Implementation of WiFiRe MAC

M. Tech. Project Presentation

Janak Chandarana

Roll Number: 05329R04

CSE, IIT Bombay

Supervisor: Prof. Sridhar Iyer

Co-supervisor: Prof. Anirudha Sahoo

Outline

- Wireless testbed, PHY integration (7)
- Encapsulation, fragmentation of packets (4)
- GPSS mode, memory management, packet filters (4)
- Results, conclusions, future work (1-2)
- Implementation issues (1)

Replacing 802.11 MAC

- Reconfigure 802.11 MAC approach
 - Atheros HAL with madwifi drivers
 - Related work: softMAC
 - Direct control of framing
 - Fine time granularities (micro Sec)
 - Kernel/Driver level implementation

```
IP layer

Reconf. MAC

PHY (NIC)
```

Replacing 802.11 MAC (cont.)

- Overlay approach
 - MAC at layer 2.5
 - Schedules Tx in pre-decided time-slot
 - Related work: Overlay MAC Layer (UC, Berkeley)
 - Loosely coupled with PHY
 - Relatively large slot time (large enough to ignore clock syn error)
 - Periodic SYN with BS clock

WiFiRe wireless link

- Using PF_SOCK and madwifi drivers
- Overlay approach
- Madwifi driver, D-link wireless cards
- Advantages scheduled Tx (10mSec), better than CSMA/CA
- Disadvantages not scalable, short range
- Packet header should be correct

802.11 Clients

Can be connected via
 AP or ad-hoc mode

Interference issues

No change on BS or ST

Client

 Supports CS layer mentioned in draft

DHCP issue

Integration with IITM-PHY board

WiFiRe PHY integration

- MAC and PHY are separate entities
- MAC to be delivered on Ethernet
- PHY to be developed independently by IITM
- WiFiRe MAC for BS and ST

Assumption from IIT-M PHY board

- Give feedback to MAC about PHY characteristic (like modulation, bandwidth, timeslot, sync issue etc.)
- Able to send / receive packet on given time slot (for example: send 1000 bytes at t=50)
- Synchronisation among sectors (6 PHY issue)
- Understand Ethernet packets
- Buffer for bigger packets

Meta Frame Construction PLCP issue

Encapsulation and Fragmentation

- ST will receive packets from client, keep them in buffer
- Encapsulate multiple MAC packets and make packet of 1450 bytes
- Fragment packet (if doesn't fit in frame)
- Takes care of Ethernet MTU
- Keep client Eth MAC header as it is
- Diagram next slide

Encapsulation and Fragmentation (cont.)

Encapsulation and Fragmentation (cont.)

```
98
 98
    79
     79
     79
         98
             79
             79
     79
         98
             79
                 98
                     98
                         79
                 98
                     98
                         79
                 98
                     98
                         79
                             98
                                     79
                         79
                         79
                             98
        79 98 98 79 98 98 79 98 79 98
BYTES=25
                                                    Packet is divided
                                                        73 + 25 = 98
    79
    79
        98
    79
         98
         98
    79
         98
             98
     79
         98
                    79
                         98
         98
         98
                     79
                             98
                                     79
         98
             98
                                     79
                     79
                             98
                                 98
                             98
                                 98
                                     79
                                         98
            98
                             98
                                     79
        98 79 79 98 98 98 79 98 98 79 98 79 67
```

ST collects packet and send them in single frame to BS

```
Edit View Terminal Tabs Help
broken packet flag=1 1 total packets = 16 received
BEFORE MERGING: p 0 l=73 MERGED PACKET: p 0 l=98
packet 1 sent
packet 2 sent
packet 3 sent
packet 4 sent
packet 5 sent
packet 6 sent
packet 7 sent
packet 8 sent
packet 9 sent
packet 10 sent
packet 11 sent
packet 12 sent
packet 13 sent
packet 14 sent
packet 15 sent
BROKEN: packet 16 length=67
Bytes received at BS: 1341
broken packet flag=0 0 total packets = 15 received
BEFORE MERGING: p 0 l=67 MERGED PACKET: p 0 l=98
packet 1 sent
packet 2 sent
packet 3 sent
packet 4 sent
packet 5 sent
packet 6 sent
packet 7 sent
packet 8 sent
packet 9 sent
packet 10 sent
packet 11 sent
packet 12 sent
packet 13 sent
packet 14 sent
packet 15 sent
 🧗 Applications Places Desktop 👔 🦙
       WiFiRE BS
```

GPSS mode

- Grant per Subscriber station model followed (adapted from WiMAX)
- BS allocates slots (per ST basis)
- ST handles client level fairness,
 QoS
- SSID, CID on ST level
- Can be extended to support GPC,
 GPSF

