M.Tech Dissertation

DISTRIBUTED INTRUSION
DETECTION

submitted in partial fulfillment of the requirements
for the degree of

Master of Technology

By

Mamata D. Desai
Roll No : 99305903

under the guidance of

Prof. Sridhar Iyer

and
Prof. G. Sivakumar

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

Mumbai 400076
January 2, 2002

Dissertation Approval Sheet

This is to certify that the dissertation titled, Distributed Intrusion Detection, by
Mamata D. Desai is approved for the award of the degree of Master of Technology.

Dr. Sridhar Iyer
(Guide)

Dr. G. Sivakumar
(Co-Guide)

Internal Examiner

External Examiner

Chairman

Date :

Acknowledgments

I would like to thank my guide, Prof. Sridhar Iyer and my co-guide, Prof. G. Sivakumar
for their indispensable ideas and continuous support, encouragement and advice during the
completion of this work. I would like to express my gratitude to Prof. Sridhar Iyer for un-
derstanding me through my difficult times, and keeping up my enthusiasm, encouraging me,
and building up my confidence. A special thank you note goes to my friends and guardian
angels, my wingmates on the “third floor” of Hostel 11. These acknowledgments would be
incomplete without a mention of my family. Without either of us realizing it, I think my Dad
has been one of my greatest role models. My Mommy dearest and her infinite supply of love
has kept me going. She has always inspired me to follow my instincts. Thanks to both of
them, I've really come a long way.

Mamata Desai
IIT Bombay
December 2001

Abstract

As more and more data goes online, there is a pressing need to secure the dissemination of a
large amount of information. Because of the effort required to monitor networks and systems
manually, it is not easy to detect attempts at misuse or successful attacks without the help
of intelligent Intrusion Detection Systems (IDS).

IDS, much like the security industry, has grown rapidly over the past few years. These tools
have become essential security components - as valuable to many organizations as a firewall.
However, as in any environment, things change. Networks and crackers are evolving fast,
demanding that security tools keep up. Intrusion Detection Systems face several daunting,
but exciting challenges in the future and are sure to remain one of our best weapons in the
arena of network security.

The modern day Network IDS faces some very challenging problems, like switched environ-
ments, increased network traffic, and encryption. Add to that, the performance considerations
of an IDS, such as false positives and missed attacks, and the mole hill does become a moun-
tain! The way to go seems to be analysis and data correlation, in which, host IDSs also play
an important role. The concept of a management console dedicated to the task of correlating
abnormal event notifications, with relevance measures is an emerging one. One can picturize
many distributed elements performing specific jobs, each passing the results onto a higher
level for correlation and analysis.

In an environment where many machines have similar configurations, a complete portscan
on one machine may trigger alarms but slow scans across ports of different machines might
go unnoticed and will result in the intruder gaining all the information about the services
running on each machine, thus successfully performing a distributed portscan.

We focus on detecting a distributed portscan, by sniffing packets on the network. Five
types of TCP portscans, performed by nmap are successfully detected, in scan sweeps of one-
to-one, one-to-many, many-to-one and many-to-many hosts. OQur approach also manages to
detect slow scans which are typically missed by available commercial packages, because of the
features that we select to examine.

Contents

1 Introduction

1.1 Intrusion - Anoverview
1.2 Our problem e
1.3 Solution Approach
1.4 Outlineof thereport

Intrusion Detection Systems

2.1 Anomaly and Misuse detection Lo
2.2 Host-based and network-based IDS o000,
2.2.1 Host-based Intrusion Detection Systems
2.2.2 Network-based Intrusion Detection Systems
2.2.3 Advantages of monitoring Network Traffic
2.3 Network Preliminaries o Lo
2.3.1 AnlIPdatagram
232 ATCPsegment
2.3.3 TCP State Machineo
24 Port Scans.o e e
2.5 Sniffit ...
26 Tepdump L e e
277 Nmap e e e e e
2.8 PortSentry
2.9 Snort. e e e e
2.9.1 Snort subsystemso
2.9.2 Snortplug-ins.
2.9.3 Conclusions about Snorto o o oL o L.
2.10 Scopeofour work

Distributed Intrusion Detection

3.1 Motivation for distributed IDS
3.1.1 Oursetup - L
3.1.2 Portsentry and Snort oL oo oL
3.1.3 Theproblem

3.2 Analysis of the scan types L L
3.21 TCP connect() scanot
3.22 Stealth SYNscan. 0 i it
3.23 Stealth FIN scan i

© 9 d

10
10

11
11
12
12
13
13
14
14
16
19
19
20
20
21
21
22
23
24
26
26

3.24 Xmasscan

3.25 Nullscan
3.3 Our approach
Our implementation
4.1 TCP connect() scanner. . .
4.2 Data structures
4.3 Routines
4.4 Detection
4.4.1 TCP connect() scan
4.4.2 Stealth SYN scan . .
4.4.3 Stealth FIN scan . .
4.4.4 Xmas tree scan . . .
445 Nullscan
4.5 Correlation

Experiments and Results

5.1 The experimental setup . .
5.2 Scan sweeps
53 Results.
54 Otherscans
5.5 Conclusion

6 Conclusions and Future Work

33
33
33
34
36
36
37
38
38
38
39

40
40
41
42
45
45

46

List of Figures

2.1
2.2
2.3

4.1
4.2
4.3

4.4

5.1

The format of an IP datagram. 15
The format of a TCP segment. 17
The TCP finite state machine. 18
A node in the connection listo L0 33
A node in the source or target correlation lists 34
A node that points to the target scanned (when in a source mac) or the scanner

source (when in a target mac) Lo 34
Correlation lists for the one-to-many scan in table 5.2 35
The experimental setup. L o Lo Lo 40

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1

5.1
5.2
5.3
5.4

Open ports on 192.168.211.241 i i i it it 27
Sequence of packets for a TCP connect() scan for an open port 29
Sequence of packets for a TCP connect() scan for a closed port 29
Sequence of packets for a stealth SYN scan for an open port 30
Sequence of packets for a stealth FIN scan for an open port 30
Sequence of packets for an Xmas scan for an openport 30
Sequence of packets for a Null scan for an open port 30
Options passed to detect and routine called 36
One-to-one scan o L e e e e e e e e e e 41
One-to-many scan o . it e e e e e e 41
Many-to-0me SCan i i e e e e e e e e e 41
Many-to-many scano e e e e e e e 42

Chapter 1

Introduction

Networks have evolved over the years to a point of blissful convenience and flexibility, but
within the joyful evolution, blatant breaches of security have surfaced. With the ever-changing
world, ever-changing technologies and ever-changing programs coming into existence that
make our technical world more exciting and productive, the security world also changes.
All networks are vulnerable. New holes, bugs and exploits are found by unscrupulous and
unethical individuals to exploit for their own gain. Manufacturers of security products struggle
to keep up with fixes, patches, and new releases in an effort to keep up-to-date with the
surrounding market.

It takes but one oversight to allow a hacker to invade a company and steal vital competitive
information, or even cripple its infrastructure. There is also an asymmetry between the value
of the information which may be lost to the hacker - which may be intrinsically small -
and the privacy, civil liability, customer liaison and regulatory damage which may be caused
to an organization - which may be very great. An organization’s greatest weapon against
internal and external attacks should be the ability to monitor its networks for unauthorized
behavior, which can provide protection, and timely and effective countermeasures in the event
of a breach, as well as deterrent against abuse. However, without the proper resources and
mandates in place to implement and carry out such a task, the security of an organization’s
information infrastructure and competitive advantage are at risk.

Everyday, all over the world, computer networks and hosts are being broken into. The level
of sophistication of these attacks varies widely; while it is generally believed that most break-
ins succeed due to weak passwords, there are still a large number of intrusions that use more
advanced techniques to break in. Less is known about the latter types of break-ins, because
by their very nature they are much harder to detect. Computer break-ins occur in many
ways because systems connected the Internet almost always have certain vulnerabilities. To
protect their internal networks, companies install firewalls, powerful defensive software that
blocks unauthorized intruders. Nevertheless, determined hackers can usually uncover ways of
circumventing a firewall. As attackers become more sophisticated in their initiatives, network
managers have realized the significance of employing advanced intrusion detection systems to
foil even the stealthiest of attempts effectively.

1.1 Intrusion - An overview

Intrusion may be defined as the potential possibility of a deliberate attempt to

1. access information
2. manipulate information

3. render a system unreliable or unusable

Attacks can be classified on the basis of two criteria, depending on whether or not an
attacker is normally authorized to use the computer system, and whether or not a user of
the computer system is authorized to use a particular resource in the system. Hence we can
broadly divide these into three intrusion classes [Axe00]:

e External penetrators - those who are not authorized use of the system

e Internal penetrators - those who are authorized use of the system, but are not au-
thorized access to the data, program, or resource accessed

— Masqueraders - who operate under another user’s ID and password

— Clandestine users - who evade auditing and access controls

e Misfeasors - authorized users of the system and resources accessed, who misuse their
privileges

Various attack methods are used by attackers to compromise network security. We can
broadly group them into a few categories - (1) Information gathering, (2) Unauthorized access,
(3) Disclosure of Information, and (4) Denial of Service. A few example attacks are mentioned
below.

e Password Cracking

If the attacker somehow gains access to the encrypted password file of the users, he
can run a password cracker program, which can decrypt passwords. Easily guessable
passwords, weak encryption algorithms, export restrictions that prohibit usage of strong
cryptography, incorrect usage of strong algorithms, some implementation flaws includ-
ing backdoors, bugs, etc., make password cracking an easy task. Brute force, dictionary
attacks, and rule-based cracking attacks can get past even the most secure encryption
algorithms. The attacker thus gains unauthorized access to the system and is mas-
querading as a valid user.

e Buffer overflow

On many C implementations it is possible to corrupt the execution stack by writing
past the end of an array declared auto in a routine. Code that does this can cause
return from the routine to jump to a random address. Malicious code injected by an
attacker could then be executed at this random address. This code is executed under
privileges of the owner of the previous process, which, in case of the SMTP daemon,
sendmail, is the root user.

While the attack requires particularly arcane and detailed knowledge of both assembly
language and, in the case of Windows, operating system interface details, once someone
has coded an exploit and published it, anyone can use it. The results of these exploits
provide interactive command shells on Unix systems and the ability to upload and
execute arbitrary programs on Windows systems.

e Network Reconnaissance

In this case, the attackers use various network discovery tools like nmap to generate a
complete map of the hosts and services on the target network. Hosts on the network are
probed and vital information like open ports, a guess of the operating system running,
is collected by the attacker. After knowing the remote operating system and the open
ports and services running on the hosts, the attacker can use a variety of attack tools
and known vulnerabilities for the system services running on this host.

e Denial of service

DoS (Denial of Service) attacks cause the loss of access to a resource rather than allow
the attacker to gain unauthorized access to the resource. They usually involve over-
loading a resource such as disk space, network bandwidth, internal tables of memory
or input buffers (buffer overflow). The overload causes the host or particular service to
become unavailable for legitimate use.

