Lookup Service for Peer-to-Peer Systems in
Mobile Ad-hoc Networks

Dissertation

submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Kalpesh K. Patel
Roll No: 02329027

under the guidance of

Dr. Sridhar Iyer
and

Dr. Krishna Paul

Kanwal Rekhi School of Information Technology
Indian Institute of Technology, Bombay
Mumbai - 400076.

2004

ii

Dedicated to

My Family

Abstract

A Peer-to-Peer(P2P) system consists of a set of nodes in which every node shares its
own resources and services among other nodes in the system. Any node can make query
for data, currently available in the network. These peer-to-peer systems are basically
overlay networks, work on top of fixed network infrastructure. With the increasing
popularity of Mobile Ad-hoc Networks (MANET), it becomes necessary to think of P2P
systems which can efficiently work in mobile environments.

Current P2P systems do not fit well into mobile environments where each node have
to follow multi-hop path routing and have to face unpredictable mobility. If current P2P
systems are deployed on the MANET, application layer and network layer both perform
different routing mechanism independent of each other, resulting in multiple layer rout-
ing redundancy. Also, routes at the application layer may not be necessarily optimal
at the network layer. Thus, we bring down all routing and query lookup mechanism to
network layer.

Further, current ad-hoc network protocols do not fulfill the P2P requirements as
basically they all are flooding based protocols. Here, we address this problem and
propose a novel, controlled-flooding based approach which works at network layer and
helps P2P systems to work in mobile environment efficiently.

RINGS is a protocol which implements this approach. RINGS performs query lookup
at network layer rather than at application layer, thus eliminating application layer
routing overhead. It also reduces query lookup cost by evenly distributing data indices

throughout the network, thus reducing network layer routing overhead.

v

Acknowledgments

I express my sincere gratitude towards my guides Dr. Sridhar Iyer and Dr. Krishna
Paul for their constant help, encouragement and inspiration throughout the project
work. Without their invaluable guidance, this work would never have been a successful
one. I would also like to thank Kalyan Rao D., Kiran Diwakar, Ranjeeth Kumar, Srinath
Perur for their valuable suggestions and helpful discussions. Last, but not the least, I
would like to thank the whole KReSIT family which made my stay at II'T Bombay a

memorable one.

Kalpesh K. Patel
IIT Bombay
July 9, 2004

vi

Contents

Abstract

Acknowledgments

List of Figures

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2
2.3
2.4
2.5

2.6

Peer-to-Peer Systemso Lo 0oLl
Mobile Ad-Hoc Networks
Peer-to-Peer in MANET
Motivation L e e e
Problem Definition Lo L o o oL
Thesis Objective and Scope

Thesis Outline e e

P2P Protocols

Napster e

Gnutella e e e

vii

iv

xi

3 Mobile Ad-hoc Routing Protocols 13

3.1 Table-driven protocols Lo 14
3.1.1 Destination-Sequenced Distance-Vector Routing(DSDV) 14
3.1.2 Wireless Routing Protocol(WRP) 15

3.2 Demand-driven protocols oL 16
3.2.1 Ad-hoc On-demand Distance Vector (AODV) 16
3.2.2 Dynamic Source Routing (DSR) 17
3.2.3 Temporally Ordered Routing Algorithm (TORA) 19
3.2.4 Associativity Based Routing (ABR) 19

3.3 Summary of Ad-hoc Protocols. 19

3.4 Progress on P2P Mobile Networks, 20
341 JXME . . . o 20
3.4.2 Lawrence 20
343 PROEM e 20
344 ORION e 21
3.4.5 MPP - Mobile Peer-to-Peer Protocol 21

4 RINGS: Protocol in Details 23

4.1 Architectureo 23

4.2 Data Advertisement L e 24

43 RoutingTable. 26

44 Query Lookup 26

4.5 Route Maintenanceo Lo 26

4.6 Mobility 27

4.7 Optimization 0oL e 28
4.71 Data Updates e 28
4.72 Node Joining L 28
4.73 NodeDeletion o oo 28

4.8 Summary e e e e e e e e e e e 30

5

7

Analysis and Comparison
5.1 Query Lookup Cost e

5.2 Comparison with Current P2P protocols

Simulation and Results
6.1 Simulation Setup
6.2 Results. e e e e e

Directions for Future Work and Conclusion
7.1 Possible Applications Lo
7.2 Directions for Future Work

7.3 Conclusion e

Bibliography

ix

33
33
34

37
37
37

41
41
42
42

43

List of Figures

1.1 Mobile Ad-hoc Network 2
1.2 Application layer nodes’ positions from network layer perspective 6
3.1 Various Ad-hoc Routing Protocols 13
3.2 Communication between Application layer and Network layer 21
4.1 ADV_PACKET packet header format 24
4.2 A set of imaginary circles foranode 25
4.3 An example of 2-hop protocol oL Lo L 25
4.4 Routingtableentry. o oo 26
4.5 An example of route maintenance 27
4.6 NodeJoin L e 29
4.7 Pseudo-code for Node joining 29
4.8 After Index Advertisemento 30
4.9 Node Deletion: Index Reallocation 30
4.10 Pseudo-code for Node Deletion 31
6.1 Average number of remote index stored pernode 38
6.2 Average number of hops per query lookup 39

xi

xii

Chapter 1

Introduction

1.1 Peer-to-Peer Systems

Peer-to-Peer are distributed systems without any centralized control or hierarchical or-
ganization. Every node in Peer-to-Peer system is functionally equivalent with every
other node in the system. The primary goal of P2P system is to share data and services
within the network. Most of the P2P protocols can be characterized in three different

categories as, protocols with:

1. Centralized Index Servers: A set of servers maintain repositories of all the index
in the network. All data related queries are answered by these servers. There are
many disadvantages using this model including lack of load balancing, single point
of failure etc. Because of client/server model, these protocols do not suit with

ad-hoc environments. Example, Napster [1].

2. Flooding-based Approach: Protocols in this category follow simple broadcast based
technique to communicate with peer node in the network. In this model, every
client is a server, and vice-versa. These so-called servents perform tasks normally
associated with both clients and servers. Thus these protocols are a step further
to Centralized Index Servers based protocols and decentralize the file location

process. examples include Gnutella [3].

Chapter 1. Introduction

3. Distributed Hash Index: Among all P2P protocols, these protocols give better
scalability and routing optimization. Still, we observed that performance of these

protocols degrades in mobile environments. examples include Chord [9], CAN [4],
etc.

