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Contribution in a nutshell

We have identified a few domains in theoretical computer science
and devised problem-solving techniques for problems in each
domain.



Problem-solving as a search process

‘If you can’t solve a problem, then there is
an easier problem you can solve: find it.’



Problem-solving as a search process

Problem P

P1 P2

Sol1 Sol2 Sol3

Solution to P

P3 P4

Weaken-Identify-Solve-Extend (WISE).



Too general to be useful

Problem P ′

P1 P2 P3 P4
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Solution to P ′
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Solution to P
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How to give precision?

P1 ≈ P2

Problem P1

Solution to P1

Problem P2

Solution to P2



How to give precision?

1. Restrict the domain

2. Extremality principle

Looking at objects that maximize or minimize some properties.



Generate extremal instances

Step 1: Identify the properties of instances

Step 2: Define max/min functions on properties.



Generate extremal graphs

Step 1: Property: Number of edges

Step 2: Function: Maximum number of edges



Generate extremal graphs

Step 1: Property: Number of edges

Step 2: Function: Maximum number of edges
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Two types of extremal instances

Domain-specific.

Examples: Complete graph, path, binary tree, bipartite graph, etc.

Problem-specific.
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Connectivity: An example

Problem We are given an adjacency matrix of a graph G = (V ,E ).
How many entries do we have to probe to check if G is connected.



Our proof vs textbook proof



Connectivity: Textbook proof

Current textbook-proofs of this problem goes through invariant
analysis.

Drawback. Not easily generalizable to other properties.



Our proof: Main idea

Problem of proving a lower bound.

⇓ reduced to

Constructing a certain extremal graph.

I More generalizable than the invariant proof.

I Students find the second task easy (Pilot experiment).
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Critical Graph

A graph G is called a critical graph with respect to property P if

I Graph G does not have the property P.

I But replacing any non-edge with an edge endows G with the
property.



Connectivity

Kn/2

A

Kn/2

B

(a)

Kn/2

A

Kn/2

B

(b)

- G is not connected.
- But replacing any non-edge with an edge makes it so.



Advantage of our proof

Critical graphs for other topological graph properties are easy
to construct. Hence, proving lower bounds becomes easy.



Applicability

Property Extremal critical graph

Connectivity 2Kns

Triangle-freeness Star

Hamiltonicity 2Kns

Perfect matching 2Kns

Bipartiteness Kn,n

Cyclic Path

Degree-three node Cycle

Planarity Triangulated graph

Eulerian Cycle
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Scope of problems

Task T

Optimization
Problem P

Greedy
Algorithm A

Greedy
Counterexample C

Original Task



Max. Independent Set Problem (MIS)

A set of vertices S is said to be independent if no two vertices in S
have an edge between them.

a b

de

c

Given a simple graph G output the largest independent set.



Greedy strategy for MIS

1. Pick the vertex with the smallest degree (say v).

2. Delete v and its neighbours from G .

3. Recurse on the remaining graph.



Scope of problems

Task T

Optimization
Problem P

Greedy
Algorithm A

Greedy
Counterexample C

Original Task



Definitions

Maximal set
An independent set is said to be maximal if we cannot extend it.

Discrepancy of G

The difference between the largest and the smallest maximal sets
in G .



Extremal graphs of interest

Graphs with high discrepancy.

Graphs with low discrepancy.



MIS counterexample
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Applicability

Problem St. I St. II

Independent Set Star Kn

Vertex Cover Star Centipede

Matching Paths Kn,n

Maxleaf Path Binary tree

Maxcut Kn,n Kn,n

Network Flow - Paths

Triangle-Free - Kns

Dominating Set Paths Paths



Pilot Experiments

Counterexample Construction

Discrepancy graphs. Students’ Approaches

Bad first choice

More general problem

Reduce from known problem

Try all small graphs
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Problem description

r
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Query: ‘Is node x a descendant of node y?’

Result: An O(n1.5 log n) algorithm. Previously, only O(n2) was
known.

Joint work with Anindya Sen.
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Key ideas via extremal trees

Idea Extremal Tree Generalization

I Path Bounded-leaves trees

II Complete binary tree Short-diameter trees

II Centipede Long diameter trees

Ideas I+II+II = O(n1.8 log n) algorithm

Joint work with Anindya Sen.
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Motivation

Most books on linear programming assume knowledge of linear
algebra.



Motivation

Introduce linear programming to a younger audience using
weak duality.



Scope of problems

Math puzzles that can be formulated as a linear programs.



Scope of problems

Mathematical Olympiad Simple Polytopes

Main Idea: Certificates are easy to find.



Tiling

Prove that every 10× 10 board cannot be tiled using straight
tetraminoes.1

1F. Ardilla and R.P. Stanley. Tilings. Mathematical Intelligencer 2010



Tiling

Every color appear appears 25 times (odd number).



Tiling

Every tile covers even number of colors.



Tiling

Every tile covers even number of colors.



Tiling via LP

What is maximum number of non-overlapping tiles we can
place?

LP-formulation. We ensure this by saying that among all the tiles
that cover a cell c , at most one should be picked.

max:
∑
t∈T

t

∑
t∈Tc

t ≤ 1 ∀c ∈ C



Tiling - Dual

The dual will have one variable for each cell.

I Minimize the sum of cell-variables.

I Constraint : Sum of every four adjacent cells >= 1.



Tiling: Certificate

Every tile must lie on exactly one dark cell. But there are only 24
dark cells.



Applicability

Problem Method

Baltic 2006 Small cases.

Ratio Ineq. Guess the certificate.

IMO 1965 Guess the tight constraints.

IMO 1977 Guess the certificate.

Engel. Guess the tight constraints.

Math. Lapok Small cases.

IMO 2007 Guess the certificate.

IMO 1979 Guess the tight constraints.

Math. Intel. Small cases.
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Future Work

Counterexamples for online algorithms

Caching problem.

Counterexamples for LP

Instances with large integrality gaps.

Lower bounds in other areas
Number theory: What is a bad instance for Euclid’s GCD
algorithm?



Thank You



Titu Andreescu

In a set of 2n + 1 numbers the sum of any n numbers is smaller
than the sum of the rest. Prove that all numbers are positive.



Titu Andreescu



Duality-based solution

x + S > S ′

x + S ′ > S

2x + S + S ′ > S + S ′

x > 0



Our Proof vs Textbook Proof

Baseline for comparison.



Experiment

Phase Topic Students

S1 S2 S3 S4 S5

1*I Adv. Yes Yes No No No

6*III P1 8m 10m - 9m -
P2 5m 5m 9m 6m 6m
P3 8m - - 10m 9m
P4 1m 2m 4m 2m 2m
P5 1m 2m 2m 1m 2m
P6 1m 1m 1m 1m 1m
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P2 5m 5m 9m 6m 6m
P3 8m - - 10m 9m
P4 1m 2m 4m 2m 2m
P5 1m 2m 2m 1m 2m
P6 1m 1m 1m 1m 1m

Students found our
method easier
than Arora-Barak ¨̂



Role of experiments

Pilot Exp. Helped us iden-
tify problem areas.

⇓

Refinement of Anchor
Method.

Critical Graph vs Invariant
Proof

⇓

Pilot Exp. Our method was
better than a baseline