TCP SYN attack: A sender transmits a flood of phony TCP SYN packets at a rapid
rate. The victim destination sends a SYN ACK back to the random source address and
adds an entry to the connection queue. Since the SYN ACK is destined for an incorrect
or non-existent host, the last part of the ”three-way handshake” is never completed and
the connection queue fills up rapidly, thus denying essential TCP services (telnet, email,
ftp) to legitimate users.

e IP Spoofing

In this type of attack, the attacker manages to inject custom-made packets into the
network, with the source address of a trusted machine. The target machine may release
valuable information, which is captured back by the attacker machine. Typically, rshd
and rlogind which use ~/.rhosts or /etc/hosts.equiv files, can lead to a compromised
target host by spoofing the IP of the trusted host.

As work environments become more interconnected and exposed, service providers will
need increasingly to rely on a wide range of anti-intrusion techniques. Listed here are six
approaches.

1. Prevention reduces the probability of a successful attack. This includes installing
firewalls at your network access periphery, strict forms of authentication, encryption,
etc.

2. Preemption strikes offensively against likely threat agents prior to an intrusion attempt
to lessen the likelihood of a particular intrusion occurring later.

3. Deterrence deters the initiation or continuation of an intrusion attempt by increasing
the necessary effort for an attack to succeed, increasing the risk associated with the
attack, and/or devaluing the perceived gain that would come with success.

4. Deflection leads an intruder to believe that he has succeeded in an intrusion attempt,
whereas instead he has been attracted or shunted off to where harm is minimized.
Setting up “honey pots”, decoy systems that appear as vulnerable targets and lure the
attacker, is one such attempt.

5. Countermeasures actively and autonomously counter an intrusion as it is being at-
tempted. This includes dropping routes which lead to the source machine, launching a
counter attack, etc.

6. Detection discriminates intrusion attempts and intrusion preparation from normal
activity and alerts the authorities. A deflection from normal usage patterns or the
occurrence of a known attack signature in audit trails or network data, indicates a
positive.

The primary focus of our work is in attempting to detect network reconnaissance attempts,
specifically, distributed portscans. When an intruder attempts to break into a system, one
of the first things that he does is to check out what all services are running on the machine,
and which of these, he can exploit, to gain access. Hence, a scan of the TCP/UDP ports of a
system is one of the first things that an attacker performs. Many tools exist, to perform such
scans, nmap being one of the most popular ones.

Intrusion Detection Systems

Intrusion Detection Systems, or IDSs, have become an important component in the Secu-
rity officer’s toolbox. An IDS installed on a network provides much the same purpose as a
burglar alarm system installed in a house. Using various methods, it detects when an in-
truder/attacker/burglar is present, and subsequently issues some type of warning or alert.
IDSs don’t fully guarantee security, but when used with a security policy, vulnerability as-
sessments, data encryption, user authentication, access control, and firewalls, they can greatly
enhance network safety.

There are many commercial IDS products available in the market. These include: Anzen
Flight Jacket (http://www.anzen.com), eNTrax Security Suite (http://www.centraxcorp.com),
CyberCop Monitor (http://www.nai.com), NetProwler (http://www.axent.com), Net Ranger
(http://http://www.nautidigital.com), RealSecure (http://www.iss.net), etc. Amongst the
Open Source products, Snort (http://www.snort.org) takes the cake, followed by Tripwire
(http://www.tripwire.com), and the like.

1.2 Owur problem

Distributed attacks have recently emerged as one of the most newsworthy, if not the greatest,
weaknesses of the Internet. Because of the nature of the attack, it is challenging to trace the
attacking machine.

In an academic organization such as ours, many machines have similar configurations.
For e.g., all the machines in a lab boot the same operating system, the same kernel, and
offer the same network services. A single portscan on a single host generally gets classified
as a stray attack, and might not warrant serious action. But stray scans of each machine on
this network, will slowly result in the intruder gaining all the information about the services
running on each machine, thus successfully performing a distributed portscan.

A distributed portscan infact would produce no real alert on a normal network intrusion
detection system, and would probably count as a few stray incidents of abnormal packets.
The goal at hand was to detect such a distributed portscan. The scan might originate from
one machine to many others, or might be performed by many machines, on a single target.

A survey of the currently available IDSs has revealed that there is no freely available IDS
yet, that addresses these concerns. Most commercial IDSs are available for the Windows
platform, and pack together a lot of other heavyweight “features”, which aren’t of concern
to our setup. The goal was to develop such a system, one that can bridge this ‘requirement’
gap, developed on Linux, which is the commonly used platform here in IIT Bombay.

1.3 Solution Approach

Our approach was to first study the signatures of five commonly used TCP-based portscans,
as sequences of network packets. Depending on the scan type to be detected, certain relevant
network packets were analyzed, and the scan signature was identified. These numerous in-
dividual scans are then recorded for further analysis, which then identifies the sweeps of the
scans as one-to-one, one-to-many, many-to-one and many-to-many hosts. A detailed report
is generated as an inference.

1.4 Outline of the report

Chapter 2 briefly describes the types of intrusion detection systems that exist, a few network
preliminaries, TCP portscans, and some case studies - tools that we studied. Chapter 3, we
describe the problem of distributed portscans, analysis of the scan types, and our approach to
solving the problem at a conceptual level. Chapter 4 goes on to describe the implementation
details, the data structures and the routines developed. Chapter 5 describes our experimental
setup, our data collection and finally the results of our detection. Chapter 6 concludes the
report with an analysis of our approach and a look at the future of Intrusion Detection
Systems.

10

Chapter 2

Intrusion Detection Systems

In the present chapter, we examine more closely, the various types of intrusion detection
systems that exist, and their distinguishing characteristics. We also attempt to classify them
into host-based IDS (HIDS) and network-based IDS (NIDS). A few network preliminaries are
then discussed. We then describe the various TCP portscans. This is followed by a brief
description of the packages that we studied.

2.1 Anomaly and Misuse detection

Early research uncovered two complementary intrusion detection approaches: anomaly de-
tection and misuse detection. Anomaly-based intrusion detection techniques assume that
an intrusion is a deviation from the normal acceptable behavior. The construction of such
a detector starts by forming an opinion on what constitutes normal for the observed subject
(which can be a computer system, a user, network traffic, etc.), and then deciding on what
percentage of the activity to flag as abnormal, and how to make this particular decision. In
other words, anything that deviates a lot from normal, is flagged as intrusive. The drawback
of this approach is that the distinction of an intrusion from a legal abnormality depends on
the threshold, which needs system-specific tuning. The advantage is that new exploits and
unforeseen vulnerabilities can also be detected. Therefore, the intrusion detection system
might be complete, i.e., all attacks might be detected, but its accuracy is a difficult issue, as
we might get a lot of false alarms.

The other approach, misuse detection, also popularly known as signature-based de-
tection, decides what an intrusion is, on the basis of knowledge of a model of the intrusive
process and what traces it ought to leave in the observed system. Attack signatures and
system vulnerabilities are stored in a knowledge base, and any attempt which matches these
patterns, is flagged as an intrusion. Thus, any action which is not explicitly recognized as an
attack is considered acceptable. However, their completeness depends on the regular update
of knowledge about attacks. The maintenance and timely updation of the knowledge-base
is time-consuming, although extremely vital here. The detection tool in this case becomes
specific to the environment. The advantage of this approach is that the potential for false
alarms is very low, and the detailed contextual analysis makes it easy for the security officer
to take preventive or corrective action.

The most recent approach seems to be a hybrid of the above two, and are also called
signature inspired. These form a compound decision in view of a model of both the normal

11

behavior of the system and the intrusive behavior of the intruder. These detectors have -
atleast in theory - a much better chance of correctly detecting truly interesting events in the
supervised system, since they know both, the patterns of intrusive behavior and can relate
them to the normal behavior of the system.

2.2 Host-based and network-based IDS

In the first stage of the project, we had reviewed different types of IDSs, and had come across
two important classes of IDSs, host-based IDSs (HIDS) and network-based IDSs (NIDS),
depending on the substrate on which they operate.

2.2.1 Host-based Intrusion Detection Systems

Host-based intrusion detection started in the early 1980s before networks were as prevalent,
complex and interconnected, as they are today. In this simpler environment, it was a common
practice to review audit logs for suspicious activity. Intrusions were sufficiently rare that after-
the-fact analysis proved adequate to prevent future attacks.

Today’s host-based IDSs remain a powerful tool for understanding previous attacks and
determining proper methods to defeat their future application. HIDSs still use audit logs,
but they are much more automated, having evolved sophisticated and responsive detection
techniques. HIDS typically monitor system, event, and security logs on Windows NT and
syslog in UNIX environments. When any of these files change, the IDS compares the new
log entry with attack signatures to see if there is a match. If so, the system responds with
administrator alerts and other calls to action.

HIDSs have grown to include other technologies. One popular method for detecting intru-
sions checks key system files and executables via checksums at regular intervals for unexpected
changes. The timeliness of the response is in direct relation to the the frequency of the polling
interval. Finally, some products listen to port activity and alert administrators when spe-
cific ports are accessed. This type of detection brings an elementary level of network-based
intrusion detection into the host-based environment.

Well-known commercial versions include products from AXENT, Centrax from Cyber-
Safe, RealSecure from ISS and Tripwire. Portsentry is a host-based portscan detector and
Hostsentry is a host-based login anomaly detector and response tool, freely available, from
Psionic.

Strengths of Host-Based IDSs

1. Verifies success or failure of an attack
Monitors specific system activities
Detects alerts that network-based systems miss
Well-suited for encrypted and switched environments
Near-real-time detection and response

Requires no additional hardware

NS ok W N

Lower cost of entry

12

2.2.2 Network-based Intrusion Detection Systems

A network-based IDS monitors the traffic on its network segment as a data source. This is
generally accomplished by placing the network interface card in promiscuous mode to capture
all network packets that cross its network segment. These are then picked up and examined
by a sensor. Packets are considered to be of interest if they match a signature. Three primary
types of signatures are: (1) string signatures, (2) port signatures, and (3) header condition
signatures.