1.2 Mobile Ad-Hoc Networks

Mobile Ad-hoc networks first appeared as DARPA packet radio networks in the early
1970’s. They became an important area of research within communication networks and
remain a hot topic. To reach their communication partner, they create connections over
several intermediate hops as shown in Fig. 1.1. Since wireless access technologies like
WLAN 802.11 and Bluetooth are broadly available, ad hoc networks turn from academic
considerations into real applications. Both standards are able to create and maintain

networks without central entities, and therewith fit into the ad hoc network paradigm

of infrastructure free communication.

Figure 1.1: Mobile Ad-hoc Network

A MANET consists of mobile nodes which are free to move around arbitrarily. The

nodes may be located at different places, and there may be multiple hosts per router.
Also, a MANET is an autonomous system of mobile nodes. The system may operate
in isolation, or may interface with a fixed network. MANET nodes are equipped with

wireless transmitters and receivers using antennas. At a given point of time, depending

1.8 Peer-to-Peer in MANET

on the nodes’ positions and joining or leaving of nodes, topology of MANET changes

accordingly.

1.3 Peer-to-Peer in MANET

A mobile P2P system inherits many of the features of ad-hoc networks:

1. Self-organizing: As side effect of the movement of devices in physical space, the
topology of a mobile P2P system constantly adjusts itself by discovering new

communication links.

2. Fully decentralized: Each peer in a mobile peer-to-peer system is equally important

and no central node exists.

3. Highly dynamic: Since communication end-points can move frequently and inde-

pendently of one another, mobile P2P systems are highly dynamic.

4. Low cost: Wireless ad-hoc networks are built from low-cost transceivers and do

not incur charges for provider access and air-time.

At the same place, peer-to-Peer networks realize a comparable approach within fixed
network infrastructures. The main characteristic is that P2P networks act independent
from the underlying network infrastructure. The utilized TCP /IP only provides a com-
munication platform protocol and does not supply information about the location of
requested content or participants. As P2P-nodes independently maintain P2P networks,
these overlays show characteristics of an infrastructure free and decentralized network.
As an example, Gnutella [3] allow file sharing between distant participants in completely
self organizing networks. For signaling, P2P nodes flood search requests and keep alive
messages through the network, or distribute them with more sophisticated algorithms
to other participants of the network.

Both network architectures are very promising concepts. Although they use different
layers for operation, we think that the idea to combine both architectures shows a high

potential. The reason being is P2P protocols are not aware of the underlying MANET

Chapter 1. Introduction

and assume a fixed network infrastructure, causing additional and unnecessary network

traffic.

Common P2P applications have optimized algorithms to find information within
their overlay network, but for information exchange they generally rely on TCP and
assume stable connections. Whenever connections break, P2P nodes suppose, that their
distant communication partners have left the network and switch to other, randomly
chosen nodes, which also provide the requested content, or which offer further connec-

tivity to the network to initiate new search requests.

In MANETS, link breaks are common, as all nodes are in motion. Whenever two
adjacent nodes move out of each others radio range, the link between both nodes breaks.
A MANET protocol not aware of the P2P application, tries to reestablish a new route
to the same destination, independent from the necessary effort. Instead of trying to
create a new route to the same source of information, other sources could provide the
information at less costs after the network topology changed. Therefore the MANET
nodes have to report route breaks to the upper P2P node which then decides whether

the old source is still utilizable or other connection partners are more appropriate.

P2P networks use multi-hop connections only for search requests. Subsequent in-
formation downloads use direct TCP connections between source and destination. The
distance between nodes generally does not affect the stability and error free operation of
connections. Therefore P2P nodes might create connections to distant nodes, although

the searched information might be available more closely as well.

The distances between communication partners in MANETS are counted in number
of intermediate hops. It is the most important parameter for route lifetimes. Numerous
unnecessary lengthened routes induce additional routing overhead, delay data packet
transmissions and therewith greatly reduce the overall network performance. Therefore
the application client must classify incoming search replies according to their hop dis-
tance to the destination. As a consequence, a combined P2P-MANET approach must
be well aware on the one hand of the underlying network infrastructure and on the other

hand of the overlaying application.

1.4 Motivation

1.4 Motivation

Despite the fact that ad-hoc networking and P2P computing deal with similar issues,
namely discovery, routing and information dissemination, there is not much overlap
in the research. Most research on ad-hoc networks focuses on the lower layer of the
protocol stack including the link layer, network layer and transport layer. On the other
hand, current P2P systems are designed for an Internet-like network infrastructure in
which stationary hosts are connected by high bandwidth links. The assumptions, on
which these P2P systems are build, are no longer valid in dynamic ad-hoc networking
environments. The unique characteristics of such networks require highly adaptable P2P
systems that can react to changes in connectivity.

As of today, a lot of work has been done in the area of P2P and MANET indepen-
dently. P2P protocols and applications are widely available in distributed computing
field. All those P2P protocols work as virtual overlay networks on top of fixed network
infrastructure. Deploying current P2P protocols on ad-hoc network induces multiple
layer redundancy and duplication in terms of messages and communication between
nodes. As for example, Chord [9] working as overlay network, forms a cluster of nodes
on top of TCP/IP layer. The fact is that a pair of nodes, which are neighbors at overlay
network, might be far away from each other at network layer as shown in Fig. 1.2. For
example, query lookup cost for Chord is log(N) at the application layer but due to this
fact, the overall cost will be increased.

This problem brings the idea of having communication link between application layer
and network layer. If network layer routing information can be provided to application
layer, multiple layer redundancy can be avoided.

Here, we suggest a protocol, named RINGS, to optimize overall query lookup cost.
RINGS provides query lookup service at network layer rather than at application layer
and thus eliminates application layer routing overhead. Further, RINGS provides rout-
ing optimization at network layer by controlled-flooding approach in which query does
not flood the whole network. Thus, by eliminating application layer from routing pro-
cess and providing network layer routing optimization, RINGS enables P2P systems to

work in mobile environments efficiently.

Chapter 1. Introduction

Application
Layer

Network
Layer

Figure 1.2: Application layer nodes’ positions from network layer perspective

1.5 Problem Definition

As we have discussed earlier, the total routing overhead doubles while deploying Peer-
to-Peer systems in ad-hoc networks. This overhead is because of separate routing func-
tionality at application layer and at network layer. The overall problem is to reduce
this routing redundancy of application layer and network layer, and to optimize routing

mechanism.

1.6 Thesis Objective and Scope

The main objective of this work is to enable Peer-to-Peer systems in Mobile environments
effectively. Peer-to-Peer systems are becoming popular very fast. There are many ad-
hoc applications in which these systems may need to be deployed such as military bases,
navy camps, on-the-road traffic systems etc. Current P2P protocols are application
oriented protocols which fail to perform in mobile environments. This thesis suggests a
lookup service to come up with this problem. The scope of this work is mainly limited
to multihop networks. The effect of node mobility is discussed but an efficient solution

is yet to be given.

