
Carrom Tutor : Game-based Learning and
Implementation

Dissertation

Submitted in partial fulfillment of the requirements

of the degree of

Master of Technology

by

Mrinal Chandra Malick

Roll Number: 123050064

Under the guidance of

Prof. Sridhar Iyer

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Mumbai

2014

Abstract

Rapid improvement of technology and education increase the necessity of potent tutors
day by day. Tutoring can be done utilizing the web or using the traditional method. In
this report, we describe the development of a web-based Carrom Tutor, and a game-based
Carrorm Tutor implemented in Blender 3D. We refer to these Tutors as Carrom Tutor 1.0
and Carrom Tutor 2.0, respectively. As the title suggests, these Tutors are initiatives for
teaching Carrom skills and strategies to the Carrom aspirants. While designing the tutors,
Educational Technology, Game Based Learning and Software designing perspectives have
been emphasized.

At the beginning of the report, principles of Game-Based Learning and Educational
Game Design are discussed. The next chapter is about Carrom Tutor 1.0, it’s design,
implementation, demonstration and user experiments Then the report covers the moti-
vation behind building Carrom Tutor 2.0, and provides detailed descriptions about Car-
rom Tutor 2.0’s design, implementation, demonstration, user experiments and challenges.
Technological tools and platforms considered for implementation, along with details of
actual implementation have been described. Finally, the experiments conducted to test
the effectiveness of these systems are described, along with possible future works.

Acknowledgements

I thank Prof. Sridhar Iyer for his invaluable guidance. I also thank Mayur Katke for
his assistance and cooperation towards achieving the expected results in this project. I
also thank Rwitajit Majumdar & Shitanshu Mishra greatly for mentoring me in right
direction. I would like to thank Prof. Sameer S. Sahasrabudhe and Nitin Ayer for their
help.

Contents

Contents 1

List of Figures 4

1 Introduction 6

2 Background and Related Work 8

2.1 Examples of Game-based Tutors . 8

2.1.1 System 1 . 8

2.1.2 System 2 . 9

2.1.3 System 3 . 9

2.2 Principles for Game Based Carrom Tutor Design 10

3 Carrom Tutor 1.0 12

3.1 Design of the Tutor . 12

3.1.1 Educational technology perspective 12

3.1.2 Design Perspective . 13

3.1.3 Architectural view of Carrom Tutor 1.0 14

3.2 Implementation . 15

1

3.3 Demonstration . 19

3.4 User Experiment . 22

3.4.1 Sample . 23

3.4.2 Data Collection Methodology . 23

3.4.3 Data Analysis and Results . 23

4 Motivation for Carrom Tutor 2.0 25

4.1 Design Decisions for Carrom Tutor 2.0 . 26

5 Design of Carrom Tutor 2.0 28

5.1 Educational Technology Perspective . 28

5.2 Perspective of Game-Based Learning . 30

5.3 Design perspective . 31

5.4 Architectural view of the Tutor . 32

6 Implementation 34

6.1 Modelling . 34

6.2 Logic Editor . 35

6.3 Python Scripting . 40

7 Demonstration 45

8 User Experiment 48

8.1 Sample . 48

8.2 Data Collection Methodology . 48

2

8.3 Data Analysis and Results . 49

9 Challenges 52

10 Conclusion and Future Work 58

10.1 Conclusion . 58

10.2 Future Work . 59

Bibliography 60

3

List of Figures

3.1 Index page . 20

3.2 Demo page . 20

3.3 Exercise page . 21

3.4 Recall exercise page . 22

3.5 Exercise 2 . 22

3.6 SUS feedback . 24

5.1 Activity Diagram for Carrom Tutor 2.0 . 33

6.1 User interface of Blender Game Engine . 35

6.2 Logic bricks for start scene . 37

6.3 Logic bricks for basicScene . 38

6.4 Striker’s logical components for practice exercise 38

6.5 Logic bricks for coins . 40

6.6 Usage of global dictionary in logic bricks 41

7.1 Start screen . 45

7.2 Second screen . 46

4

7.3 Tutorial screen . 47

7.4 Screen shot of second exercise . 47

8.1 SUS analysis of M & M Carrom Tutor . 50

9.1 Logic bricks for basicScene, part 1 . 55

9.2 Logic bricks for basicScene, part 2 . 56

9.3 Logic bricks for basicScene, part 3 . 57

5

Chapter 1

Introduction

A tutor is an instructor who gives private lessons [14]. A good tutor is always needed to

learn a subject. A tutor can be a human being or something presented in virtual reality.

