j e c t obj ) {
jvmt iError e r r o r ;

e n t e rC r i t i c a l S e c t i o n ( gdata−>jvmti ) ; {
Stack ∗ objStack=gdata−>objStack ;

jvmtiEnv ∗ jvmti ;

jvmti=gdata−>jvmti ;

jvmt iError e r r ;

ObjectTag ∗ invokerTag ;

ObjectTag ∗ invokedTag ;

i f ( ! ( gdata−>vmIn i t i a l i z e d ) | | ( gdata−>vmDead) ){
return ;
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}
/∗Get the s t a c k top to g e t invoker tag ∗/
invokerTag = objStack−>getTop ( objStack ) ;

i f ( obj != NULL) {
j l o ng s i z e p t r , tag ptr , c a l l e r t a g p t r ;

TraceIn fo ∗ t i n f o ;

jvmt iError e r r o r ;

/∗ Retr i eve the tag f o r the o b j e c t ∗/
e r r o r= (∗ jvmti)−>GetTag ( jvmti , obj , &tag p t r ) ;

/∗ t a g p t r i s t a g In f o t ypeca s t ed to long ∗/
i f ( ! t ag p t r ) {
return ;

}
t i n f o = ( TraceInfo ∗ ) ( void ∗ ) ( p t r d i f f t ) ( t ag p t r ) ;

/∗ check f o r p r i v a t e f unc t i on / same c l a s s / ob j

∗ func ion invoca t i on ∗/
i f ( invokerTag !=NULL && invokerTag−>id == t in f o−>id ) {
incrementStackCount ( invokerTag ) ;

return ;

}
/∗ Going f u r t h e r means c a l l i s not

∗ i n t e r n a l to the o b j e c t . Create the tag o b j e c t

∗/
invokedTag=createTag ( t i n f o−>id , OBJECT CALL) ;

}
else /∗ ob j == nu l l imp l i e s s t a t i c method invoked ∗/{

jvmtiFrameInfo frames [MAXSTACKFRAMES] ;

j i n t count ;

e r r = (∗ jvmti)−>GetStackTrace ( jvmti , thread , 0 ,

MAX STACKFRAMES, frames , &count ) ;

i f ( e r r == JVMTI ERROR NONE && count >= 2) {
int i ;

char ∗methodName ;

char ∗declar ingClassName ;

j c l a s s d e c l a r i n g c l a s s ;

/∗Frame Desc r i p t i on s : frame [ 0 ] : method entry ( from Tracker )

∗ frame [ 1 ] : naive method entry

∗ frame [ 2 ] : the invoked method

∗ frame [ 3 ] : c a l l e r method
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∗/
e r r = (∗ jvmti)−>GetMethodName( jvmti , frames [ 2 ] . method ,

&methodName ,NULL,NULL) ;

i f ( e r r == JVMTI ERROR NONE) {
Cla s s In f o ∗ c i n f o ;

/∗ ge t the c l a s s s i g o f the method be ing invoked ∗/
e r r = (∗ jvmti)−>GetMethodDeclaringClass ( jvmti ,

frames [ 2 ] . method , &d e c l a r i n g c l a s s ) ;

CHECK JVMTI ERROR( jvmti , err , ” cannot get the Method”

” Dec lar ing c l a s s ” ) ;

/∗ r e t r i e n v e id from hashClasses t a b l e ∗/
e r r = (∗ jvmti)−>GetClassS ignature ( jvmti , d e c l a r i n g c l a s s ,

&declaringClassName , NULL) ;

CHECK JVMTI ERROR( jvmti , err , ” cannot get the c l a s s ”

” s i gna tu r e ” ) ;

c i n f o = lookupClas s In fo ( declar ingClassName ) ;

/∗ check f o r p r i v a t e f unc t i on / same

∗ c l a s s / ob j f unc t i on invoca t i on

∗/
i f ( invokerTag != NULL && invokerTag−>id == c in fo−>id )

{
incrementStackCount ( invokerTag ) ;

return ;

}
/∗Create the tag o b j e c t ∗/
invokedTag=createTag ( c in fo−>id , STATIC CALL) ;

}
else {

CHECK JVMTI ERROR( jvmti , err , ” cannot get method name” ) ;

}
d e a l l o c a t e ( jvmti , methodName ) ;

d e a l l o c a t e ( jvmti , declar ingClassName ) ;

}
else {

CHECK JVMTI ERROR( jvmti , err , ” cannot get s tack t r a c e ” ) ;

}
}
/∗ Push the o b j e c t on which method was c a l l e d on the s t a c k ∗/
incrementStackCount ( invokedTag ) ;
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objStack−>push ( objStack , invokedTag ) ;

i f ( invokerTag != NULL) {
/∗Make entry in id t a b l e f o r invokerTag , invokedTag ∗/
gdata−>objectDependenc ies [ invokerTag−>id ] [ invokedTag−>id ]++;

}
} e x i tC r i t i c a l S e c t i o n ( gdata−>jvmti ) ;

}

B.3 Profiling Output

B.3.1 Object Info
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Figure B.1: Tagged object information extract
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B.3.2 Dependency Matrix

We just show few rows of the dependency matrix objtained for the Motor example.