1.7 Thesis Outline

1.7 Thesis Outline

Rest of the thesis is organized as follows. Chapter 2 and chapter 3 give an overview
of P2P protocols and MANET protocols respectively. Chapter 3 also covers current
updates on the field of peer-to-peer mobile ad-hoc networks. The RINGS protocol is
explained in Chapter 4 with all details. Chapter 5 checks the correctness of RINGS by
analysis and comparison. Simulation results are discussed in chapter 6. Chapter 7 gives

directions for future work and concludes the thesis.

Chapter 1. Introduction

Chapter 2

P2P Protocols

This chapter gives a brief overview of popular P2P protocols which include Napster,

Gnutella, Chord, CAN, and Pastry.

2.1 Napster

Napster [1] has been among the first protocol which introduced P2P concepts in com-
puter networks. Although it follows some of P2P paradigms, it fails to be characterized
as a complete P2P network as it relies on centralized servers. in Napster, a central
server stores the index of all the files available within the Napster user community. To
retrieve a file, a user queries this central server using the desired file’s well known name
and obtains the IP address of a user machine storing the requested file. The file is then
downloaded directly from this user machine. Thus, although Napster uses a peer-to-peer
communication model for the actual file transfer, the process of locating a file is still

very much centralized. This makes it expensive and easy to fail.

2.2 Gnutella

The most prominent example for flat routing architectures in the area of Peer-to-Peer
networks is the network established by the Gnutella protocol [3] . The Gnutella network

is made up of nodes distributed throughout the world, which are interconnected by

Chapter 2. P2P Protocols

TCP/IP connections. Within this virtual overlay network the nodes provide the content

and perform routing tasks, to make networking possible.

Every node is connected dynamically to a few number of nodes, depending on the
bandwidth of the node’s network connection. The messages, routed via these connections
can be divided into two categories. One type are the query messages, and the second
type are the respond messages. The query messages are used to explore the structure

of a terminals neighborhood and to search for user demanded content.

The Gnutella network employs a routing concept, known as viral propagation for the
query messages. This means that a node searching for content or exploring the network,
sends out a query message, i.e. a QUERY() or a PING() message, to all the neighboring
nodes it is currently directly connected to via TCP/IP connections in the virtual overlay

network.

The second type of messages, which are used in the Gnutella network, are the respond
messages, which are used to answer received query messages. These respond message
are of no interest to the rest of the network, and they therefore have to be routed
only to the querying node. To avoid flooding, respond messages are routed back to the
querying terminal on the same way backwards, the original query message traveled to

the receiving node.

Beside the application routed-signaling messages, i.e. the respond and query mes-
sages, the content a node is querying for, must also be distributed through the virtual
overlay network. However, to minimize the load on the existing overlay network and
especially of its nodes/routers, the demanded data is transmitted out-band. Out-band
in this context means, that with the address provided in the QUERY_HIT message, a
direct-only IP routed connection between the querying and the responding node is es-

tablished. This connection is used to transmit the content directly between both peers.

The major problem of the Gnutella protocol v0.4 [2] is that parts of the virtual
overlay network are flooded to a certain extent with ping and query messages, which
causes a high signaling load. To reduce this load, a time-to-live value (TTL) is attached
to each query message in the Gnutella protocol v0.4. Thus a certain transmission range

for these messages is defined, which prevents the network from being flooded by query

10

2.8 Chord

messages.

2.3 Chord

Chord [9] is a scalable, distributed look-up protocol which efficiently locates the node
that stores a particular data item or service. Chord provides support for one operation:
given a key, it maps the key onto a node. While Chord maps keys onto nodes, tradi-
tional name and location services provide a direct mapping between keys and values.
A value can be an address, a document, or an arbitrary data item. Chord implements
this functionality by storing each key/value pair at the node to which that key maps.
Depending on the application using Chord, that node might be responsible for storing
a value associated with the key. Chord uses a variant of consistent hashing to assign
keys to Chord nodes. Consistent hashing tends to balance load, since each node receives
roughly the same number of keys, and involves relatively little movement of keys when
nodes join and leave the system.

Previous work on consistent hashing assumed that nodes were aware of most other
nodes in the system, making it impractical to scale to large number of nodes. In contrast,
each Chord node needs routing information about only a few other nodes. Because the
routing table is distributed, a node resolves the hash function by communicating with
a few other nodes. In the steady state, in an N-node system, each node maintains
information only about O(logN) other nodes, and resolves all lookups via O(logN)
messages to other nodes. Chord maintains its routing information as nodes join and
leave the system; with high probability each such event results in no more than O(log?N)
messages.

Our analysis and simulation results show that in fact, performance of Chord degrades

in mobile ad-hoc networks.

2.4 Content-Addressable Network (CAN)

Content-Addressable Network (CAN) [4], as a distributed infrastructure, provides hash

table-like functionality on Internet-like scales. In CAN, the node space is mapped on a

11

Chapter 2. P2P Protocols

d-dimensional thorus. The performance of the scheme depends on the tuning parameter
d which is the dimension of the thorus. Each node owns a zone of the thorus. To store a
pair(key, value), the key is deterministically mapped, using the hash function, to a point
in this virtual space. The pair is then stored at the node that owns the zone within
which the point lies. To get the value corresponding to key, the node applies the same
hash function to map the key onto the point, and retrieve the value from that point. In
case the point is not in the zone owned by the node or immediate neighbors, the request
gets routed until it reaches the zone where the point lies. To maintain this structure
upon nodes departure, CAN must ensure that the zones they occupied are taken over

by the remaining nodes. CAN does that through a Takeover algorithm.

2.5 Pastry

Pastry [5] is a scalable, distributed object location and routing substrate for wide-area
Peer-to-Peer applications. Pastry performs application-level routing and object location

is a potentially very large overlay network of nodes connected via the Internet.

2.6 Summary

Although all these protocols decrease the signaling overhead significantly, the major ap-
plication area is still a fixed network. These approaches do not aim to match the virtual
overlay network to the physical network and thus are not utilizable within MANET

scenarios.

12

Chapter 3

Mobile Ad-hoc Routing Protocols

Since the advent of ad-hoc networks numerous protocols have been developed so far.