Game based Carrom Tutor is an initiative to teach various Carrom related skills

through virtual reality. In current scenario there is no such system available in the web

for Carrom. This project will endeavour to improve one’s Carrom related skills which

generally cannot be learnt without some expert assistance. Game based Carrom Tutor

offers a web based interactive tutorial environment Carrom Tutor 1.0 and a game,

namely Carrom Tutor 2.0, where one can learn sophisticated carrom skills.

Now let’s concentrate our focus on why Game based Carrom Tutor will help in im-

provement of one’s Carrom related skills. Often learning by experience is more beneficial

than doing the same by studying. According to the model of Game Based Learning the

instructional contents are interleaved with the game features (Maja et al.,[11]). The in-

fluencing nature of the game compels user to repeat the exercises or quests given in the

game over and over until desired level of satisfaction is attained. Game Based Carrom

Tutor aims at proper mixing of learning content and the game like environment. In Game

based Carrom Tutor user will be provided with different game like situations where each

action chosen by user will lead to different outcomes. This can be directly mapped with

Learning Outcome of Game Based Learning(Maja et al.,[11]).

Carrom Tutor 1.0 is the first outcome of this project. It is basically a web based

system. User can interact with it to watch demos, play exercises etc. It offers the feel of

a tutor which provides the knowledge about various carrom skills and asks about their

applications in different board positions. Carrom Tutor 1.0 also provides assessment

6

and tutoring. Main structure of Carrom Tutor 1.0 was built using HTML, CSS, Java

Scripts. HTML, CSS were used to build the user interface whereas Java Script was used

to implement system functionalities.

Carrom Tutor 1.0 lacks in providing flexibility and control to user. To overcome these

shortcomings Carrom Tutor 2.0 is built. To add more flexibility and control it is needed

to build a game-like environment. Blender Game Engine[7] has been used to create this

environment. User can watch demos of different skills and practice those skills right

after the demos in Carrom Tutor 2.0. A set of complex exercises are built to test user’s

comprehensibility about the given situations. There are many layers in Blender to work

with. Each layer has different functionalities. In Blender, game objects can be created

and manipulated by Modelling. Functionalities of game objects can be controlled using

Logic Editor and Text Editor layers. Logic Editor offers a large set of logical components

to enhance an object’s functionalities, whereas Text Editor helps manipulating an object’s

behavior using Python scripts.

This project is aimed at the expectation of filling the absence of a good Carrom Teach-

ing Tutor in the midst of numerously available Carrom-Games in the web. It explores

two different ways of building the tutor. Learning outcome, interactivity, usability etc.

were also compared among these two systems to identify the major factors in building an

interactive tutor.

Scope of this project is very large. This project has been initiated as a joint project.

Some other related informations can be found in dissertation written by Mayur Katke[9].

Some images used in 3.3, 7 are common in both dissertations.

7

Chapter 2

Background and Related Work

Teaching properly to facilitate learning, possesses great importance in education. It has

been seen over the time that people learn faster while practicing or doing exercises than

studying about that matter. But why is it so? This question can be answered in context of

Game-Based Learning & Educational Game Design. Now what is a video game?

A video game is one in which a virtual scenario (e.g., virtual world, some simulation,

puzzle etc) is presented to the player. The player of the game has to reflect his/her

thinking into that scenario by choosing some actions provided in the Game to get desired

result. If the expectation is not met the player tries again. But the Game should be

interesting enough so that the player will get encouragement to try it again and again

until desired result is achieved. If this type of approach is used for educational purpose

then it will help in learning also. So in properly built educational game, learner will get

involved into the given scenario to find a solution or to achieve the goal. While searching

for a solution learner will also need to be able to relate her action and the outcome of those

actions. In this way the skills of the learner will improve. Some examples of game-based

tutors are given below.

2.1 Examples of Game-based Tutors

2.1.1 System 1

Paul J. Diefenbach[6] mentioned about commercial game development at Drexel Univer-

sity. The author said that while building a game some aspects like fun, strategies, actual

8

gameplay, the way in which the story of the game is to be presented to the player etc. are

generally overlooked. These are very essential for the making of the game. One should

not get confused by considering list of game features as the fun part of the game. Instead

the fun parts of the game are the aspects of the game through which one can fulfill the

sole purpose of enjoyment. Similarly some times the beginners make games with an ab-

stract idea, they may have total knowledge about the story line of the game, even they

know the modules to be built, but often it is the case that the actual gameplay i.e. the

way in which the game is to be presented to the player is often neglected which causes

problems. Third, one should firstly choose how to convey the game to the user. Some

common way like animation, comic-like representation, machinima, text format etc have

been mentioned in the article.