String signatures look for a text string that indicates a possible attack. To refine the string
signature to reduce the number of false positives, it may be necessary to use a compound string
signature. A compound string signature for a common Web server attack might be “cgi-bin”
AND “aglimpse” AND “IFS”. Port signatures simply watch for connection attempts to well-
known, frequently attacked ports. Examples of these ports include telnet (TCP port 23),
FTP (TCP port 21/20), SUNRPC (TCP/UDP port 111), and IMAP (TCP port 143). If any
of these ports aren’t used by the site, then incoming packets to these ports are suspicious.
Header signatures watch for dangerous or illogical combinations in packet headers. The most
famous example is WinNuke.

Well-known, network-based intrusion detection systems include NetProwler, NetRanger,
Shadow, etc. Snort is a very commonly used freely available lightweight NIDS.

Strengths of Network-Based IDSs

1. Lowers cost of ownership

2. Detects attacks that host-based systems miss

3. More difficult for an attacker to “remove” evidence
4. Real-time detection and response
5. Detects unsuccessful attacks and malicious intent

6. Operating system independence

2.2.3 Advantages of monitoring Network Traffic

There exist many different operating system platforms, and hence, host-based systems have
only been used on a single operating system at one time. On the other hand, network protocols
like TCP/IP, UDP/IP are standard across most major operating system platforms. By using
these network standards, the network-based IDS can monitor a heterogeneous set of hosts
and operating systems simultaneously.

Second, audit trails are often not available in a timely fashion. Some IDSs are designed
to perform their analysis on a separate host, so the audit logs must be transferred from the
source host to a different machine for data analysis. Furthermore, the operating system can
often delay the writing of audit logs by several minutes. The broadcast nature of a LAN,
however, gives the network-based IDS nearly-instant access to all data as soon as this data
is transmitted on the network. It is then possible to immediately start the attack detection
process.

Third, the audit trails are often vulnerable. In some past incidents, the intruders have
turned off audit daemons or modified the audit trail. This action can either prevent the

13

detection of the intrusion, or it can remove the capability to perform accountability and
damage control. The network-based IDS, on the other hand, passively listens to the network,
and is therefore logically protected from subversion. Since the IDS is invisible to the intruder,
it cannot be turned off (assuming it is physically secured), and the data it collects cannot be
modified.

Fourth, the collection of audit trails degrades the performance of a machine being moni-
tored. Unless audit trails are being used for accounting purposes, system administrators often
turn off auditing. If analysis of these audit logs is also to be performed on the host, added
degradation will occur. If the audit logs are transferred across a network or a communication
channel to a separate host for analysis, loss of network bandwidth may discourage administra-
tors from using such an IDS. The alternative, namely, a network-based IDS, will not degrade
the performance of the hosts being monitored. The monitored hosts are not aware of the IDS,
so the effectiveness of the IDS is not dependent on the system administrator’s configuration
of the monitored hosts.

And, finally, many of the more seriously documented cases of computer intrusions have
utilized a network at some point during the intrusion. i.e., the intruder was physically sep-
arated from the target. With the continued proliferation of networks and interconnectivity,
the use of networks in attacks will only increase. Furthermore, the network itself, being an
important component of a computing environment, can be the object of an attack. The IDS
can take advantage of the increase of network usage to protect the hosts attached to the net-
works. It can monitor attacks launched against the network itself, an attack that host-based
audit trail analyzers would probably miss.

2.3 Network Preliminaries

Throughout the rest of the report, we assume a TCP/IP internet to work with. In such
packet-switched networks, data to be transferred across is divided into small pieces called
packets, containing a few hundred bytes of data, and identification that enables the network
hardware to know how to send it to the specified destination. The software at the receiving
computer then reassembles the data and passes it on to the application programs.

Each host on a TCP/IP internet is assigned a unique 32-bit internet address that is
used in all communication with that host, called the “IP address”. Each address is a pair
(netid, hostid), where netid identifies a network, and hostid identifies a host on that network.
Routers use the netid portion of an address when deciding where to send a packet. The reader
is encouraged to read [Com95] for further details.

2.3.1 An IP datagram

The Internet Protocol(IP) is a network layer protocol responsible for best-effort connection
less packet delivery across the internet. The service is unreliable because delivery is not
guaranteed.

The basic transfer unit of an internet is an IP datagram. It is divided into header and
data areas. The header contains the source and destination IP addresses and a type field
that identifies the content of the datagram. If a datagram is larger in size than the networks
transfer unit, it is often broken down into smaller fragments. Flags in the header specify
fragmentation details.

Figure 2.1 shows an IP datagram. The contents are:

14

0 4 8 16 19 24 31
VERS| HLEN | SERVICETYPE TOTAL LENGTH

IDENTIFICATION FLAGS | FRAGMENT OFFSET

TIMETOLIVE | PROTOCOL HEADER CHECKSUM
SOURCE IP ADDRESS
DESTINATION |IP ADDRESS
IP OPTIONS (IF ANY) PADDING
DATA

Figure 2.1: The format of an IP datagram.

VERS contains the 4-bit version of the IP protocol.

HLEN, also 4-bits, gives the datagram header length measured in 32-bit words. All
fields, except IP OPTIONS and PADDING have fixed length.

TOTAL LENGTH field gives the 16-bit length of the IP datagram measured in octets,
including octets in the header and data.

SERVICE TYPE, also called Type Of Service (ToS), is an 8-bit field that specifies how
the datagram should be handled and is broken down into 5 subfields:

— Three PRECEDENCE bits specify datagram precedence, from 0 (normal) through
7 (network control), allowing senders to indicate the importance of each datagram.

— Bits D, T, and R specify the type of transport the datagram desires. When set,
the D bit requests low delay, the T bit requests high throughput, and the R bit
requests high reliability.

IDENTIFICATION contains a 16-bit unique integer that identifies the datagram, and
is copied into all its fragments.

FRAGMENT OFFSET is a 13-bit field that specifies the offset of the data in the original
datagram, measured in units of 8 octets, starting at offset zero.

FLAGS contains 3-bit flags that control fragmentation. The lower-order 2 bits control
fragmentation and the first control bit aids in testing whether the datagram may be
fragmented.

TIME TO LIVE(TTL) field specifies how long, in seconds, the datagram is allowed to
remain in the internet system. A datagram with a zero TTL is discarded by the router
and an error message sent back to the source.

PROTOCOL specifies the format of the DATA area - TCP, ICMP, UDP, etc.
HEADER CHECKSUM ensures integrity of header values. It is formed by treating the

header as a sequence of 16-bit integers, adding them together using one’s compliment

15

arithmetic, and then taking the one’s compliment of the result. It only applies to values
in the IP header and not to the data.

e SOURCE IP ADDRESS and DESTINATION IP ADDRESS contain the 32-bit IP ad-
dresses of the datagram’s sender and intended recipient.

e DATA shows the beginning of the data area of the datagram.

2.3.2 A TCP segment

The Transmission Control Protocol(TCP) is a transport layer protocol that works on top
of IP, providing a reliable transport service. The interface between application programs
and the TCP/IP reliable delivery service can be characterized by 5 features: (1) Stream
orientation, (2) Virtual Circuit Connection, (3) Buffered Transfer, (4) Unstructured Stream,
and (5) Full Duplex Connection. TCP uses a technique known as “positive acknowledgement
with retransmission” for reliable delivery.

TCP allows multiple application programs on a given machine to communicate concur-
rently, and it demultiplexes incoming TCP traffic among application programs. Each machine
contains a set of abstract destination points called protocol ports, identified by a positive in-
teger, and the protocol. TCP uses these protocol ports to identify the ultimate destination
of a segment of data, to be passed on to its application program.

TCP actually uses the connection abstraction, in which the objects to be identified are
virtual circuit connections, not individual protocol ports; connections are identified by a pair
of endpoints. An endpoint is a pair of integers (host, port) where host is the IP address
for a host and port is a TCP port on that host. Thus an example connection might be:
(192.168.111.100, 2345) and (144.16.111.14, 25)

The unit of transfer between the TCP software on two machines is called a segment.
Segments are exchanged to establish connections, to transfer data, to send acknowledgements,
to advertise window sizes (for flow control), and to close connections. Because TCP uses piggy-
backing, an acknowledgement traveling from machine A to machine B may travel in the same
segment as data traveling from machine A to machine B, even though the acknowledgement
refers to data sent from B to A.

Each TCP segment is divided into two parts, a header followed by data. The header,
known as the TCP header, carries the expected identification and control information.

Figure 2.2 shows a TCP segment. The contents are:

e SOURCE PORT and DESTINATION PORT contain TCP port numbers that identify
the application programs at the ends of the connection.

e SEQUENCE NUMBER field identifies the position in the sender’s byte stream of the
data in the segment.

e ACKNOWLEDGEMENT NUMBER field identifies the number of the octet that the

source expects to receive next.

e HLEN field contains an integer that specifies the length of the segment header measured
in 32-bit multiples. It is needed because the OPTIONS field varies in length, depending
on which options have been included.

o RESERVED is a 6-bit field marked for future use.

16

0 4 10 16 24 31

SOURCE PORT DESTINATION PORT

SEQUENCE NUMBER
ACKNOWLEDGEMENT NUMBER
HLEN | RESERVED | CODE BITS WINDOW

CHECKSUM URGENT POINTER

OPTIONS (IF ANY) PADDING
DATA

Figure 2.2: The format of a TCP segment.

e CODE BITS is a 6-bit field to determine the purpose and contents of the segment
(establish, close connections, etc.). The bits (from left to right) and their meanings, if
set to 1, are:

— URG: Urgent pointer field is valid

— ACK: Acknowledgement field is valid
— PSH: This segment requests a push
— RST: Reset the connection

SYN: Synchronize sequence numbers

— FIN: Sender has reached end of its byte stream

e WINDOW is a 16-bit unsigned integer that advertises how much data the TCP software
is willing to accept, every time it sends a segment.

e (CHECKSUM contains a 16-bit integer checksum used to verify the integrity of the data
as well as the TCP header. It prepends a pseudo header to the segment and appends the
segment with zeros to make the segment size a multiple of 16, and then computes the
16-bit checksum over the entire segment, just like IP header checksum. This allows the
receiver to verify that the segment has reached its correct destination, which includes
both a host IP address as well as a protocol port number.

e URGENT POINTER specifies the position in the TCP segment where the urgent data
ends, when the URG code bit is set. TCP accommodates “out of band” signaling by
allowing the sender to specify data as urgent

17

begin >

/ . active open / syn
syn/syn+ acl

reset send /syn

syn/syn+ ack close/ .
timeout /
reset
syn + ack / ack
close/fin fin/ ack
close/fin)

close/ fin

finfack IcLOSING LAST ack / -

ACK | ¢
fin-ack / ack '

timeout after 2 segment lifetimes

* /

fin/ ack

Figure 2.3: The TCP finite state machine.