Such protocols have unique characteristics like high power consumption, low bandwidth,

high error rates, and multihop routing. All the ad-hoc routing protocols can be catego-

rized as (See Fig. 3.1):

e Table-driven

e Demand-driven (Source-initiated)

Ad-hoc Routing Protocols

Demand - Driven

Table- Driven
DSDV WRP AODV
v
CGSR

' ¢ ¢

DSR LMR ABR

I I
TORA SSR

Figure 3.1: Various Ad-hoc Routing Protocols

13

Chapter 3. Mobile Ad-hoc Routing Protocols

3.1 Table-driven protocols

Each node in the network has to maintain one or more tables to store routing information
in table-driven routing protocols, and they respond to changes in network topology by
propagating updates throughout the network in order to maintain a consistent network
view. Thus, table-driven routing protocols attempt to maintain consistent, up-to-date
routing information from each node to every other node in the network. Important proto-
cols are Destination-Sequenced Distance-Vector Routing Protocol(DSDV) and Wireless

Routing Protocol(WRP).

3.1.1 Destination-Sequenced Distance-Vector Routing(DSDV)

The Destination-Sequenced Distance-Vector Routing protocol(DSDV) is a table-driven
algorithm which features loop-free routing.

Each mobile node in the network maintains a routing table in which all of the
possible destinations within the network and the number of hops to each destination
are recorded. Each entry is marked with a sequence number assigned by the destination
node. Routing table updates are periodically transmitted throughout the network in
order to maintain table consistency.

New route broadcasts contain the address of the destination, the number of hops
to reach the destination, the sequence number of the information received regarding
the destination, as well as a new sequence number unique to the broadcast. The route
labeled with the most recent sequence number is always used. In the event that two
updates have the same sequence number, the route with the smaller metric is used in
order to optimize the path. Mobiles also keep track of the settling time of routes, or
the weighted average time that routes to a destination will fluctuate before the route
with the best metric is received. By delaying the broadcast of a routing update by the
length of the settling time, mobiles can reduce network traffic and optimize routes by
eliminating those broadcasts that would occur if a better route was discovered in the
very near future.

Cluster-head Gateway Switch Routing - Instead of a “flat” network, Cluster-
head Gateway Switch Routing (CGSR) protocol is a clustered multihop mobile wireless

14

3.1 Table-driven protocols

network with several heuristic routing schemes.

3.1.2 Wireless Routing Protocol(WRP)

The Wireless Routing Protocol (WRP) is a table-based protocol with the goal of main-
taining routing information among all nodes in the network. Each node in the network

is responsible for maintaining four tables:
e Distance table
e Routing table
e Link-cost table
e Message retransmission list (MRL) table

Each entry of the MRL contains the sequence number of the update message, a re-
transmission counter, an acknowledgment-required flag vector with one entry per neigh-
bor, and a list of updates sent in the update message. The MRL records which updates
in an update message need to be retransmitted and which neighbors should acknowledge
the retransmission.

Mobiles inform each other of link changes through the use of update messages. An
update message is sent only between neighboring nodes and contains a list of updates,
as well as a list of responses indicating which mobiles should acknowledge (ACK) the
update. Mobiles send update messages after processing updates from neighbors or de-
tecting a change in a link to a neighbor. In the event of the loss of a link between two
nodes, the nodes send update messages to their neighbors. The neighbors then modify
their distance table entries and check for new possible paths through other nodes. Any
new paths are relayed back to the original nodes so that they can update their tables
accordingly.

Nodes learn of the existence of their neighbors from the receipt of acknowledgments
and other messages. If a node is not sending messages, it must send a hello message
within a specified time period to ensure connectivity. Otherwise, the lack of messages

from the node indicates the failure of that link; this may cause a false alarm. When a

15

Chapter 3. Mobile Ad-hoc Routing Protocols

mobile receives a hello message from a new node, that new node is added to the mobile’s

routing table, and the mobile sends the new node a copy of its routing table information.

3.2 Demand-driven protocols

This type of routing creates routes only when desired by the source node. So, they are
called source-initiated on-demand routing protocols. When a node requires a route to
a destination, it initiates a route discovery process within the network. This process is
completed once a route is found or all possible routes have been examined. Once a route
has been established, it is maintained by a route maintenance procedure until either the
destination becomes inaccessible along every path from the source or until the route is

no longer desired.

3.2.1 Ad-hoc On-demand Distance Vector (AODYV)

The Ad-hoc On-demand Distance Vector (AODV) routing protocol builds on the DSDV
algorithm previously described. AODYV is an improvement on DSDV because it typically
minimizes the number of required broadcasts by creating routes on a demand basis, as
opposed to maintaining a complete list of routes as in the DSDV algorithm.

When a source node desires to send a message to some destination node and does
not already have a valid route to that destination, it initiates a path discovery process
to locate the other node. It broadcasts a route request (RREQ) packet to its neighbors,
and so on, until either the destination or an intermediate node with a ”fresh enough”
route to the destination is located. AODV utilizes destination sequence numbers to
ensure all routes are loop-free and contain the most recent route information. Each
node maintains its own sequence number, as well as a broadcast ID. The broadcast
ID is incremented for every RREQ the node initiates, and together with the node’s IP
address, uniquely identifies and RREQ. Along with its own sequence number and the
broadcast ID, the source node includes in the RREQ the most recent sequence number
it has for the destination. Intermediate nodes can reply to the RREQ only if they have

a route to the destination whose corresponding destination sequence number is greater

16

3.2 Demand-driven protocols

than or equal to that contained in the RREQ.

During the process of forwarding the RREQ), intermediate nodes record in their route
tables the address of the neighbor from which the first copy of the broadcast packet is
received, thus establishing a reverse path. If additional copies of the same RREQ are
later received, these packets are discarded. Once the RREQ reaches the destination
or an intermediate node with a fresh enough route, the destination/intermediate node
responds by uni-casting a route reply (RREP) packet back to the neighbor from which
it first received the RREQ. As the RREP is routed back along the reverse path, nodes
along this path set up forward route entries in their route tables which point to the node
from which the RREP came. These forward route entries indicate the active forward
route. Associated with each route entry is a route timer which will cause the deletion of
the entry if it is not used within the specified lifetime. Because the RREP is forwarded
along the path established by RREQ, AODV only supports the use of symmetric links.

Routes are maintained as follows. If a source node moves, it is able to re-initiate the
route discovery protocol to find a new route to the destination. If a node along the route
moves, its upstream neighbor notices the move and propagates a link failure notification
message to each of its active upstream neighbors to inform them of the erasure of that
part of the route. These nodes in turn propagate the link failure notification to their
upstream neighbors, and so on until the source node is reached. The source node may
then choose to re-initiate route discovery for that destination if a route is still desired.

An additional aspect of the protocol is the use of hello messages, periodic local

broadcasts by a node to inform each mobile nodes of other nodes in its neighborhood.

3.2.2 Dynamic Source Routing (DSR)

The Dynamic Source Routing (DSR) protocol is an on-demand routing protocol that is
based on the concept of source routing. Mobile nodes are required to maintain route
caches that contain the source routes of which the mobile is aware. Entries in the route
cache are continually updated as new routes are learned.