2.1.2 System 2

System mentioned in Pablo et al.[12] had some interesting features built in it. The most

important one is how assessment rules should be applied. User should be assessed with

respect to the choices made by her. Suppose there exist many path from start point to end

point. Different path provides different situation/environment to users. Activities of user

should be checked each time. Different possible activities may differ in their desirability

in some particular scenario. So an action made by user in a situation should be rewarded

with respect to the most desired activity in that scenario. Negative assessment was also

discussed. Negative assessment can restrict a user from doing random activities again and

again.

2.1.3 System 3

Features of two tutor generators have been mentioned by Viswanathan et. al.[16]. First

one is model-tracing tutors. It focuses upon the underlying process through which user

arrives to a state. Second approach, namely constraint based tutoring, does not focus

into the fact that how user has arrived to a state, instead it focuses upon whether the

constraints by which the states are defined have been satisfied or not. The Constraint-

Based Model Tutor(CBMT) is built using JavaCC(Java Compiler Compiler). Relational

database had also been used to implement the Constraint-Based Model Tutor and it does

not depend upon any programming language. This tutor provides each user same set of

problems but with different sets of data. In Model-tracing Tutors(MT) a knowledge-base

9

has been used instead of constraint-base. The knowledge base is generally a collection of

rules. In the implemented tutor Java Expert System Shell(JESS) has been used. In the

tutor if a user gives informations about some later problem states then the system detects

that some earlier goals have not been satisfied so the current evaluation will be canceled

giving the notification of something went wrong.

2.2 Principles for Game Based Carrom Tutor Design

What are the ideal characteristics of an educational game? Maja et al.[11] mentioned that

an educational game should be a fusion of pedagogical aspects and game. Also the game

should be motivating enough such that a learner keeps on trying over and over to complete

the required objective to make an advancement into the game scenario. Inherent property

of a learner is to relate the situation presented in Game with real world scenario. If this

property of a learner can be exploited in context of Game-Based learning then it can

be a great asset to education. Interactivity is another important feature of Game-Based

learning. Kirkpatric mentioned that ‘Positive reactions may not ensure learning, but

negative reaction almost certainly reduces the possibility of its occuring’(Harold et al.,[8]).

Curiosity should also be present in the Game. Curiosity can be maintained by periodic

inclusion of new informations into the scheme else the learning will become monotonous.

The problems or situations given in the Game should be challenging also. The difficulty

of these tasks should be increasing with the increase in levels.

According to Maja et al.[11] & Pablo et al.[12], first step to build an educational game

is identifying pedagogical aspects. In other words it can be said that this first step is the

answer to the question �What do we want to teach?� In this Game-Based Carrom

Tutor the main aim is to teach sophisticated Carrom-skills to improve learner’s carrom

playing techniques. Next question is �Why do we want to teach this subject?� The answer

to this question is to fill the absence of a good Carrom Teaching Tutor in the midst of

numerously available Carrom-Games in the web. Practical implementation of advanced

skills and some of the intermediate skills are generally learned by watching an expert

playing live. But witnessing such events are quite uncommon in real life. The main aim

of this project is to teach various carrom skills through animations and textual descriptions

and presenting some board situations to the learner such that the learner can relate some

skills and can apply them to achieve the given objectives. This approach is somewhat

similar to the constructivist approach, which tells about learning by making sense of

presented material by attending to relevant informations, reorganizing it and connecting

10

it to what one already knows.

Next step is presenting the scenario to the learner. Main objective of Game-Based

Carrom Tutor is to build application to teach various strategic and playing skills through

demonstrations, exercises, to evaluate users responses to scenarios and to provide allusions

whenever needed. Learner will be provided an interface where she can see different skills

related to carrom and then the learner’s knowledge will be tested against practice exercises

with varying difficulties.

Adding assessment is an important step in building educational game. Every situa-

tion given to learner should have multiple ways of solving it to achieve the desired goal.

Assessment involves analysis of learner’s activities which results in change of the given

scenario. Learners activities should be evaluated against the best possible solution(s) for

each scheme. Assessment procedure should limit learners from trying exhaustively. To

reflect this property into assessment deductions should be there for wrong and random

choices. Designer should create the assessment rules applicable for the system.

Providing tutorial support to learner enhances the scope of learning. Tutorials are

given to a learner to overcome the challenges offered by the problem which the learner

could not have solved without assistance. Tutorials are also useful when learners get stuck

while trying to progress in wrong direction. Sometimes tutorial support should be given

to the user as feedback of the action taken by her. Tutorial support is a great way to

increase understandability which leads to learning.