18

2.3.3 TCP State Machine

The operation of TCP can be explained with a theoretical model called a finite state machine.
Figure 2.3 shows the TCP finite state machine, with circles representing the states and arrows
representing transitions between them. The label on each transition shows what TCP receives
to cause the transition, and what it sends in response.

The TCP software at each endpoint begins in the CLOSED state. Application programs
must issue either a passive open command (to wait for a connection from another machine),
or an active open command (to initiate a connection). An active open command forces a
transition from the CLOSED state to the SYN SENT state. When TCP follows the transition,
it emits a SYN segment. When the other end returns a segment that contains a SYN plus
ACK, TCP moves to the ESTABLISHED state and begins data transfer.

2.4 Port Scans

To an attacker, a machine is a collection of ports, communication endpoints, which might
have processes “bound” to them, and “listening” on them. Many important services run
on standardized ports, usually specified in /etc/services on UNIX-like systems. To scan
the ports of a machine essentially means to discover what ports of a host are listening for
connections.

Scan types

A number of techniques have been developed for surveying the protocols and ports on which
a target machine is listening. They all offer different benefits and problems. The five most
common TCP scans, which also happens to be the scan types that our detector is designed
to detect, are described below.

1. TCP connect() scan: This is the most basic form of TCP scanning. The connect()
system call provided by the operating system is used to open a connection to every
interesting port on the machine. If the port is listening, connect() will succeed, otherwise
the port isn’t reachable. An advantage to this technique is that it doesn’t need any
special privileges. Any user on most UNIX boxes can use this call. Another advantage
is speed. The downside is that this sort of scan is easily detectable and filterable. The
target host logs will show connection and error messages for the services which accept
the connection and then have it immediately shutdown.

2. Stealth SYN scan: This technique is often referred to as “half-open” scanning, be-
cause we don’t open a full TCP connection. A SYN packet is sent, as if we are going
to open a real connection, and wait for a response. A SYN/ACK indicates the port is
listening. An RST is indicative of a non-listener. If a SYN/ACK is received, we imme-
diately send an RST to tear down the connection (the kernel does this). The primary
advantage of this scanning technique is that fewer sites will log it. Unfortunately, we
need root privileges to build these custom SYN packets.

3. Stealth FIN scan: There are times when even SYN scanning isn’t clandestine enough.
Some firewalls, packet filters and programs watch for SYNs to restricted ports to detect
these scans. FIN packets, on the other hand, may be able to pass through undetected.

19

The idea is that closed ports tend to reply to a FIN packet with the proper RST. Open
ports, on the other hand, tend to ignore the packet in question. This is required TCP
behavior.

4. Xmas scan: This is very similar to the FIN scan mentioned above. The FIN scan uses
a bare FIN packet as the probe, while the Xmas tree scan turns on the FIN, URG, and
PSH flags.

5. Null scan: This is also similar to the FIN scan, except that the Null scan turns off all
flags.

Attackers typically go beyond this initial step, and determine what services run on the
open ports, and typically use well-known vulnerabilities of these services, to gain illegal access
to the system. Thus, a portscan is an indication that a potential intruder is trying to gain
more information about your system, and possibly planning an attack. It is often a pre-cursor
to an attack and a critical phase in itself, and its detection at this stage itself can reduce the
damage by a multitude.

2.5 Sniffit

Sniffit [Br98] is a network sniffer for TCP/UDP /ICMP packets. sniffit produces very detailed
technical information about the packets flowing through your network (SEQ, ACK, TTL, Win-
dow, ...) and packet contents in different formats (hex or plain text, ...) sniffit can, by default
handle ethernet and PPP devices, but can easily be forced into using other devices. The origi-
nal distribution can be downloaded from http://sniffit.rug.ac.be/sniffit/sniffit.html

The sniffer can easily be configured in order to ‘filter’ the incoming packets (to make the
sniffing results easier to study). The config file allows you to be very specific on the packets
to be processed. It uses the libpcap library developed at Berkeley Laboratory.

sniffit also has an interactive mode for active monitoring, and can also be used for con-
tinuous monitoring on different levels.

2.6 Tcpdump

Tcpdump [Ste01] is a tool for network monitoring and data acquisition. This software was
originally developed by the Network Research Group at the Lawrence Berkeley National
Laboratory. The original distribution is available via anonymous ftp to ftp.ee.lbl.gov, in tcp-
dump.tar.Z. More recent development is performed at http://www.tcpdump.org/ Tcpdump
uses libpcap, a system-independent interface for user-level packet capture.

The traffic of interest can be specified by command line arguments when tcpdump is
run and tcpdump will only dump the required traffic. Tcpdump supports a variety of output
options. By default it outputs packet headers in a user readable format to the standard
output. This can be altered by specifying the option -w <file>, which tells tcpdump not to
parse and print the packets, but to dump the raw packets to a file.The bytes of data from a
packet to be dumped is by default 68 and can be altered by specifying the option -s snaplen,
where snaplen is the length of a packet to be dumped.

20

It also has options to convert IP addresses to DNS names, or to keep them as they are.
It can listen on a specified interface, or it can even take the input “dump” from a file, which
has been previously saved using the —w option.

An expression selects which packets will be dumped. If no expression is given, all
packets on the net will be dumped. Otherwise, only packets for which expression is ‘true’ will
be dumped. This is the same bpf filter that ngrep also uses.

2.7 Nmap

Nmap [Fyo00] (“Network Mapper”) is an open source utility for network exploration or se-
curity auditing. It was designed to scan large networks, as well as single hosts. Nmap uses
raw IP packets to determine what hosts are available on the network, what services (ports)
they are offering, what operating system (and OS version) they are running, what type of
packet filters/firewalls are in use, and dozens of other characteristics. Nmap is free software,
available with full source code under the terms of the GNU GPL. It can be downloaded from
http://www.insecure.org/nmap/

nmap supports a large number of scanning techniques such as: UDP, TCP connect(),
TCP SYN (half open), ftp proxy (bounce attack), Reverse-ident, ICMP (ping sweep), FIN,
ACK sweep, Xmas Tree, SYN sweep, and Null scan. nmap also offers a number of advanced
features such as remote OS detection via TCP/IP fingerprinting, stealth scanning, dynamic
delay and retransmission calculations, parallel scanning, detection of down hosts via paral-
lel pings, decoy scanning, port filtering detection, direct (non-portmapper) RPC scanning,
fragmentation scanning, and flexible target and port specification.

2.8 PortSentry

PortSentry [Cra99] is part of the Abacus Project suite of security tools. It is a program
designed to detect and respond to port scans against a target host in real-time. It can be
downloaded from http://www.psionic.com/abacus/portsentry. It is a portscan detection
and active defense system. PortSentry can detect the strobe-style scans (full connect() scans),
SYN/half open scans, FIN scans, Null scans, Xmas tree scans, UDP scans (not really stealth
scans per se), and any odd packet with flags not matching the above.

Features

Some of the features of PortSentry are listed below:

e Runs on TCP and UDP sockets to detect port scans against your system. PortSentry
is configurable to run on multiple sockets at the same time so only one copy needs to
be started to cover dozens of tripwired services.

e Stealth scan detection (Linux only right now). PortSentry will detect SYN/half-open,
FIN, NULL, X-MAS and any odd-ball packet stealth scans. Four stealth scan operation
modes are available.

e PortSentry will react to a port scan attempt by blocking the host in real-time. This is
done through configured options of either dropping the local route back to the attacker,

21

using the Linux ipfwadm/ipchains command, BSD ipfw command, and/or dropping
the attacker host IP into a TCP Wrappers hosts.deny file automatically.

e PortSentry has an internal state engine to remember hosts that connected previously.
This allows the setting of a trigger value to prevent false alarms and detect “random”
port probing.

e PortSentry will report all violations to the local or remote syslog daemons indicating the
system name, time of attack, attacking host IP and the TCP or UDP port a connection
attempt was made to.

e Once a scan is detected, the host system will turn into a blackhole and disappear from
the attacker. This feature stops most attacks.

PortSentry will bind to pre-defined TCP and UDP ports to wait for a connection, it will
then react to block the host. This is how version 0.50 and below worked. This is compatible
with most UNIX systems. Two new modes of operation in portsentry eliminate the need to
bind to all ports and check, but can listen on a raw socket and analyze connections.

2.9 Snort

Snort [Mar01] is an open source network intrusion detection system, capable of performing
real-time traffic analysis and packet logging on IP networks. It can perform protocol analysis
and content searching/matching in order to detect a variety of attacks and probes, such as
buffer overflows, stealth port scans, CGI attacks, SMB probes, OS fingerprinting attempts,
and much more. Snort uses a flexible rules language to describe traffic that it should collect
or pass, as well as a detection engine that utilizes a modular plug-in architecture. Snort
has a real-time alerting capability as well, incorporating alerting mechanisms for syslog, user
specified files, a UNIX socket, or WinPopup messages to Windows clients using Samba’s
smbclient.

Snort is free software, available with full source code under the terms of the GNU GPL.
It can be downloaded from http://www.snort.org/

Snort has three primary functional modes. It can be used as a straight packet sniffer like
tcpdump (section 2.6), a packet logger (useful for network traffic debugging, etc), or as a
full blown network intrusion detection system.

Snort logs packets in either tcpdump binary format or in Snort’s decoded ASCII format
to a hierarchical set of directories that are named based on the IP address of the remote host.

Plug-ins allow the detection and reporting subsystems to be extended. Available plug-ins
include database or XML logging, small fragment detection, portscan detection, and HT'TP
URI normalization, IP de-fragmentation, TCP stream reassembly and statistical anomaly
detection. Snort has three primary run-time modes: sniffer, packet logger, and network
intrusion detection.

e Sniffer Mode: When in this mode, Snort reads and decodes all packets from the
network and dumps them to the stdout. To put Snort into straight sniffing mode, use
the “-v” verbose switch. Various option switches format the packets differently. The
traffic that shows up in this mode can be filtered by using BPF filters.

22

e Packet Logger Mode: This mode logs the packets to the disk in their decoded ASCII
format. This mode is activated merely by specifying a directory to log packets to with
the “1” switch. Packets can be logged into specified logging directory in a hierarchy
of directories based on the IP addresses of the packets on the wire. They can also be
logged in terms of the network being monitored. They can also be logged in their raw
binary format, to the disk. This allows them to be run through other tools like Ethereal,
tcpdump, etc. Packet logger mode can be mixed with sniffer mode switches with no ill
effects, however logging performance may be impacted by the slowness of the terminal.

e Intrusion Detection Mode: Snort enters IDS mode when a configuration file is
specified with the “-c” switch. Output formats, rules, preprocessor configuration, etc
are all specified in the configuration file. Logger mode is essentially disabled when in
IDS mode, but that’s because you specify which packets you want to log when in IDS
mode. When an alert rule goes off the alert data is logged to the alerting mechanism
(be default a file called “alert” in the logging directory) in addition to being logged to
the logging mechanism. The default logging directory is /var/log/snort, which can
be changed.