ST-ID	Client MAC				
1	AA-AA-AA-AA-AA				
2	BB-BB-BB-BB				
1	CC-CC-CC-CC-CC				
1	DD-DD-DD-DD				
2	EE-EE-EE-EE				

MAC filter at BS

DL framing for GPSS

- FIFO scheme, supports scheduler
- Memory management unit

Results

- Delay within prescribed limit
 - Client to Proxy delay (avg. 15 ms)
 - Client to Client delay (avg. 30 ms)
- Data Rate: more than 120KBps
 - Depend on frame length, periodicity
 - Will increase with longer frame and multiple sectors

Result discussion

- Voice calls
 - VoIP to VoIP (G.711 with 214 bytes of packet, 20ms)
 - VoIP to PSTN (GSM codecs with 87 bytes, 20ms)
- SIG_ALRM accuracy 99.997%
- 56KB web page takes 5 sec to download

Future work

- Explore the possibility to implement MAC as part of kernel module
- Driver code of 802.11 and integration with WiFiRe
- Adding bulk ACK support for WiFiRe frame
- Performance analysis of WiFiRe testbed
- Time synchronization among 3 BSs
- Long range deployment and study of propagation delay
- Exploiting Ethernet MTU size of 1500 (with specialized hardware)

Implementation Issues

- RTP issue
- Firewall issue
- TCP checksum off-loading false alarm
- Multicast packet from Switch

WiFiRe Proxy machine

- Squid web proxy and caching
- Asterisk VoIP PBX
- Apache, maraDNS, DHCP server
- VoIP-PSTN gateway to work with WiFiRe client
- LAN environment (with TCP/IP) for clients
- Transparent L-2 system

Future work

- Explore the possibility to implement MAC as part of kernel module
- Driver code of 802.11 and integration with WiFiRe
- Adding bulk ACK support for WiFiRe frame
- Performance analysis of WiFiRe testbed
- Time synchronization among 3 BSs
- Long range deployment and study of propagation delay
- Exploiting Ethernet MTU size of 1500 (with specialized hardware)

Backup slides

Meta Frame Construction PLCP issue

Ethernet sockets

- Using PF_SOCK with gcc
- Byte level access, Binding with particular NIC
- Send/receive data using sockets on MAC layer
- Allows non-Ethernet packets (like WiFiRe frame); Eth switch broadcast those packets, Eth MAC header not mandatory
- Why not in kernel module? PCAP?

WiFiRe architecture

IP network for data and voice on wireless backbone

WiFiRe LAN emulation – basic setup

- Single Sector, 1 BS, multiple STs and clients
- Single proxy server to handle web and VoIP requests
- All machines connected to ST using 802.3
- MAC code in user space with Ethernet Sockets

Motivation

- Low cost broadband Internet to rural India
- Applications
 - Voice calls (VoIP), E-commerce, E-gov, Day-to-day web-access
- Options
 - GSM/CDMA, DSL, WiMAX, WiFi

Background

- Fiber PoP in town and city (high quality backbone)
- Villages without any connectivity (wired or wireless)
- Need: low-cost, long range, less
 CAPEX
- Using popular technology
- Similar work: DGP, WilDNet

WiFiRe link as 802.11(cont.)

- Other options
 - with PF_PACKand write(sock,..)

```
struct ieee 802 11 header {
      u16
              ver:2.
               type:2,
               subtype:4,
               flags:8;
              duration:
      u16
              mac1[6];
      u8
              mac2[6]:
      u8
              mac3[6];
              SeqCtl;
      u16
Ieee80211Header;
```

- Too complex to handle
- Not transparent from underlying PHY (like Eth)

WiFiRe MAC

 Replace WiFi MAC with TDMA

DL frame					UL frame			
beacon	1/4	2/5	3/6	guard	1/4	2/5	3/6	

- WiMAX similar MAC with BS and ST
- Sectorized system, DL / UL
- Higher throughput, QoS, long range

WiFiRe console details

```
ST ID(STMAC)
                   BSID BCID PCID
            BS TABLE entries(List of Clients) from System side
Client MAC
0 8 a1 85 2 5b
                         4001
0 c f1 2d c9 98
                       4001
0 14 bf de d1 b3
                         4001
                      4001
0 1f f3 a3 17 c5
0 1c bf 75 9e 45
                         WiFiRe SYSTEM stats
OPR ID : 35
                                 Emulation Duration(s):89608
SYS ID : 10
Bytes Tx ( DL ) in B : 995868353
Bytes Rx ( UL ) in B : 549939952
Pkts Tx ( DL )
                  : 158151
Pkts Rx (UL)
                  : 165053
Data Bytes Tx ( DL )
                         : 27558987
Data Bytes Rx ( UL )
                     : 15502271
Frames Tx from System : 8960592
Packets Dropped at System: 8624
       : 1
ST Count
BS Count
Client Count : 5
```

List of STs

List of clients

Traffic Details

DL and UL frame