All of these above mentioned features of Game-Based Learning and Educational game

have been considered for designing this Game-Based Carrom Tutor.

11

Chapter 3

Carrom Tutor 1.0

Carrom Tutor 1.0 is basically a web application to teach various carrom skills and their

applications to user.

3.1 Design of the Tutor

Design is one of the foremost concerns for building a system. Design of a system is done

keeping several factors in mind. As an example different perspectives like Educational

perspective, software designing perspective etc. were considered during Carrom Tutor

1.0 ’s designing.

3.1.1 Educational technology perspective

‘How people learn’ is the main concern of educational technology. Some educational

technology principles were adhered to build Carrom Tutor 1.0. Educational technology

principles which have only been applied in Carrom Tutor 1.0 are described below. Princi-

ples which are common in Carrom Tutor 1.0 and Carrom Tutor 2.0 have been discussed

in 5.

� Recall level questions and Understand and apply level exercises accord-

ing to Bloom’s taxonomy : Bloom’s Taxonomy classifies human thinking in six

cognitive levels of complexity. Revised Bloom’s taxonomy has following six cognitive

levels.

12

1. Recall

2. Understand

3. Apply

4. Analyze

5. Evaluate

6. Create

Two types of exercises are given in Carrom Tutor 1.0, one is recall level exercise

and the other is practice exercise. In recall level one recognizes and recalls facts

which she has gone through before. In these exercises an animation of a particular

skill is shown to the user and she has to identify which skill is it. There are multiple

options provided to users and they just have to click on the button to give their

answer. Practice exercises present a set of board situations to learners in which they

have to apply skills and strategies which they have learnt previously to finish the

game and achieve more points. These exercises cover understand and apply level

principles of Bloom’s taxonomy. In understand level of complexity, learner grasps

the meaning and the concepts behind any task. Afterwards the learner should be

able to explain and interpret those learnt concepts. Knowledge obtained in recall

and understand level is used/applied in new apply level situations. Every exercise

offers different board situation to the learners. Learner needs to apply her skills and

suitable strategies to play in it.

� Scaffolding [5] : Scaffolding is a teaching strategy in which the instructor helps

the learner while the learner executes some task. While doing this task the learner

faces some difficulties. Instructor’s role is to support the learner to overcome these

obstacles. Scaffolding helps a learner to have concrete ideas about the actual prob-

lems faced during performing a task and their solutions. More about scaffolding and

how it is applied in Carrom Tutor 1.0 has been described in dissertation written by

Mayur Katke[9].

3.1.2 Design Perspective

At the very beginning the decision was to provide related exercises after each demo to

teach the learner about the use of that particular carrom skill. But in this approach a

learner can always try to find the scope to play the particular technique learnt from the

13

respective demo. In this way the thinking process of a learner will become constrained to

some selected techniques. For this reason it was decided later to show all demos to the

user in one place and then provide exercises in another place as general exercises which

will test the skills of a learner, gathered from all the demos and the prior knowledge she

has.

Options selected for Carrom Tutor 1.0 ’s design and reasons behind choosing

them

At the index page of Carrom Tutor 1.0 user will be given the options to view demo, play

exercises etc. In exercises, user has options for selecting a striker’s position, coin and the

portion of the coin to be hit by striker. After selecting these three options player can see

the animation of that shot in the given space. While playing a shot on real carrom board,

player always positions the striker correctly first and once it is placed player aims at the

portion of coin where she should hit to pocket it. Therefore instead of showing dotted

line of striker’s path, selecting the portion of coin to hit was considered as better option

as it is very close to the carrom playing style of any player. Implementing the selection of

coin’s sector would have been very difficult if player is given the freedom to choose sector

according to her wish. To avoid this a large circular image with twelve sectors, designated

by twelve buttons as numbers for representing a single portion of coin, is presented in the

interface. Player selects the sector of coin to hit by clicking the assigned button(number)

on this large circular image.

3.1.3 Architectural view of Carrom Tutor 1.0

At the beginning of Carrom Tutor 1.0 user can select to go for either demos or exercises.

In demo page a list of available demos, along with their categorization, will be displayed

to user. After user clicks on any one of those demos, corresponding demo of that carrom

skill will be displayed to user along with the skill’s description. In exercise page user will

be shown a list of practice exercises. As user selects any of these exercises, corresponding

page for that exercise will get loaded. While playing an exercise user has to select striker

position, sector of the coin she wants to hit from a given set of options. If the selection

is feasible in terms of pocketing a black coin then the animation of that shot is shown to

user, otherwise some messages is shown about the error in selection. In practice exercises

user has to pocket all black coins in a row without giving opponent a chance to play.