You can use something like “rt” or just “tail -f” it to give a running display of system
alerts. Alerts can also be sent to syslog (and monitored with something like swatch),
or they can be sent out as WinPopup messages with smbclient. There are a variety of
other alerting and logging mechanisms available.

2.9.1 Snort subsystems

Snort’s architecture is focused on performance, simplicity, and flexibility. There are three
primary subsystems that make up Snort: the packet decoder, the detection engine, and the
logging and alerting subsystem. These subsystems ride on top of the libpcap promiscuous
packet sniffing library, which provides a portable packet sniffing and filtering capability. Pro-
gram configuration, rules parsing, and data structure generation takes place before the sniffer
section is initialized, keeping the amount of per packet processing to the minimum required
to achieve the base program functionality.

The packet decoder

The decode engine is organized around the layers of the protocol stack present in the supported
data-link and TCP/IP protocol definitions. Each subroutine in the decoder imposes order
on the packet data by overlaying data structures on the raw network traffic. These decoding
routines are called in order through the protocol stack, from the data link layer up through the
transport layer, finally ending at the application layer. Speed is emphasized in this section,
and the majority of the functionality of the decoder consists of setting pointers into the
packet data for later analysis by the detection engine. Snort provides decoding capabilities
for Ethernet, SLIP, and raw (PPP) data-link protocols. ATM support is under development.

The detection engine

Snort maintains its detection rules in a two dimensional linked list of what are termed Chain
Headers and Chain Options. These are lists of rules that have been condensed down to a list
of common attributes in the Chain Headers, with the detection modifier options contained in

23

the Chain Options. For example, if forty five CGI-BIN probe detection rules are specified in a
given Snort detection library file, they generally all share common source and destination IP
addresses and ports. To speed the detection processing, these commonalities are condensed
into a single Chain Header and then individual detection signatures are kept in Chain Option
structures.

These rule chains are searched recursively for each packet in both directions. The detection
engine checks only those chain options which have been set by the rules parser at run-time.
The first rule that matches a decoded packet in the detection engine triggers the action
specified in the rule definition and returns.

The logging/alerting subsystem

The alerting and logging subsystem is selected at run-time with command line switches. There
are currently three logging and five alerting options. The logging options can be set to log
packets in their decoded, human readable format to an IP-based directory structure, or in
tcpdump binary format to a single log file. The decoded format logging allows fast analysis of
data collected by the system. The tcpdump format is much faster to record to the disk and
should be used in instances where high performance is required. Logging can also be turned
off completely, leaving alerts enabled for even greater performance improvements.

Alerts may either be sent to syslog, logged to an alert text file in two different formats,
or sent as WinPopup messages using the Samba smbclient program. The syslog alerts are
sent as security /authorization messages that are easily monitored with tools such as swatch.
WinPopup alerts allow event notifications to be sent to a user-specified list of Microsoft
Windows consoles running the WinPopup software. There are two options for sending the
alerts to a plain text file; full and fast alerting. Full alerting writes the alert message and the
packet header information through the transport layer protocol. The fast alert option writes
a condensed subset of the header information to the alert file, allowing greater performance
under load than full mode. There is a fifth option to completely disable alerting, which is
useful when alerting is unnecessary or inappropriate, such as when network penetrations tests
are being performed.

2.9.2 Snort plug-ins

Snort version 1.5 introduces a major new concept, plug-ins. There are two types of plug-in
currently available in Snort: detection plug-ins and preprocessors. Detection plug-ins check
a single aspect of a packet for a value defined within a rule and determine if the packet data
meets their acceptance criteria. For example, the TCP flags detection plug-in checks the
flags section of TCP packets for matches with flag combinations defined in a particular rule.
Detection plug-ins may be called multiple times per packet with different arguments.

Preprocessors are only called a single time per packet and may perform highly complex
functions like TCP stream reassembly, IP de-fragmentation, or HT'TP request normalization.
They can directly manipulate packet data and even call the detection engine directly with
their modified data. They can perform less complex tasks like statistics gathering or threshold
monitoring as well.

24

SPADE and SPICE

SPADE stands for Statistical Packet Anomaly Detection Engine and is produced by Silicon
Defense (http://www.silicondefense.com/). It is a Snort plug-in to report unusual, possi-
bly suspicious, packets. SPICE is the Stealthy Probing and Intrusion Correlation Engine. It
is part of Silicon Defense’s work. It will eventually consist of two parts, an anomaly sensor
(SPADE) and a portscan correlator. The basic operation of this will be that Spade will moni-
tor the network and report anomalous events to the correlator. The correlator will then group
these events together and send out reports of portscans, even those that have been crafted
to be difficult to detect (e.g., they probe slowly, from different sources, or they randomize
the scan). This distribution is the sensor component of Spice. The correlator is under active
development.

What Snort does

SPADE will review the packets received by Snort, find those of interest (TCP SYNs into
your homenets, if any), and report those packets that it believes are anomalous along with
an anomaly score.

The anomaly score that is assigned is based on the observed history of the network. The
fewer times that a particular kind of packet has occurred in the past, the higher its anomaly
score will be. Packets are classified by their joint occurrence of packet field values. For
example, packets with destination IP of 10.10.10.10 and destination port of 8080 might be
one kind of packet.

To do this, a probability table is maintained that reflects the occurrences of different kinds
of packets in history, with higher weight on more recent events. We would know, for example,
that P(dip=10.10.10.10, dport=8080) is 10% but that P(dip=10.10.10.10, dport=8079) is
0.1%. The anomaly score is calculated directly from the probability. For a packet X, A(X) =
—logy P(X). So the anomaly score for a 10.10.10.10, 8080 packet is 3.32 (not very anomalous)
and the score for a 10.10.10.10, 8079 packet is 9.97 (fairly anomalous).

At any given time, a reporting threshold is defined for the sensor. For each event that
exceeds this threshold, an alert is sent. It is sent to the same place(s) that a rule-based alert
would be sent to (e.g., Snort alert file, syslog, etc.).

In addition to reporting anomalous events, SPADE can also be configured to generate
reports about the network on which it is run. For example, it can tell you the amount of
entropy in your destination ports and in your source ports given your destination ports or
produce periodic reports of the number of packets seen and order statistics such as median
of the anomaly scores produced.

What Snort doesn’t do

SPADE cannot tell you if a particular reported packet is bad or hostile. It merely knows that
certain packets are relatively unusual and has an idea how unusual. You should expect to see
alerts about benign activity.

It also cannot report things like attempts to exploit CGI vulnerabilities on a popular web
server. This would depend on looking at the packet contents and SPADE just looks at certain
parts of the header.

SPADE will not group related anomalous events together. That will be the job of the cor-
relator. We can use SnortSnarf (http://www.silicondefense.com/snortsnarf/) to help

25

with this task; version 090700.1 generates a special section to browse anomaly reports. Snort-
Snarf is a Perl program to take files of alerts from Snort and produce HTML output intended
for diagnostic inspection and tracking down problems. The model is that one is using a cron
job or something similar to produce daily/hourly file of snort alerts. This script can be run
on each such file to produce a convenient HTML breakout of all the alerts.

SPADE Output

SPADE produces two types of messages, which are sent to wherever Snort usually sends alerts
(e.g., alert file, syslog, etc.).

The more common one has the message “spp_anomsensor: Anomaly threshold exceeded:
A”, where A is a number. This indicates that the packet mentioned was assessed as anomalous
and the anomaly score was A.

SPADE may also periodically produce messages of the form: “spp_anomsensor: Threshold
adjusted to T after X alerts (of N)”. This indicates that the alerting threshold was changed
to T. This happens when one of the threshold adapting mechanisms is used. The message
also gives information about the number of alerts (X) sent since the last time the threshold
was adjusted and the total number of packets (N) accepted by SPADE during that time.

2.9.3 Conclusions about Snort

Snort is a flexible tool with a wide variety of uses. It is intended to be used in the most
classic sense of a network intrusion detection system. It examines network traffic against a
set of rules, and alerts administrators to suspicious network activity so that they may react
appropriately. There are many other areas where Snort can be useful as well.

Snort was designed to fulfill the requirements of a prototypical lightweight network intru-
sion detection system. It has become a small, flexible, and highly capable system that is in
use around the world on both large and small networks. It has attained its initial design goals
and is a fully capable alternative to commercial intrusion detection systems in places where
it is cost inefficient to install full featured commercial systems.

2.10 Scope of our work

In an academic environment like IIT Bombay, we have many machines with identical configu-
rations. An attacker trying to learn information about a single machine can do so by scanning
a few ports on multiple machines. Such a scan cannot be easily detected by any of the exist-
ing freely available Intrusion Detection Systems. We describe the details of developing such
a system from chapter 3 onwards.

26

Chapter 3

Distributed Intrusion Detection

3.1 Motivation for distributed IDS

When we talk about Distributed Intrusion Detection, we refer to the “detection” of distributed
intrusion attempts, rather than the notion of a “distributed” detection of intrusion, which
consists of a framework of numerous data collection agents and a “distributed” analysis of
the same.

3.1.1 Our setup

In the Software Lab of Computer Science and Engineering Department, IIT Bombay, we have
a cluster of 26 machines with IP addresses ranging from 192.168.211.221
(pro-01.cse.iitb.ac.in)to 192.168.211.246 (pro-26.cse.iitb.ac.in) with the same con-
figuration - all boot the same kernel - Linux 2.2.12-20, mount the same disk partitions -
/homel, /home2, /home3, /home4, from the NFS and NIS server 192.168.211.250
(athira.cse.iitb.ac.in), and have the same services running on each of them, shown be-
low in table 3.1. Some other stray ports like 6000+ may also be listening for connections to
the X server, if any.

Port ‘ State ‘ Service ‘
21/tcp | open | ftp
22/tcp | open | ssh
23/tcp | open | telnet
79/tcp | open | finger
111/tcp | open | sunrpc
513/tcp | open | login
514/tcp | open | shell
738/tcp | open | unknown

Table 3.1: Open ports on 192.168.211.241

Suppose an intruder wants to exploit the password cracking attack. First he needs to
check all the machines to see which one of them he can use, to gain access. The telnet or ssh

27

services might have very well been running on obscure ports, and so, the first thing that he
needs to check is the array of open ports on these machines.