The protocol consists of two major phases: route discovery and route maintenance.

When a mobile node has a packet to send to some destination, it first consults its

17

Chapter 3. Mobile Ad-hoc Routing Protocols

route cache to determine whether it already has a route to the destination. If it has an
unexpired route to the destination, it will use this route to send the packet. On the other
hand, if the node does not have such a route, it initiates route discovery by broadcasting
a route request packet. This route request contains the address of the destination, along
with the source node’s address and a unique identification number. Each node receiving
the packet checks whether it knows of a route to the destination. If it does not, it adds
its own address to the route record of the packet and then forwards the packet along its
outgoing links. To limit the number of route requests propagated on the outgoing links
of a node, a mobile only forwards the route request if the request has not yet been seen

by the mobile and if the mobile’s address does not already appear in the route record.

A route reply is generated when a route request reaches either the destination itself,
or an intermediate node which contains in its route cache an unexpired route to the
destination. By the time the packet reaches either the destination or such an interme-
diate node, it contains a route record yielding the sequence of hops taken. If the node
generating the route reply is the destination, it places the route record contained in the
route request into the route reply. If the responding node is an intermediate node, it
will append its cached route to the route record and then generate the route reply. To
return the route reply, the responding node must have a route to the initiator. If it has
a route to the initiator in its route cache, it may use that route. Otherwise, if symmetric
links are supported, the node may reverse the route in the router record. If symmetric
links are not supported, the node may initiate its own route discovery and piggyback

the route reply on the new route request.

Route maintenance is accomplished through the use of route error packets and ac-
knowledgments. Route error packets are generated at a node when the data link layer
encounters a fatal transmission problem. When a route error packet received, the hop
in error is removed from the node’s route cache and all routes containing the hop are
truncated at that point. In addition to route error messages, acknowledgments are used
to verify the correct operation of the route links. such acknowledgments include passive
acknowledgments, where a mobile is able to hear the next hop forwarding the packet

along the route.

18

3.8 Summary of Ad-hoc Protocols

3.2.3 Temporally Ordered Routing Algorithm (TORA)

The Temporally Ordered Routing Algorithm (TORA) is a highly adaptive loop-free
distributed routing algorithm based on the concept of link reversal. TORA is proposed
to operate in a highly dynamic mobile networking environment. It is source-initiated
and provides multiple routes for any desired source/destination pair. The key design
concept of TORA is the localization of control messages to a very small set of nodes
near the occurrence of a topological change. To accomplish this, nodes maintain routing
information about adjacent (one-hop) nodes.

Main problem with TORA is that TORA assumes that all nodes have synchronized
clocks which can be accomplished via an external time source such as the Global Posi-

tioning System. TORA’s metrics are dependent on the logical time of a link failure.

3.2.4 Associativity Based Routing (ABR)

The Associativity Based Routing (ABR) protocol is free from loops, deadlock, and
packet duplicates, and defines a new routing metric for ad-hoc mobile networks. This
metric is known as the degree of association stability. In ABR, a route is selected based
on the degree of association stability of mobile nodes. Each node periodically generates a
beacon to signify its existence. When received by neighboring nodes, this beacon causes
their associativity tables to be updated. For each beacon received, the associativity tick
of the current node with respect to the beaconing node is incremented. Association
stability is defined by connection stability of one node with respect to another node over
time and space. A high degree of association stability may indicate a low state of node

mobility and vice-versa.

3.3 Summary of Ad-hoc Protocols

It can be seen from the above mentioned protocols that both type of protocols (Table-
Driven and On-Demand) has their own advantages and disadvantages. The table-driven
ad-hoc routing approach is similar to the connectionless approach of forwarding packets,

with no regard to when and how frequently such routes are desired. It relies on an

19

Chapter 3. Mobile Ad-hoc Routing Protocols

underlying routing table update mechanism that involves the constant propagation of
routing information. However, This is not the case for on-demand routing protocols.
When a node using an on-demand protocol desires a route to a new destination, it will
have to wait until such a route can be discovered. On the other hand, because routing
information is constantly propagated and maintained in table-driven routing protocols,

a route to every other node in the ad-hoc network is always available.

3.4 Progress on P2P Mobile Networks

3.4.1 JXME

A first approach trying to make P2P networking in a mobile environment feasible is
JXME [13]. This approach intends to keep the objectives of JXTA [15], and to adapt
JXTA such that the requirements of a mobile network can be met. However, this
approach regards only cellular networks, and does not address the problem of adapting
the virtual overlay network to the physical network. JXME is therefore not feasible for

a MANET scenario.

3.4.2 Lawrence

Lawrence [14] proposes an approach to use JADE-LEAP in an ad-hoc environment.
The author proposes the removal of some mandatory components and adds a Discovery
Agent to support ad-hoc networks. Unfortunately this does not address the question of

routing, which we think is one of the most critical question in a MANET scenario.

3.4.3 PROEM

Proem [12] is a platform independent architecture for building diverse mobile applica-
tions ranging from ad-hoc meeting support to classical P2P applications like MP3 file
sharing and instant messaging. Its messages are based on TCP, UDP or HTTP and
employ XML for the representation of the messages. However, it also does not provide
any mechanism to adapt its virtual to the physical topology. Thus PROEM may not be
feasible in larger MANET scenarios.

20

3.4 Progress on P2P Mobile Networks

3.4.4 ORION

ORION [11] provides full P2P functionalities in a MANET environment. The ba-
sis of ORION is AODV [16] and the Simple Multicast and Broadcast Protocol for
MANET [17]. ORION provides an application layer routing protocol causing unnec-
essary overhead.

Hybrid solutions, relying on base stations and further centralized elements, are from
our point of view not suitable. Central elements cause higher costs and additionally can

in most cases not be administered by the user itself.

3.4.5 MPP - Mobile Peer-to-Peer Protocol

A protocol named MPP in [7] emphasizes on communication between application layer
and network layer to deploy Peer-to-Peer systems effectively in mobile environments.
This protocol establishes an intermediate layer which helps in passing queries from

application layer to network layer. Abstract view of this protocol is shown in Fig. 3.2.

Application Application
Layer Layer
i
Communication Communication
Layer Layer
Network Network
Layer Layer

Figure 3.2: Communication between Application layer and Network layer

Although this protocol is an important step towards an efficient P2P applications
on Mobile Ad-hoc Networks, it still relies on flooding the network while query lookup.
There is a need of protocol which can control this network flood. Our work suggests

such protocol called RINGS.