14

Activity diagram of Carrom Tutor 1.0 has been given in dissertation written by Mayur

Katke[9]. Game based learning principles, described in chapter 2, were also incorporated

to enhance learning.

3.2 Implementation

Implementation is one of the integral part of a project. Implementation of the project

started after the overall design of the project had been finalized. While implementing

this project, preliminary emphasis was to find the suitable platform & tools to build

this Tutor. Various technological platforms as well as tools have been tried to find the

best possible suitability for implementation. Some of these tools & platforms have been

taken into account for the actual implementation and rest of them are discarded due to

mismatch with the scope of this project. Some selection guidelines have been mentioned

by Paul J. Diefenbach[6]. Some tools like Unity, OpenGL, Java Server Pages etc. were

considered for developing, but were rejected due to mismatch with various development

constraints. Carrom Tutor 1.0 was built using Html, CSS, Macromedia Flash MX - trial

version & Java Script. Html and CSS are being used for creating the web pages and

making them attractive to user. While Java Script is responsible for implementation of

internal logic related to user response and corresponding action taken etc.

Macromedia Flash MX - Trial version

This tool is mainly used for creating flash animations. While making the animations

many layers were created for each object. A time line is given in this tool to manipulate

objects efficiently. Producing animations using this tool is relatively easy, but the process

of arranging the layers, timing the activities in those layers are some what tricky. All

animations used in Carrom Tutor 1.0 are created using this tool.

HTML

HyperText Markup Language(HTML) is a type of markup language which is used to create

web pages and provides many options which are called Html elements to manipulate the

structure of the web pages according to one’s need.

The Demo.html page offers the scope of watching different Carrom skills and their

15

descriptions to user. In this page at the left side different Demo skills along with their

classifications according to execution difficulties have been presented. At the right hand

side of the page Demo shots are displayed by showing corresponding animated .gif files. In

the middle there are some text description about each Demo shots. In the Demo page at

the top portion there is a div which has the required links to Home and Exercise. The next

div is the main portion of the body of this page. This div has been subdivided into three

different divs. These three divs occupy 20%, 25% and 55% of the total horizontal width of

the screen respectively from left to right. In the subsequent part of this report these three

horizontal divs will be referred as left, middle & right for ease of understandability. This

distribution has been followed for rest of the pages to standardize the overall appearance

of pages.

In Recall.html the left div shows exercise names as list and in the middle multiple

choices have been given to the user, as possible answers to the question, but only one of

them is correct. In the right div animations are displayed. Links to other pages have

been mentioned in the div.

More description about HTML implementation can be found in dissertation written

by Mayur Katke[9].

CSS

CSS is responsible for the designing of the pages and their appearances to user. A file

named mystyle.css has been created to store all CSS properties used for this project and

it has been included in all .html pages to reflect those modified properties.

In Demo.html, Exercise Page.html, Exercise i.html and Recall.html the options (it can

be for exercise or demo shots or input selection for exercises etc.) are displayed as list

with some particular appearance properties. General list properties used in mystyle.css

for this project is given on the next page.

Afterwards each list item is considered as a html - button. Then in mystyle.css different

classes of different buttons have been created with different properties to distinguish

between their actions. Later appropriate Java Script functions have been invoked using

onclick property of buttons. Example related to buttons can be seen in dissertation

written by Mayur Katke[9].

16

#navcontainer ul
{

margin: 0;
padding: 0;
list-style-type: none;

}
#navcontainer a
{

display: block;
color: #F3C;
background-color: #036;
width: 11.1em;
padding: 3px 12px 3px 8px;
text-decoration: none;
border-bottom: 1px solid #006;
font-weight: bold;

}
#navcontainer a:hover
{

background-color:#060;
color:#FFF;
transform: scale(1.05) translateZ(0);
text-shadow: 0 1px 1px rgba(0,0,0,.3);
-webkit-border-radius: .5em;
-moz-border-radius: .5em;
border-radius: .5em;
-webkit-box-shadow: 0 1px 2px rgba(0,0,0,.2);
-moz-box-shadow: 0 1px 2px rgba(0,0,0,.2);
box-shadow: 0 1px 2px rgba(0,0,0,.2);

}
#navcontainer li li a
{

display: block;
color: #FFF;
background-color: #0C3;
width: 9em;
padding: 3px 3px 3px 17px;
text-decoration: none;
border-bottom: 1px solid #0F6;
font-weight: normal;