3.1.2 Portsentry and Snort

We looked at two IDSs that can detect portscan attempts, an HIDS portsentry in section 2.8
and an NIDS snort in section 2.9.

Portsentry binds to all the ports to be monitored. Hence, all these ports show up as
“open” to the intruder. The intruder might get more curious and return, and possibly find a
real problem with our system, which portsentry cannot defend.

Portsentry has this concept of listening to a “list” of ports. It will monitor only those ports
which are specified in a configuration file. Many a times, after the first installations, system
administrators rarely bother to update their configurations, though changes to the system
keep happening. This is typically true when multiple administrators handle the machines.
Hence, an important service on an obscure port might not be “watched” by portsentry.

Portsentry has a state engine that remembers hosts that connected to it. Hence, using
multiple source TP addresses to scan the machine will not be detected if the scan threshold is
not exceeded.

Snort currently has a preprocessor for detecting portscans. Here, a portscan is defined as
TCP connection attempts to more than P ports in T seconds. Ports can be spread across any
number of destination IP addresses, and may all be the same port if spread across multiple
IPs. Version 1.8 could only do one-to-one and one-to-many portscan detection.

3.1.3 The problem

If the attacker decides to scan one single machine, a host-based software like portsentry
(section 2.8) can detect this scan as a huge number of connections would alarm the system
administrator. If the scan is executed over a short period of time, a network-based software
like snort (section 2.9) would also be able to detect it.

The problem arises in the following situation: Suppose that knowledge about the identical
configuration of our machines is common and the attacker decides to scan a few ports on each
target machine, maybe using different source IP addresses (hosts). Also, in addition to the
“distributed” nature of the probe, he executes the scans slowly, at a rate lesser than snort’s
detection threshold.

Such an attack will probably go unnoticed or raise a few alarms in portsentry logs. But,
we must note that portsentry will have to be running on all the 26 machines. If this was done
too, there is no way of assembling all the 26 log files and making an intelligent conclusion
about the few “source” machines and the “target” machines.

Hence, the situation to be dealt with is a possibly slow, random, distributed, scan of any
of the target systems. We classify these scan sweeps into four categories. In all these types,
the number of ports scanned on each target machine is insignificant.

e One-to-one scan: This is a portscan performed by one single source on one single
target machine.

e One-to-many scan: This is a scan performed by one source machine on more than one
target machines.

28

e Many-to-one scan: More than one source machine scans a single target machine. The
state engine of systems like portsentry is misled here.

e Many-to-many scan: A group of source machines (more than one) performs scans on
a group of target machines (more than one)

Our aim is to detect all these scan sweeps, across the five types of TCP scans described
in section 2.4.

3.2 Analysis of the scan types

Each of the five scan types described in section 2.4 have typical signatures. We performed all
these scans using nmap, and collected the resulting dumps of traffic, and came up with the
following analysis for each of these scans.

3.2.1 TCP connect() scan

The source machine in this case executes the connect() system call and uses shutdown() to
tear down the connection. Here, the typical sequence of packets for an open port on the
target machine is:

Seq. No. Direction TCP Flags set
1 source to target | SYN
2 target to source | SYN, ACK
3 source to target | ACK
4 source to target | ACK, FIN, RST

Table 3.2: Sequence of packets for a TCP connect() scan for an open port

For a closed port on the target machine, the sequence of packets is:

Seq. No. Direction TCP Flags set
1 source to target | SYN
target to source | RST, ACK

Table 3.3: Sequence of packets for a TCP connect() scan for a closed port

This is the only scan which can be performed by a normal user too. All other attacks
require building custom packets to send on the network, and that requires superuser privileges.

All closed ports react to SYN packets as shown in table 3.3 and hence this is considered
a part of all the scan signatures.

3.2.2 Stealth SYN scan

The stealth SYN scan does not complete the 3-way TCP connection establishment handshake,
and tears down the connection with an RST after the target host responds with a SYN/ACK,
indicating an open port.

29

Seq. No. Direction TCP Flags set
1 source to target | SYN
target to source | SYN, ACK
3 source to target | RST

Table 3.4: Sequence of packets for a stealth SYN scan for an open port

3.2.3 Stealth FIN scan

The stealth FIN scan sends a bare FIN packet to the target host. Open ports ignore this
packet and closed ports react with an RST.

Seq. No. Direction TCP Flags set
1 source to target | FIN

Table 3.5: Sequence of packets for a stealth FIN scan for an open port

3.2.4 Xmas scan

The Xmas scan is similar to the stealth FIN scan. It also turns on the FIN, PSH and URG
flags. Open ports ignore this packet and closed ports react with an RST.

Seq. No. Direction TCP Flags set
1 source to target | FIN, PSH, URG

Table 3.6: Sequence of packets for an Xmas scan for an open port

3.2.5 Null scan

The Null scan is also like the stealth FIN scan. It sends a packet to the target, with all flags
turned off. Open ports ignore this packet and closed ports react with an RST.

Seq. No. Direction TCP Flags set
1 source to target | none

Table 3.7: Sequence of packets for a Null scan for an open port

3.3 Our approach

We describe the design of a network-based portscan detector, which would pick up packets
from the underlying broadcast LAN and deliver it to our detector program. Typically, this

30

would result in huge amounts of network data to be analyzed. We needed to distinguish the
scan signatures from normal TCP traffic.
The algorithm for the detector runs like this:

1. Capture each packet on the network and examine it further.
2. Check if the packet is of type TCP.
3. Extract the source and destination IP addresses and ports from the packet.

4. For each scan type (TCP connect(), stealth SYN, stealth FIN, Xmas, Null) to be de-
tected, maintain a “connection list” of valid TCP connections to watch for.

5. Whenever a scan signature is detected, we store this connection record, i.e. source and
target IP addresses and ports, into two correlation lists, srcIP and tarIP. At the same
time, this connection record is deleted from the connection list.

6. In one pass through the correlation lists, we examine the number of targets that each
source has scanned, and the number of sources that each target got scanned by.

7. We then list out the one-to-one, one-to-many, many-to-one, and many-to-many scan
sweeps found in the correlation lists.

Firstly, only TCP packets are processed further. The concept of a “TCP connection” is
central to the detection algorithm. A list of “live” connections between two TCP endpoints
is maintained. This is done by observing the SYN, ACK, FIN and RST packets. Whenever
a SYN packet from host a, port b to host ¢, port d is observed, a connection record is made
for this connection. All further packets from (a, b) to (c, d) are regarded as part of this
connection. This record is purged from the connection list only when a FIN or an RST from
(a, b) to (c, d) or (c, d) to (a, b) is observed.

When a new packet is received, a search is made through the connection list, to find out if
this packet belongs to a live connection. If it does, the packet number and flags are examined
further for scan signatures. If the packet doesn’t belong to any connection, it might be a SYN
packet, in which case, a new entry is made to the connection list. It might be a retransmitted
packet of an earlier connection too. It is ignored in this case.

If the packet doesn’t belong to any connection, it might also be indicative of a FIN, Xmass
or Null tree scan. the TCP flags for this packet to are checked see if FIN, URG, PSH, are
turned on, or if all the flags are turned off. If any of these are positives, the connection
attempt is a scan. For detecting TCP connect() type scans, the connection record is updated
as and when corresponding packets are seen. When the fourth packet is spotted as an RST
from the source to the target, it is indicative of a TCP connect() scan.

When we conclude that there was an attempt to portscan some machine target, by some
machine source, we remove the entry from the connection list and add the details of this
positive scan into a two correlation lists. One list maintains details of source hosts - each
node represents one source host and maintains information on the number of targets scanned,
counts on how many times each target was scanned, and a pointer to each such target into the
target list. The other list is identically structured - each node represents one target host and
maintains information on the number of sources that portscanned it, counts on how many
times each source did so, and a pointer to each such source into the source list.

31

In order to present a correlated conclusion, we make passes through the source and des-
tination IP lists, and list the scan sweep types as one-to-one, one-to-many, many-to-one or
many-to-many depending on the number of targets scanned by a source and the number of
sources scanning a target.

In chapter 4, we will further examine these data structures and algorithms in detail.

32

Chapter 4

Our implementation

This chapter describes the implementation of the portscan detector, along with a TCP con-
nect() scanner routine. The data structures and algorithms of the main routines are described.

4.1 TCP connect() scanner

A TCP connect() scanner which performs the TCP connect() scan (section 3.2.1) was built.
It connects to a specified machine on a specified TCP port, using connect() system call. The
next call is a shutdown() call which closes the connection.

4.2 Data structures

Each node in the connection list is a struct session_info shown in figure 4.1. Each node
stores connection information like source and target IP and port numbers, timestamp of the
last packet seen on this connection, and status of SYNs and ACKs received. It also has
a pointer to the next node in the connection list. Each node is representative of one live
connection in the network.

Struct session_info
conn: ipl:portl-ip2:port2

xconn: ip2:port2-ipl:portl

proto: tcp/udp

tslp: timestamp of the last packet seen

SASrecd: flag 0/1... SYN/ACK-SY N recd
ACKrecd: flag 0/1... ACK recd

session_info *next: Next session node in linked list

Figure 4.1: A node in the connection list
When a TCP SYN segment is received, existing connections in the list are searched

through. If a record for this source and target IP address and ports exists, it is a retrans-
mitted packet, and the entry in the connection list is updated - the timestamp is changed. If

33

this entry doesn’t exist, a new node is created and added to the end of the connection list.
Function add_list “adds” this packet to the list.

When a FIN or RST is seen, it signifies the end of the connection. This connection record
is then searched in the connections list, using the function search_list, which returns a
pointer to this connection record. Function delete_list_ptr then deletes this node from
the connection list.

When a scan is detected, the corresponding connection record is purged from the connec-
tion list, and the correlation lists - source list pointed to by srcIP and target list pointed
to by tarIP - are updated with this record. The source list is a list of nodes, each node
corresponding to a source machine which performs portscans. Similarly, the target list is
a list of nodes, each node corresponding to a target machine, which is portscanned by some
machine in the source list.

Struct mac
IP: 1P address of the source/target machine

lenmacptr: length of the list of pointers to the other list

macptr ptr_struct: has pointer to targets for a source

mac *next: Next machine node in correlation list

Figure 4.2: A node in the source or target correlation lists

Each node in these lists is a struct mac shown in figure 4.2. For the source list, each
node contains the IP address, number of target hosts scanned, a pointer to the next node in
the list, and ptr_struct, a struct macptr, shown in figure 4.3. This contains a pointer to the
node in the target list, that this source has portscanned, a count of the number of times this
source host has scanned that target host, and a pointer to the next target scanned by this
host.