Figure B.2: Dependency Matrix
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B.4 Model

The BBN model learnt for the Motos example

Figure B.3: Dependency Matrix



Appendix C

Example - Translated Code

We are just showing the translated code that was used at run-time, for CarModel class

as discussed in chapter A.

C.1 Supporting Proxy class

This is instantiated at the remote caller and maintains a remote reference to a wrapper

object hosted at a remote host. For more synctactical details please refer to [Dah00]

public class CarModel Proxy extends CarModel implements ProxyMigrateable {
/∗ Required car par t s : 1 Engine , 4 wheels , and 2 doors ∗/
private CarMode l Inter face $$ in s tance ;

private Ident $$id ;

private boolean $$ i s m i g r a t e ab l e ;

CarModel Proxy ( CarMode l Inter face a , Ident id ) {
super ( ( doorastha .Dummy) null ) ;

$$ in s tance = a ;

$$id = id ;

}

/∗ Simula tes car usage ∗/
public void s imulateCarUsage ( ) {

do {
try {

$$ in s tance . $simulateCarUsage ( ) ;

return ;

} catch ( RemoteException e ) {
RuntimeSystem .DEBUG( e ) ; return ;

} catch ( MovedException e ) {
$$adjustTo ( e ) ; }

} while ( true ) ;
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}
}

C.2 Supporting Wrapper class

This is instantiated at the remote site where source object is instantiated. It keeps a local

reference to source object and exports remote reference to callers at remote sites. For

further details refere to [Dah00].

public class CarModel Wrapper extends Object Wrapper

implements CarModel Inter face , WrapperMigrateable {
/∗ Required car par t s : 1 Engine , 4 wheels , and 2 doors ∗/
private CarModel $$carmodel ;

public CarModel Wrapper (CarModel a ) {
super ( a ) ;

$$carmodel = a ;

}
public CarModel Wrapper ( ) {

// needed when used as a remote f a c t o r y

super ( null ) ;

}
public CarModel $$createCarModel ( ) {

// Ca l l ed from remote s i t e f o r remotenew

CarModel Proxy proxy = ( CarModel Proxy )new CarModel ( ) .

g l o b a l i z e ( ) ;

proxy . $$ i sMig ra t eab l e ( true ) ;

// Set f l a g . Flag i s not s e t by normal c r ea t i on

return proxy ;

}
}

C.3 Instrumented CarModel class

Orginal class has its methods and object creation statements re-written. Enclosing the

code of the constructor showing how each new() object creation gets translated.

public CarModel {
public CarModel ( ) {

Engine engine ;
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Door door ;

l o c a t i o n = AnalyzerEngine . getOptimalLocat ion

( ”edu . i i t b . o l p a r t i t i o n i n g . example . Engine” ) ;

i f ( l o c a t i o n . compareTo ( NetworkSystem . ho s t addr e s s )

== 0 ) /∗ I f l o c a l hos t ∗/
eng ine = new edu . i i t b . o l p a r t i t i o n i n g .

example . Engine ( ) ;

else /∗ remote hos t ∗/
eng ine = edu . i i t b . o l p a r t i t i o n i n g . example .

Engine Proxy . $$createEngine ( l o c a t i o n ) ;

l o c a t i o n = AnalyzerEngine . getOptimalLocat ion

( ”edu . i i t b . o l p a r t i t i o n i n g . example . Door” ) ;

i f ( l o c a t i o n . compareTo ( NetworkSystem . ho s t addr e s s ) == 0 )

l e f t = new edu . i i t b . o l p a r t i t i o n i n g .

example . Door ( ) ; /∗ I f l o c a l hos t ∗/
else /∗ remote hos t ∗/

l e f t = edu . i i t b . o l p a r t i t i o n i n g .

example . Door Proxy . $$createDoor ( l o c a t i o n ) ;

}
}

Other objects are instantiated in a similar way.
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