}

Java Script

Java Script handles the main part of the system implementation. It interacts with the

user inputs and changes the web page contents accordingly. Java Script code for a web

page is embedded at the very beginning of it’s html page. For Demo.html a function

change(num) has been created which takes an input value according to the user’s chosen

demo shot. This input value is used to find a match in a list of switch cases. After a

17

match is found, corresponding functionalities change some specific part of the html using

innerHTML property. This innerHTML is known as HTML DOM which provides

the facility for accessing and manipulating HTML documents. The right div(where the

animations of shots are shown) has been assigned id = �content� and the middle div

has been assigned id = �skill�. Function change() changes the content of these divs to

appropriate content (i.e., animation and text) depending upon the input taken.

In Exercise i.html, the main functionality of displaying the proper animation according

to the user inputs is managed by a function named Play(). Some variables, namely coin,

sector, striker, have been used to store the current choices of user. While user clicks on a

particular option for coin, sector & striker, setcoin(), setsector() & setstriker() functions

are called respectively to set the current value of these three parameters. While user

clicks the Play button it invokes Play() function to show the corresponding animation or

feedback. Instances of setcoin() & setstriker() from Exercise 2.html are given on the next

page.

 <p id="listHead">Choose Coin</p>

 <button class="button" id="save"

onclick= "setcoin(1);setvalCoin(’Coin 1’)">
Coin 1</button>

 . . .
 . . .

<p id="listHead">Choose Striker Position</p>

 <button class="button" id="save"

onclick="setstriker(1);setvalStriker(’Striker 1’)">
Striker 1</button>

 . . .
 . . .

In these pages the id of right div is �gif�. Clicking of Play button takes the current

values stored in different variables and starts executing the Play() function. Some part

of the Play() function is given on next page. This function checks values of different

variables and flags, then according to those values it examines different conditions given

18

in the program to display appropriate animation or message. In this function innerHTML

is used to change the animation of the rightmost div and setTimeout() function has been

used to provide time delay wherever necessary. Frequent usage of alert boxes has been

made to display the messages.

function Play()
{

Gif=document.getElementById("gif"),
GifContent = Gif.innerHTML;
if(coin==2 && striker==1 && sector!=3 && flag==0)
{

if(sector==2 || sector==4){
choice=100;

}
else{

choice=2;
}

}
if(coin==2 && striker==1 && sector==3 && flag==0)
{
choice=6;

}
.
.

}

Here choice 2, choice 100 lead to two different error messages with some point deduc-

tions. On the other hand choice 6 changes the contents of rightmost div using innerHTML

and displays convenient animations.

3.3 Demonstration

This chapter gives a rough sketch of Carrom Tutor 1.0. Index page displays five blocks

with different names. Once user uses mouse to hover upon them, some text description

telling about the possible contents of them shows up. User can explore different pages

containing demo, exercises, related documents, game rules and about the developers.

Demo page is shown in the figure 3.2. List of demos for different skills are listed at the

leftmost div. These skills are also divided into three categories basic, intermediate and

19

Figure 3.1: Index page

advanced. If user clicks upon any of these buttons then the corresponding demo will be

shown to the right most div, which shows the picture of a carrom board. A few words

about those skills also appear whenever the corresponding button is pressed.

Figure 3.2: Demo page

Exercise Page.html (Figure 3.3) displays list of practice exercises at the left. At the

20

right most div practice exercises get loaded. In the middle portion of the page some

general instructions have been given so that user does not face difficulties while playing

the exercises.

Figure 3.3: Exercise page

Figure 3.4 shows the general structure for the page of recall level exercises. At the left

side of this page exercises are presented in listed form. In middle div choices for each

exercises have been presented. If any recall exercise button is clicked, a demo will be

shown to user in right most div. Middle section of this page contains a set of possible

answers. If user clicks the right option then she will be congratulated by system else will

be asked to try again.

Figure 3.5 shows the structure of Exerise ith page. Left div displays options for striker

position and the coin to hit. Middle div shows a circular image which represents coin.

It is divided into 12 sectors, each having a clickable button. Below this image there is a

speech box which stores options chosen by user. Rightmost div displays the animation of

some specific shots.

21

Figure 3.4: Recall exercise page

Figure 3.5: Exercise 2

3.4 User Experiment

Description of user experiment done for Carrom Tutor 1.0 has been described in this

section. Firstly the sample ,i.e. desired audience, then data collection procedure has been

mentioned. Later analysis of the collected data has been given.