21

Chapter 3. Mobile Ad-hoc Routing Protocols

22

Chapter 4

RINGS: Protocol in Details

RINGS provides lookup service which operates at the network layer. It assumes that all
lookup queries are forwarded from application layer to network layer to enable RINGS
lookup service. RINGS is basically a proactive protocol which spreads data index into
the network beforehand. Data indices are stored in the network such a way that lookup
cost reduces to a constant factor. Thus, it avoids query lookup flooding as it generally

happens with current P2P protocols.

4.1 Architecture

RINGS, being a network layer protocol, has to communicate with application layer to
facilitate data query and results. We assume that communication is happening between
application layer and network layer. [7] has already suggested a protocol which estab-
lishes this communication. We also assume that nodes in the network have sufficient
amount of memory storage to store routing table and other information.

Whenever a node joins the network, it generates a request packet and sends it down
to network layer. Request packet can be either of two types: Advertisement Packet or
Lookup Packet. For the Advertisement Packet, node generates index of its own data
internally and tags it with the packet. Lookup Packet is used while data query process-
ing. Depending upon the packet type, network layer forms either QUERY _PACKET or
ADV_PACKET and forwards it to neighbors.

23

Chapter 4. RINGS: Protocol in Details

4.2 Data Advertisement

RINGS is basically a proactive protocol. After getting Advertisement Packet, node needs

to spread index into the network. Further sequence of events can be described as:

1. Network layer forms a packet called ADV_PACKET and forwards it to neighbors.
ADV_PACKET header fields include,

o source_ID: source_ID is the node which actually has the data. source_ID

generates index of its data and tags it along with the ADV_PACKET.

e sender_ID: Here, sender_ID is the identifier of the node which forwards the

packet.

o seq_number: seq_number is maintained to eliminate receiving duplicate pack-

ets.
e index_size: index_size contains the size of the index.

e route_to_source: route_to_source is a complete route from the current node to

source. The functionality of this field is explained later.

e hop_count: The value of hop_count is incremented every time an intermediate

node is visited.

Header Data Index

source 1D ‘ sender ID ‘wq_number ‘ index_size ‘ route to_source hop_count

Figure 4.1: ADV_PACKET packet header format

2. RINGS Protocol selects a number called Indez-Hop “K” at the start of the network.
This number remains same for all nodes throughout the network. Nodes, lying on
(n * K)"-hop circle stores the index and forward the packet further, where n =
1,2, 3... Other nodes simply forward the packet. At this point of time, we assume

that network nodes have sufficient storage space to store remote indices. The

24

4.2 Data Advertisement

above process forms a set of imaginary circles of nodes with the center indicates

the source of the data. See Fig. 4.2

K - hop circle

) 2K - hop circle

/ 3K - hop circle

nx K - hop circle

source

Figure 4.2: A set of imaginary circles for a node

For example, if the value of Indez-Hop is kept 2, all nodes on the circle of n * K
hops will store the index where n = 1,2,3,... In between, to identify unique
packet, ADV_PACKET field includes sequence number. Sequence number along

with source_ID uniquely identifies the packet.

o e °

L o

® o ®) ©
© ®
®
o hd o o
o . . o -
© ®
o o
o © ® ® ©
®
e o - o o ®
® o
o - it e
O .
o
® o - o .
®
®) ® ® ®
®)
o o ©

Figure 4.3: An example of 2-hop protocol

3. Above procedure is followed by each node in the network.

25

Chapter 4. RINGS: Protocol in Details

4.3 Routing Table

Every node maintains a routing table. The routing table entry contains source_ID,

sender_ID, sequence number, T'TL(Time-To-Live), hop-count as shown in Fig. 4.4.

source ID sender ID seq_number TTL hop_count

Figure 4.4: Routing table entry

The main purpose of routing table is to avoid receiving duplicate packets. If node
receives packet with same source_ID and same sequence number again within TTL time,
node drops the packet. Each time node receives an ADV_PACKET, it updates routing
table entry depending on Advertisement packet fields. If current entry in routing table
contains same source_ID but sequence number is less than that of received packet, table
entry is updated accordingly. If entry is not found for received packet’s source_ID, new
entry is made into routing table. These updates eliminate the possibility of spreading

data all-over in the network.

4.4 Query Lookup

Whenever a node wants a particular data or service, it forwards the QUERY_PACKET
to its neighbors. In any case, the query gets the results within maximum of K/2 hops.
Thus, query does not flood throughout the network. As for example, if the value of K
is kept 4, it means n x4 hops away nodes has stored the index. Thus the upper limit on

the lookup cost for any node in the network reduces to 2 hops.

4.5 Route Maintenance

ADV_PACKET maintains route to the source node which contains actual data or ser-
vices. Along with forwarding packet to nodes, a reverse path is also maintained. A node
which stores the index, keeps this route to source as well. Whenever a node sends query,

node which contains index, responds with query result along with route to source. It

26

4.6 Mobility

can be shown that this route remains to be optimal. As for example shown in Fig. 4.5,
suppose R makes query request. In reply, P responds with complete route to source

with other information. Now R can communicate with node S using the route.

0 []
¢ o
O
¢ o o
o [] [O
O [] O
O ./'O\‘
[] 0 .\O
O [) o ° \ ° O
d]
O o O P R
O O [
[]
[]
L4 °
o O
[]
S - Source of data
R - Node which requests query
P - Intermediate node which contains route and index of S

Figure 4.5: An example of route maintenance

4.6 Mobility

Until now, we have assumed that all nodes in the network are static. If nodes move
frequently in the network, it is difficult to trace them. The advantage of RINGS protocol
is, mobility have none or little impact on performance of the protocol. It has been shown
that, in order to achieve maximum throughput and connectivity, number of neighbors
per node in mobile network can be taken as log(N), where N is the number of nodes
in the network. Given that, if the value of Index-Hop K is kept to 2, a node can get
the query results from maximum of log(N) as average number of neighbors is taken as
log(N). Out of that, if as much as log(N) — 1 nodes leave from or move in the network,
a node can get results from at least one node. Extending this equation, we can conclude
that, in general, a node gets at least one node which can satisfy its query even if L

number of nodes from nearest circle leave the network where L is,

27

Chapter 4. RINGS: Protocol in Details

L = (log(N) — 1)K/? (4.1)

where K = 2,4,6, ...

4.7 Optimization

4.7.1 Data Updates

RINGS reduces advertisement broadcast by sending data updates to only those nodes
which contain the index. To achieve this, reverse path from node, which has stored the

index, to source is maintained.