Struct macptr
mac *macptr: Indicates machine in the other list

count: A count of scans between these 2 machines

macptr * next: Next nodein the list

Figure 4.3: A node that points to the target scanned (when in a source mac) or the scanner
source (when in a target mac)

The correlation lists are therefore interconnected, with some amount of similarity. For the
test case one-to-many scan described in table 5.2, a snapshot of the correlation lists looks as
shown in figure 4.4.

4.3 Routines

The central flow of control of the detector is:

1. Open the network device to read from (live/offline)

34

tarlP

|

IP=192.168.211.239

ST P
IP=192.168.211.223
lenmacptr = 3 \
*ptr_struct = /><
macptr — | <
count =3 macptr
next > count = 4\\
next ——— next — \
Y
) macptr
IP=192.168.211.225 count =4
lenmacptr = 2 next —
*ptr_struct = R
macptr :
—
count =3 macptr
next > count =4
next next

macptr
count = 4
next —

P—
\

lenmacptr = 2
*ptr_struct =

L macptr
count=3

A

next

next —

— macptr
count = 4

next

Y

1P=192.168.211.241
lenmacptr = 2
*ptr_struct =

macptr
count = 4

A

next

Y

1P=192.168.211.243
lenmacptr = 1
*ptr_struct =

y

macptr
count = 4

next

next —

Figure 4.4: Correlation lists for the one-to-many scan in table 5.2

35

2. Depending on the option specified on the commandline, for the scan to be detected,

call a routine in a pcap_loop() call, to handle every packet, till EOF. The individual
routines are described in section 4.4

Option | TCP Scan type | Routine called
-sT connect() packethandler
-sS stealth SYN packethandler_S
-sF stealth FIN packethandler_F
-sX Xmas packethandler_X
-sN Null packethandler_N

Table 4.1: Options passed to detect and routine called

. Call routines: onetoone(), onetomany(), manytoone () and manytomany ()to go through

srcIP and tarIP lists and print scan sweeps discovered. These are described in sec-
tion 4.5.

. Call deletenode(srcIP) and deletenode (tarIP) to free the srcIP and tarIP lists.

4.4 Detection

In this section, algorithms for detecting each type of TCP portscan are described.

4.4.1 TCP connect() scan

This is the scan described in section 3.2.1. For each packet seen by the network interface, the
following is done:

1.

If the packet is a SYN and not-ACK, it is the first packet of a connection. Search for
this packet in the connection list.
struct session_info *search_pointer = search_list (conn, xconn);

e If found, reset all fields of *search_pointer.

e If not found,
add_list(conn, xconn, packet_header->timestamp);

. Any other packet, search if the record exists in the connection list.

struct session_info *search_pointer = search_list (conn, xconn);

e If found in the list,
— If the packet is a FIN or RST, and not-SYN, and ACK, and the ACK/SYN
has been received, and the third ACK has also been received, this is the fourth

packet of the connection - the signature of this scan. Add the source and the
target IP to the correlation lists. Remove this entry from the connection list.

— If the packet is an RST, and an ACK and not-FIN and not-SYN, and the
SYN/ACK has not been received, this is the second packet of the connection,
and its an RST, indicative of a closed port. This is also an indication of a

36

scan. Add the source and target IP to the correlation lists. Remove the entry
from the connection list.

— If the packet is the second packet in a TCP connection, update the entry in
the connection list with the new timestamp and set the SYN/ACK received
flag.

— If the packet is the third packet in a TCP connection, update the entry in the
connection list with the new timestamp and set the ACK received flag.

— If the packet is the fourth packet in a TCP connection, this is a normal TCP
connection and this entry can be safely deleted from the connection list.

— If the packet is a FIN or and RST, this entry should be deleted from the
connection list.

e If not found, if the packet is a SYN and ACK, its the second packet of a connection,
add it to the list.
add_list(conn, xconn, packet_header->timestamp) ;

4.4.2 Stealth SYN scan

This is the scan described in section 3.2.2. For each packet seen by the network interface, the
following is done:

1.

If the packet is a SYN and not-ACK, it is the first packet of a connection. Search for
this packet in the connection list.
struct session_info *search_pointer = search_list (conn, xconn);

e If found, reset all fields of *search_pointer.

e If not found,
add_list(conn, xconn, packet_header->timestamp);

. For any other packet, search if the record exists in the connection list.

struct session_info *search_pointer = search_list (conn, xconn);

e If not found in the list, and if it is a SYN and an ACK, add it to the connection
list. Discard everything else and return.

o If the packet is found in the connection list,

— If it is the second packet in the connection and and RST and ACK and not
FIN, it is an indication of a closed port being scanned. Add this connection
to the correlation lists and delete it from the connection list.

— If it is the second packet in the connection, update the record in the connection
list.

— If it is the third packet in the connection and an RST, it is indicative of a
stealth SYN scan - the signature of this scan. Add this connection to the
correlation lists and delete it from the connection list.

— If it is the third packet in the connection and not an RST, it is a normal TCP
connection and hence delete this entry from the connection list.

37

4.4.3 Stealth FIN scan

This is the scan described in section 3.2.3. For each packet seen by the network interface, the
following is done:

1. If the packet is a SYN, search the connection list for this record. If one is found, update
the entry with the new timestamp. If not, add this entry to the connection list.

2. For any other packet, search if the record exists in the connection list.

e If not found in the connection list, and if it is the second second packet in the
connection, with a SYN and an ACK, add this record to the connection list.

e If not found in the connection list, and if it is a FIN and not-ACK, it is an indication
of a FIN scan - add this record to the correlation lists and remove the entry from
connection list.

e If found in the list, and it is a FIN and ACK, its the last packet of the connection,
remove the entry from the connection list.

e If found in the list, and this is the second packet of the connection, and an RST
and ACK, indicative of a closed port scan, add this record to the correlation lists,
and remove the entry from connection list.

4.4.4 Xmas tree scan

This is the scan described in section 3.2.4. For each packet seen by the network interface, the
following is done:

1. If the packet is a SYN, search the connection list for this record. If one is found, update
the entry with the new timestamp. If not, add this entry to the connection list.

2. For any other packet, search if the record exists in the connection list.

e If not found in the connection list, and if it is the second second packet in the
connection, with a SYN and an ACK, add this record to the connection list.

e If not found in the connection list, and if it is a FIN, not-ACK, PSH and URG,
it is an indication of an Xmas scan - add this record to the correlation lists and
remove the entry from connection list.

e If found in the list, and it is a FIN and ACK, its the last packet of the connection,
remove the entry from the connection list.

e If found in the list, and this is the second packet of the connection, and an RST
and ACK, indicative of a closed port scan, add this record to the correlation lists,
and remove the entry from connection list.

4.4.5 Null scan

This is the scan described in section 3.2.5. For each packet seen by the network interface, the
following is done:

1. If the packet is a SYN, search the connection list for this record. If one is found, update
the entry with the new timestamp. If not, add this entry to the connection list.

38

2. For any other packet, search if the record exists in the connection list.

e If not found in the connection list, and if it is the second second packet in the
connection, with a SYN and an ACK, add this record to the connection list.

e If not found in the connection list, and if it is a packet with no flags set, it is an
indication of an Xmas scan - add this record to the correlation lists and remove
the entry from connection list.

e If found in the list, and it is a FIN and ACK, its the last packet of the connection,
remove the entry from the connection list.

e If found in the list, and this is the second packet of the connection, and an RST
and ACK, indicative of a closed port scan, add this record to the correlation lists,
and remove the entry from connection list.

4.5 Correlation

In this section, the algorithm for inferring the sweep types from the correlation lists, is
described.

e One-to-one scan: Starting from the first node pointed to by srcIP, look for all nodes
with lenmacptr equal to one. Print this source IP and follow the ptr_struct.macptr
to get the target IP.

e One-to-many scan: Starting from the first node pointed to by srcIP, look for all
nodes with lenmacptr greater than one. For all such nodes: Traverse through their
ptr_struct lists and list out the target IP addresses for this source IP address.

e Many-to-one scan: Starting from the first node pointed to by tarIP, look for all
nodes with lenmacptr greater than one. For all such nodes: Traverse through their
ptr_struct lists and list out the source IP addresses for this target IP address.

e Many-to-many scan: Starting from the first node pointed to by srcIP, look for all
nodes with lenmacptr greater than one. For all such nodes: Traverse through their
ptr_struct lists and list out those source IP addresses which have lenmacptr greater
than one.

39

Chapter 5

Experiments and Results

5.1 The experimental setup

Further to the description in section 3.1.1, we selected a LAN segment on the hub and the
exact setup is shown in figure 5.1. Three machines are used as source machines and three
machines are target machines. One machine is in promiscuous mode and captures all the
network data, which is finally given to our detector program.

Sour ces

pro-13 pro-15 pro-17

AN I N b B N

pro-20

U []
logs
networ k
pro-19 pro-21 pro-23 traffic

)L Ll

AN e O e

Targets

Figure 5.1: The experimental setup.

40

5.2 Scan sweeps

The following scan sweeps are performed:

The machine pro-13 connects to machine pro-19 on ports 25 and 119 and immediately
sends an RST to tear down the connection, thus executing a one-host-to-one-host TCP con-
nect() scan. Similarly, machine pro-15 scans ports 21, 23, and 80 of pro-21 and pro-17 scans
pro-23 on ports 22 and 79. (Table 5.1).

‘ Source ‘ Target ‘ TCP Ports ‘
pro-13 | pro-19 | 25, 119
pro-15 | pro-21 | 21, 23, 80
pro-17 | pro-23 | 22, 79

Table 5.1: One-to-one scan

The machine pro-13 connects to machine pro-19 on ports 7, 20, 21, to pro-21 on ports
22, 23, 25, 53, and to pro-23 on ports 69, 79, 80, 88 and immediately sends an RST to tear
down the connection, thus executing a one-host-to-many-host TCP connect() scan. Similarly,
machine pro-15 scans ports 110, 111, 119 of pro-19 and ports 139, 143, 194, 220 of pro-21.
(Table 5.2).

‘ Source ‘ Target ‘ TCP Ports
pro-13 | pro-19 | 7, 20, 21

pro-21 | 22, 23, 25, 53
pro-23 | 69, 79, 80, 88
pro-15 | pro-19 | 110, 111, 119
pro-21 | 139, 143, 194, 220

Table 5.2: One-to-many scan

The machine pro-13 connects to machine pro-21 on ports 443, 513, 518. pro-15 connects
to pro-21 on ports 873, 3130, 6667, and pro-17 connects to pro-21 on ports 107, 20, 21, 23.
Source machines then immediately send an RST to tear down the connection, thus executing
a many-hosts-to-one-host TCP connect() scan. (Table 5.3).