22

3.4.1 Sample

Any one who has a basic knowledge about carrom and played carrom game few times can

participate in the user experiment. Seven users participated in Carrom Tutor 1.0 ’s user

experiment. They were basically beginners and intermediate in carrom.

3.4.2 Data Collection Methodology

The experiment has been conducted in two phases. In first phase user was asked about

her interest, expertise in carrom. Some complex board situations were given to her and

asked which shots she wants to play. In second phase user is allowed to interact with the

system in a step by step manner. Again those board situations were presented to her to

check the change in her thinking process about that board situation. More details about

data collection methodology can be found in dissertation written by Mayur Katke([9]).

3.4.3 Data Analysis and Results

SUS analysis[2, 4] have been used to check the usability of Carrom Tutor 1.0. SUS

analysis asks 10 questions to check any system’s usability,attractiveness etc. These ten

questions and their responses from users are summarized below. The first question asks

about the willingness of user to use this system in future. The surprise was that all users

“agreed” to use this system in future. This result is quite motivating for the initiative.

All most all of them think that this system will help to increase their knowledge in

Carrom. Question 2 & 3 enquire about the simplicity of Game-based Carrom Tutor.

Most of the users “disagreed” with the statement that the system was complex to use.

Remarks of the type “Too simple and lucid” were given by some of them. Question 4 asked

whether the user needs the help of a technical person to use the system or not. Some users

“strongly disagreed” while the rest “disagreed” about the necessity of technical assistance.

Next two questions were about how well the system is integrated and whether too much

inconsistency is present in the system or not. Responses given to us were mixture of

“neutral”s and “agree”s for the integration aspect. All most all of the users “disagreed”

with the statement about the presence of too much inconsistency. Most of the users

“strongly agreed” or “agreed” with the statement of learning the system quickly. Though

some responses were given saying that it might take some time for the beginners to get

used to with the system. When asked about whether the system is cumbersome to use or

23

not the answer were of the type “strongly disagree” or “disagree”. Some suggestions for

proper arrangement of the instruction were given. Whether a user was confident enough

or not while using the system is asked in question 9. Given answers range from “neutral”

to “strongly agree”. Some confusion about the presentation of the exercises were noted.

Last question asks if one needs a lot of prior knowledge about the domain to interact

with the system or not. All most all of the users “strongly disagreed” or “disagreed” on

the necessity of having vast prior knowledge. Average SUS score for Carrom Tutor 1.0

is 77.14 out of 100. A SUS score of 68 represents average usability. So Carrom Tutor 1.0

has a significantly higher score in terms of it’s usability. Each SUS analysis question and

their average responses from users have been shown in figure 3.6. Integers ranging from 1

to 5 denotes Strongly Disagree, Disagree, Neutral, Agree and Strongly Agree respectively.

For an example let’s consider the first column of figure 3.6. This column shows the average

response given by users for the first question which asks whether the user wants to use

this system frequently in future. Score of 4 means “agree”. So the users agreed to use

this system in future frequently. Similarly other questions’ average score can be seen from

the respective columns.

Figure 3.6: SUS feedback

24

Chapter 4

Motivation for Carrom Tutor 2.0

Initially the tools and technological platforms for implementing Carrom Tutor 1.0 were

not decided. Some initial experimentations were done over several possible choices. Game

engine Unity and 3D graphics software Blender were studied for checking the suitability

with required design of the tutor. The plan of using any of the two game engines for

implementation was dropped because game engines are very vast and learning to use

their functionalities takes more time. Also the design was very simple as compared to

game engines’ functionalities. Secondly for creating graphical representation of carrom

board and coins some basic programming in OpenGL was done. But implementing whole

system in OpenGL is very difficult, as controlling the movements of objects following the

laws of physics is very challenging to implement in OpenGL and it might deviate from the

scope of the project. Later, to create the animation of shots Macromedia Flash MX

was chosen because with some set of images on timeline, animations can be generated

in this tool easily. Animations of all shots and exercises used in Carrom Tutor 1.0 are

produced using Macromedia Flash MX.

Choice of language for programming or web application designing is one of the main

steps in implementation. Suitable language should be chosen on the basis of sufficiency

provided to the objective by its functionalities and on the basis of developers’comfort

level while working with it. Programming languages like Java, PHP, C++ were con-

templated for building a good interface for tutor with animations. But as discussed in

3.2, implementation of Carrom Tutor 1.0 was started in JSP . Displaying the animations

of shots and taking inputs from user were implemented into the system, but there were

some problems while changing the contents of web pages dynamically in JSP. So, the first

25

exercise was implemented completely using the brute-force approach in which a separate

web page was created for each shot played in the exercise. Most of the designing part of

code was redundant in this exercise and for each button you click or any action you do

separate web page was getting loaded in browser.