4.7.2 Node Joining

RINGS provides a mechanism which allows newly joined node to stabilize in the network.
If a new node joins the network, RINGS assigns it the indices of some nodes. This
assignment ensures that indices are evenly distributed in the network. Whenever a new
node joins the network, it searches for neighbors and gets the neighbor list. After getting
the list, node sends this list to each of its neighbors. Now every neighbor node will check
how many of the other neighbor nodes are neighbor of itself. For example, a neighbor
node ¢ checks against another neighbor node j in Fig. 4.6. If j is neighbor of i also, it
means that there are some routes at node j which start from source node to node j via
node ¢. It means, new node falls on the same circle of j for a particular source node.
So, RINGS allocates all such routes and indices from j to newly joined node. Fig. 4.7

explains this process through pseudo-code.

4.7.3 Node Deletion

RINGS implements a process named Index Reallocation to facilitate node deletion event.
Index Reallocation process reallocates index into appropriate node if any node has moved
away from the network.

As indicated in previous section, RINGS maintains route from the node which has

stored the index to the source node. If any node moves away from the network, the

28

4.7 Optimization

N - New Node

Figure 4.6: Node Join

for every neighbor i of new node N {
for every neighbor j of new node N {
if (i !'=j && j is neighbor of i)
allocates all indices and routes which are stored in j and

which has next hop(in the direction of source node) as i, to N;

Figure 4.7: Pseudo-code for Node joining

route to source is broken. by means of Index Reallocation, RINGS tries to re-establish
this route and reallocates indices to appropriate nodes. Whenever a node goes off, it
informs neighbor nodes about its in-availability. The neighbors search for an alternative
route which had deleted node as an intermediate hop previously.

For example, 4.8 shows one of the routes in the network with some source node §.
Here, node A itself can be source node or can be an intermediate node. Node B is an
intermediate node which contains source node’s index. Now, suppose node X goes off.
Node A gets information about it and starts a search for an alternative route for node Y.
Fig. 4.9 indicates such an alternative route. Indices has to be now reallocated using this
route. After getting the route, node A initializes update packet with Indez-hop value

is 0. Update packet traverses through the newly established route and moves indices,

29

Chapter 4. RINGS: Protocol in Details

stored at node B, to previous node which falls in the circle of indez-hop K. Pseudo-code

for this process is shown in 4.10.
B O—®

Figure 4.8: After Index Advertisement

Index Reallocation

® O ®

Figure 4.9: Node Deletion: Index Reallocation

4.8 Summary

This chapter explains RINGS protocol in detail. The main aim of RINGS protocol is to

decrease query lookup cost by distributing data indices evenly throughout the network.

30

4.8 Summary

void update{
for every neighbor i of node X { // X went off from the network
for every neighbor j (j != i) of node X {
j.route = route_discovery(j);
bool_index_reallocation = 0, count = O;
for every node in j.route {
increment count by 1;
if (bool_index_reallocation == 1)
if not (node have the source index)
update index_reallocation_route;
continue;
else
follow the index_reallocation_route and
move index to index_reallocation_route.source;
delete the stored index;
else
if (count == KVALUE) // KVALUE is index-hop
if not (node have the source index)
bool_index_reallocation = 1;
index_reallocation_route.source = node.id;
continue;
count = O;
} //end of inner-most ‘for’ loop
}
} //end of outer-most ‘for’ loop

} //end of update function

Figure 4.10: Pseudo-code for Node Deletion

31

Chapter 4. RINGS: Protocol in Details

32

Chapter 5

Analysis and Comparison

5.1 Query Lookup Cost

As mentioned earlier, current P2P protocols are application layer protocols. If these
protocols are put in mobile ad-hoc environments, the overhead of network layer should
also be counted in overall routing overhead. Now from network layer perspective, neigh-
bors at the application layer may not be neighbors at network layer. In worse case, they
could be at the different edges of the network. Application layer has different routes
than that of network layer. So, the effective lookup cost between source and destination
is the sum of application layer lookup cost and network layer routing cost, which indeed
is larger. For example, lookup cost for Chord protocol is log(N) at the application
layer(please refer [9] for more details) but the overall lookup cost is larger.

In order to count network layer hops, we need to find out the average distance
between any two nodes at the network layer. According to [10], the average distance d

between any two nodes at the network layer can be taken as,

i (/57

where « is a constant and N is total number of nodes in the network.

So, effective lookup cost L¢porq for Chord protocol is,

Lchord =d=* lOg(N) (51)

33

Chapter 5. Analysis and Comparison

In RINGS, any node has to contact nearest Index-Hop circle to get the data index,
which is maximum of K/2 hops away. Taking average number of neighbors per node as

log(N), we can say that node forwards query to log(N) nodes. Thus query lookup cost

at first hop is,

Lrings = log(N)

In turn, each of log(N) nodes forwards query to its neighbors. Continuing this

way, query will be forwarded to Lrrnygs number of nodes before reaching to nearest

Indez-Hop circle, where Lrrngs is,

Lrings = log(N) + (1 + (log(N) — 1) + (log(N) — 1) +

o+ (log(N) — 1)%/271) (5.2)

Comparison of both the costs is shown graphically in Fig. 6.2 in next chapter.

5.2 Comparison with Current P2P protocols

Major functionalities of P2P protocols can be summarized in the table below:

Scheme || Query | Memory | Messages

Napster 1 N 1

Gnutella | logN 1 N

Chord logN logN logN

CAN N2 const N2

Pastry logN logN logN

Table 5.1: P2P Protocols

Out of these protocols, Napster does not fit into MANET environment. Gnutella
networks have a query time of logN whereas the network load is extremely high since

a query must travel all the nodes in the network to be answered. RINGS limits this

34

5.2 Comparison with Current P2P protocols

flooding by answering query within K/2 hops. CAN performance can be worse in
MANET as the query lookup cost and messages increase exponentially. Chord and
Pastry reduce lookup cost and messages significantly but works at application layer
rather than at network layer which incurs multi-layer overhead.

The main objective of RINGS protocol is to reduce query lookup cost. This optimiza-
tion comes at the cost of higher memory space requirement at the node. For example, if
indez-hop value is kept 4 in RINGS, every node has to store approximately 1/4 of the
total indices of the network. But as indicated previously, current mobile node’s memory
capabilities are increasing dramatically, it is acceptable to assume enough memory space

at the network node.

35

Chapter 5. Analysis and Comparison

36

Chapter 6

Simulation and Results

6.1 Simulation Setup

RINGS protocol has been simulated independently of any existing network simulators
like NS2 etc. Various scenarios has been taken to check the efficiency of RINGS in
terms of, number of nodes store indices for a node in the network, total remote indices
per node etc. Nodes are distributed in the network randomly and RINGS protocol is
performed on them. Each node in the network was assigned index value from random
distribution. All these experiments were run for different values of Indez-Hop K starting
from K = 1 to K = 5. The results from initial simulation indicate that performance

can be improved by using RINGS.