‘ Source ‘ Target ‘ TCP Ports ‘
pro-13 | pro-21 | 443, 513, 518

pro-15 | pro-21 | 873, 3130, 6667
pro-17 | pro-21 | 107, 20, 21, 23

Table 5.3: Many-to-one scan

The machines pro-13, pro-15 and pro-17 all connect to machine pro-19 on ports 7, 20, 21,
79, to pro-21 on ports 80, 113, 119, 139, to pro-23 on ports 143, 194, 667. Source machines
then immediately send an RST to tear down the connection, thus executing a many-hosts-
to-many-hosts TCP connect() scan. (Table 5.4).

41

‘ Source ‘ Target | TCP Ports ‘
pro-13 | pro-19 | 7, 20, 21, 79
pro-21 | 80, 113, 119, 139
pro-23 | 143, 194, 667
pro-15 | pro-19 | 7, 20, 21, 79
pro-21 | 80, 113, 119, 139
pro-23 | 143, 194, 667
pro-17 | pro-19 | 7, 20, 21, 79
pro-21 | 80, 113, 119, 139
pro-23 | 143, 194, 667

Table 5.4: Many-to-many scan

5.3 Results

The machine pro-20 was running tcpdump when the scans were performed. The results from
the detect program for the scans are shown below:

The dump file corresponding to the one-to-one scan is passed to the detector and the
observed output is recorded. The program successfully detects three one-to-one scans, from
pro-13 (192.168.211.233) to pro-19 (192.168.211.239), from pro-15 (192.168.211.235) to pro-
21 (192.168.211.241), and from pro-17 (192.168.211.237) to pro-23 (192.168.211.243) (scan of
table 5.1).

[mamata@sapphire - ~/prog/manyl] ./detect expt/one-to-one
Device opened offline

No. of packets processed : 252
No. of packets not examined : 158
No. of analyzed connections : 12

No. of incomplete connections: 1

Source: 192.168.211.233 Target: 192.168.211.239
Source: 192.168.211.235 Target: 192.168.211.241
Source: 192.168.211.237 Target: 192.168.211.243
————————————————— One to Many---------—-----—-—-——-
————————————————— Many to One------—---—--——--———-

The dump file corresponding to the one-to-many scan is passed to the detector and the
observed output is recorded. The program successfully detects two one-to-many scans, from
pro-13 (192.168.211.233) to pro-19 (192.168.211.239), pro-21 (192.168.211.241) and pro-23
(192.168.211.243) and from pro-15 (192.168.211.235) to pro-19 (192.168.211.239) and pro-21
(192.168.211.241) (scan of table 5.2).

42

Some other stray scans are also picked up in addition to the ones we performed. Some of
these are due to reverse ident lookups.

[mamata@sapphire - ~/prog/manyl] ./detect expt/one-to-many
Device opened offline

No. of packets processed : 266
No. of packets not examined : 182
No. of analyzed connections : 23

No. of incomplete connections: 1

————————————————— One to Many-—-—-———-——-—-—————————-
Source: 192.168.211.233
Targets:
192.168.211.239 192.168.211.241 192.168.211.243
Source: 192.168.211.235
Targets:
192.168.211.239 192.168.211.241
————————————————— Many to One---------—--—-----—-
Target: 192.168.211.239
Sources:
192.168.211.233 192.168.211.235
Target: 192.168.211.241
Sources:
192.168.211.233 192.168.211.235

Source: 192.168.211.233

Targets:

192.168.211.239 192.168.211.241
Source: 192.168.211.235
Targets:

192.168.211.239 192.168.211.241

The dump file corresponding to the many-to-one scan is passed to the detector and the
observed output is recorded. The program successfully detects one many-to-one scans, from
pro-13 (192.168.211.233), pro-15 (192.168.211.235), and pro-17 (192.168.211.237) to target
pro-21 (192.168.211.241) (scan of table 5.3).

[mamata@sapphire - ~/prog/manyl] ./detect expt/many-to-one
Device opened offline

No. of packets processed : 357
No. of packets not examined : 188
No. of analyzed connections : 15

No. of incomplete connections: O

43

————————————————— One to Many---------—-----————-
————————————————— Many to One---------—--—-----—-
Target: 192.168.211.241

Sources:

The dump file corresponding to the many-to-many scan is passed to the detector and the
observed output is recorded. The program successfully detects one many-to-many scan, from
pro-13 (192.168.211.233), pro-15 (192.168.211.235), and pro-17 (192.168.211.237) to targets
pro-19 (192.168.211.239), pro-21 (192.168.211.241), and pro-23 (192.168.211.243) (scan of

192.168.211.233

table 5.4).

These scans also show up in the one-to-many and the many-to-one listings, as is expected.

192.168.211.235

192

[mamata@sapphire - “/prog/manyl] ./detect expt/many-to-many

Device
No. of
No. of
No. of
No. of

Source:

opened offline

packets processed : 985
packets not examined : 524
analyzed connections : 52
incomplete connections: 2

192.168.211.233

Targets:

Source:

192.168.211.239 192.

192.168.211.235

Targets:

Source:

192.168.211.239 192.

192.168.211.237

Targets:

Target:

192.168.211.239 192,

192.168.211.239

Sources:

Target:

192.168.211.233 192,

192.168.211.241

Sources:

Target:

192.168.211.233 192.

192.168.211.243

168.211.

168.211.

168.211.

168.211.

168.211.

44

241

241

235

235

192

192

192

192

192

.168.211.237

.168.211.243

.168.211.243

.168.211.243

.168.211.237

.168.211.237

Sources:
192.168.211.233 192.168.211.235 192.168.211.237

Source: 192.168.211.233

Targets:

192.168.211.239 192.168.211.241 192.168.211.243
Source: 192.168.211.235
Targets:

192.168.211.239 192.168.211.241 192.168.211.243
Source: 192.168.211.237
Targets:

192.168.211.239 192.168.211.241 192.168.211.243

5.4 Other scans

In a similar way, dumps of network traffic were collected for the other four TCP scan types,
stealth SYN, stealth FIN, Xmas and Null scan. They were passed through the detector
program, indicating the type of scan to be detected. The result was that all the scans
performed by us were detected. The results are very similar in to the ones in section 5.3 and
are avoided here in the interest of brevity.

5.5 Conclusion

Five TCP portscans were performed by three source machines, on three target machines,
with one machine passively collecting all the network traffic. These dumps were then passed
to the detector program. All the scans performed and captured in the network data were
detected. The scan sweeps were also sorted out into one-to-one, one-to-many, many-to-one,
and many-to-many host scans. Similar results were observed when the input to the detector
was live network traffic.

45

Chapter 6

Conclusions and Future Work

An intruder planning an attack on a system typically scans all ports of the system to check
open ports, and services running on them. He may then proceed to use known vulnerabilities
of the services to gain unauthorized access to the system. Hence, a portscan is a pre-cursor to
an attack on the system. A portscan detector is therefore a primary anti-intrusion tool. In our
academic setup, many machines have identical configurations, and hence scanning multiple
ports across different machines will essentially provide the intruder with the same complete
data as would scanning a single host. These type of distributed portscans are difficult to detect
using the currently available IDS tools.

Hence we see that it is very important to detect distributed portscans, by one source
host on a multitude of target hosts, and also from a number of source hosts to a number of
target hosts. Five types of TCP scans are considered: TCP connect() scan, stealth SYN scan,
stealth FIN scan, Xmas scan, and Null scan.

To solve this problem, we analyze network data, instead of collecting data from host logs.
The five types of TCP scans to be detected were analyzed and their signatures were stud-
ied. A TCP connect() scanner was also developed. Three machines on the LAN were then
designated hosts for performing the scans, also called source machines. Three machines,
target machines, were the machines being scanned. One machine was passively sniffing all
the data on this broadcast LAN segment.

Packets were captured and grouped into connections. For each of the five scan types being
detected, the sequence of packets in a connection was analyzed, and the scan attempts were
identified. These were then separated out and entered into the srcIP and tarIP correlation
lists, which were then used to detect the scan sweep type, one of: one-to-one, one-to-many,
many-to-one, and many-to-many.

Slow scans and distributed many-to-one and many-to-many hosts scans which go undetected
by Snort’s portscan preprocessor and portsentry, can be detected by our portscan detector.

The prototype detector currently detects only five types of TCP scans. UDP scans are
not considered. Also ICMP probes are ignored. The concept of capturing all the network
data works fairly well with broadcast environments created by the use of hubs. Switched
environments have only one way of listening to all the ports of a machine - configuring one
control port on the switch to mirror the traffic on other ports - which would result in a lot of
increased traffic.

46

The future of Intrusion Detection Systems lies in data correlation. New IDSs will produce
results by examining input from several different sources. The way to solve this challenge lies
in data mining being performed on different data sets. The concept of a management console
dedicated to the task of correlating abnormal event notifications, with relevance measures is
an emerging one. One can picturize many distributed elements performing specific jobs, each
passing the results onto a higher level for correlation and analysis.

It is expected that the future IDSs will merge all of the independent network components
and tools which exist today, into a complete and cooperative system, dedicated to keeping
networks stable. There will be many distributed elements performing specific jobs, each
passing the results onto a higher level for correlation and analysis. As always, the ultimate
authority will be our own judgment.

47

Bibliography

[Br98] Brecht Claerhout (coder@reptile.rug.ac.be) . Sniffit v0.3.7.beta Packet sniffer and
monitoring tool. July 1998. http://sniffit.rug.ac.be/sniffit/sniffit. html.

[Axe00] Stefan Axelsson. Intrusion detection systems: A survey and taxonomy, 2000.

[Com95] Douglas E. Comer. Internetworking with TCP/IP, Vol I: Principles, Protocols, and
Architecture. Prentice-Hall Inc., 1995. ISBN 81-203-1053-5.

[Cra99] Craig H. Rowland (crowland@psionic.com) . Psionic Portsentry v1.0,
Port scan detection and active defense system. November 1999.
http://www.psionic.com/abacus/portsentry/.

[Fyo00] Fyodor (fyodor@insecure.org). Nmap v2.53 stealth port scanner. May 2000.
http://www.insecure.org/nmap/.

[Mar01] Martin Roesch (roesch@clark.net). Snort v1.7, open source network intrusion detec-
tion system. January 2001. http://www.snort.org/.

[Ste01] Steve McCanne, Craig Leres and Van Jacobson. Tcpdump v3.6.2, LBNL’s protocol
packet capture and dumper program. February 2001. http://www.tcpdump.org/.

48