6.2 Results

As indicated in RINGS, each node stores indices of some other nodes. We want to
measure how the value of these average remote indices per node varies over the value
of Indez-Hop. Fig. 6.1 shows different graphs for the different value of Indez-Hop. In
turn, each graph shows the relationship between average remote indices per node and
number of nodes in the network. It can be observed that the value K = 4 balances
between the lookup cost and per node storage requirement.

Fig. 6.2 graphically shows the comparison between eq. (5.1) and (5.2). It indicates

37

Chapter 6. Simulation and Results

4000

3500

3000

2500

2000

1500

1000

Average Remote Index stored per Node

500

Average Number of Remote Index Stored per Node

T
Index-Hop(K) = 1
Index-Hop(K) = 2
Index-Hop(K) = 3
Index-Hop(K) = 4
Index-Hop(K) = 5

15 20 25
Number of Nodes in the Network

30

Figure 6.1: Average number of remote index stored per node

35

that lookup cost(number of hops) decreases significantly in RINGS if the value of Index-
Hop is kept 4 while Chord performs better than RINGS with Indez-Hop = 6, if number

of network nodes is kept low. If number of nodes increases, performance of RINGS

increases as compare to Chord.

38

Number of Hops

1000

900

800

700

600

500

400

300

200

100

6.2 Results

Average Number of Hops per Query Lookup

j j j Lolokup CostI L(Chord)I
Lookup Cost L(RINGS) with Index-Hop(K) = 4
Lookup Cost L(RINGS) with Index-Hop(K) = 6 _:-

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Nodes in the Network

Figure 6.2: Average number of hops per query lookup

39

Chapter 6. Simulation and Results

40

Chapter 7

Directions for Future Work and

Conclusion

7.1 Possible Applications

Besides current P2P applications exist for sharing media files, there are other possible

applications and scenarios for peer-to-peer mobile ad-hoc networks. For example:

e Tele-conferences and Workshops : A system of short life-span can be deployed for
conferences and workshops with large number of participants, in which lecturers

and participants can share lecture notes, Frequently- Asked-Questions notes, etc.

e Database on The Road : These kind of applications can be plugged into moving
vehicles in urban areas. Vehicles can share important information like traffic data,

route availability, locations of important places etc.

¢ Applications for Battle Fields : Military and Navy camps can deploy such kind of
applications because of their unique characteristics like, keep on moving, should
be easily deployed, important data should be reached to every systems and should

be updated constantly.

41

Chapter 7. Directions for Future Work and Conclusion

7.2 Directions for Future Work

The suggested protocol specifically focuses on lookup cost optimization, which at the
same time, incurs more storage space requirement. This requirement pays extra overhead
to the node. There can be number of ways to improve this routing protocol to handle
such requirements. The important thing is, the exact problem is clearly identified. So,
further work can be carried out to solve it in different ways.

Furthermore, effective mobility handling is a big task. We have discussed various
impacts of mobility like node joining, node leaving etc. but not thoroughly checked for

the efficiency.

7.3 Conclusion

Increasing popularity of P2P systems and Mobile Ad-hoc networks gives attention to
combine both systems and thus having a community which can share their data in
mobile environments. Current P2P protocols fail to perform well with this combination.
One of the reasons for that is, it results in multi-layer routing redundancy. So, we
suggest a simple but effective protocol named RINGS, which brings down routing and
query lookup mechanisms from application layer to network layer and optimizes network
layer query routing. RINGS reduces query lookup cost by evenly distributing data
indices throughout the network. Our simulation results show the improvement from the

suggested protocol.

42

Bibliography

1]

2]

Napster Protocol Specification, http://opennap.sourceforge .net/napster.txt.

Gnutella Protocol Specification, 0.4 edition, 2002. http://www.clip2.com/

GnutellaProtocol104.pdf.

R. Manfredi. T. Klingberg. Gnutella 0.6 RFC June 2002. http://rfcgnutella.

sourceforge.net/draft.txt

sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.
A scalable content-addressable network. In Proceedings of the 2001 conference on ap-
plications, technologies, architectures, and protocols for comuputer communications,

pages 161-172. ACM Press, 2001.

Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. Lecture Notes in Computer Science,

2218:329+, 2001.

E. Royer and C. Toh. A review of current routing protocols for ad-hoc mobile wireless

networks. 1999.

Rudiger Schollmeier, Ingo Gruber, Michael Finkenzeller. Protocol for Peer-to-Peer
Networking in Mobile Environments. In Proceedings of IEEE International Con-
ference on Computer Communications and Networks (ICCCN’03), October 20-22,
2003, Dallas, USA.

43

BIBLIOGRAPHY

[8] Rudiger Schollmeier, Ingo Gruber, Michael Finkenzeller. Routing in Mobile Ad Hoc
and Peer-to-Peer Networks, A Comparison. In Networking 2002, International Work-
shop on Peer-to-Peer Computing, May 19-24, 2002, Pisa, Italy.

[9] Ton Stoica, Robert Morris, David Karger, M. Francs Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the 2001 conference on applications, technologies, architectures, and

protocols for computer communications, pages 149-160. ACM Press, 2001.

[10] Sverrir Olafsson. Scalability, Capacity and Local Connectivity in Ad Hoc Networks.
Mobile and Wireless Communications: Key Technologies and Future Applications(P.

Smyth (Ed.)), IEE-BT Exact Communication Technology.

[11] A. Klemm, C. Lindemann, O. P. Waldhorst. A Special-Purpose Peer-to-Peer File
Sharing System for Mobile Ad Hoc Networks. Proceedings of the Workshop on Mo-
bile Ad Hoc Networking and Computing(MADNET 2003). Sophia-Antipolis, France.
2003.

[12] G. Kortuem, J. Schneider. An Application Platform for Mobile Ad-hoc Networks.
Proceedings of the Workshop on Application Models and Programming Tools for
Ubiquitous Computing (UBICOMP 2001). Atlanta, Georgia. 2001.

[13] A. Arora. JXTA for J2ME™™ _ Extending the Reach of Wireless With JXTA
Technology. White Paper. 2002.

[14] J. Lawrence. LEAP into Ad-Hoc Networks. Proceedings of the Workshop on Ubig-
uitous Agents on Embedded, Wearable, and Mobile Devices. Bologna, Italy. 2002.

[15] M. Duigou. JXTA v2.0 Protocols Specification. IETF Internet Draft. 2003.

[16] C. Perkins, E. Royer, S. Das. Ad Hoc On-Demand Distance Vector(AODV) Routing.
IETF Internet Draft. 2002.

[17] J. Jetcheva, Y. Hu, D. Maltz, D. Johnson. A Simple Protocol for Multicast and
Broadcast in Mobile Ad Hoc Networks. IETF Internet Draft. 2001.

44