Carrom Tutor 1.0 offers a set of pre-decided positions for striker to play with. Moreover,

all possible shots from those pre-decided positions were not shown to user. If user selects

a shot, may be or may not be optimal shot, which pockets user’s coin then only that

shot is displayed to user using animated .gif s. So in Carrom Tutor 1.0 certainly there

exists an issue with flexibility given to user. Apart from user flexibility, the way in which

exercises were presented to user needed to be improved. In other words Carrom Tutor

1.0 delivered the knowledge in a crude manner. There is a need to enhance the tutoring

procedure by keeping the original flow used in Carrom Tutor 1.0 intact.

4.1 Design Decisions for Carrom Tutor 2.0

Blender Game Engine [7] has been used to create second version of the tutor, namely

Carrom Tutor 2.0. It is actually a game which teaches carrom skills to user. User

can play any shot from all possible and permissible striker positions. User can also select

the desired force to release the striker. In this game user can experience actually what

happens inside a real game if a shot is played. There was a problem of creating more

and more .gif s as the complexity of the exercise goes up. In a game like situation there

is no need to create any thing in advance, every thing happens in-game. Carrom Tutor

1.0 offers a top view of the carrom board while playing the exercises. If the actual user’s

view of the board during real life carrom game can be presented in the tutor then the

experience will become more intense. This 3D view has been incorporated with the new

system. Carrom Tutor 2.0 adjusts the camera view according to the mouse movement of

user.

Carrom Tutor 2.0 offers animated videos instead of gif s. These videos demonstrate

different carrom skills. In Carrom Tutor 2.0 exercises have been designed inside the

game-like environment. Two types of exercises have been designed. First one is practice

exercises. Practice exercises generally test user’s understandability about the skills shown

in demo. Complex exercises test user’s carrom skills in relatively complex carrom board

26

situations. In a complex exercise, shots played by user are assessed against the optimal

possible shot(s) that can be played in the given situation. User will be given scores based

on the shot(s) played by her. User can browse through different carrom game strategies

and game rules in Carrom Tutor 2.0.

27

Chapter 5

Design of Carrom Tutor 2.0

Design of a system involves it’s underlying architecture, structural components, user in-

terface etc. Some of the design principles were mentioned in 3.1. Some common design

principles were adhered to build these two tutors. Details of these design principles are

given below.

5.1 Educational Technology Perspective

Main aim of this Game-Based Carrom Tutor is teaching various carrom skills and strate-

gies ranging from basic to advanced to users through an interactive tutoring environment.

Once the system is experienced by a learner, the expectation will be that for a given

board position she should be able to make decisions about the necessary choices of skills

and strategies to be executed in order to get more advantage in game. Design of Carrom

Tutor 2.0 is based on cognitive theory of learning to facilitate the learning of user. While

constructing this tutor the main focus was upon human learning process and features to

be used to promote learning. At the beginning, the user is shown demos of various possi-

ble carrom skills using videos and some text explanations embedded in it. Next practice

exercises for those skills shown in demo will be given to user so that user can learn to

properly execute those skills. Then the user will be provided with board situations in

form of complex exercises in which she has to apply playing as well as strategic skills to

pocket all coins without giving a chance to the opponent and while doing this she will

earn some points. Carrom Tutor 2.0 is built by exploiting different features of learning

theories and principles. These are given below.

28

� Cognitive Model of the Mind :

An abstract representation about the working procedures of human memory is given

by Cognitive model. There is sensory memory, working memory (short-term mem-

ory) and long-term memory in human brain and the information is processed in

them with same order. Working memory is limited in capacity but speed of pro-

cessing is very fast. On the other hand long-term memory has infinite capacity and

permanently stores informations, but information loss may happen if those informa-

tions are not used for a long time. Relevant information is processed, organized in a

coherent structure in working memory and then transferred to long-term memory.

Working memory is limited but it has separate channels for processing visual

and verbal material. In Carrom Tutor 2.0, while teaching a particular skill a video

of that skill is shown to user. Text instructions for a skill is provided inside the

corresponding video of that skill in order to utilize both visual and verbal channels

effectively in learning. This leads to active processing of the information and better

learning.

Active processing of informations becomes difficult when information provided

to working memory exceeds the limit. Memorization capacity can be increased

by Chunking i.e. grouping small & related pieces of informations into larger,

meaningful units. This task of Chunking is simplified in the tutor when user is

learning skills by watching videos.

Skills that are taught to users through demo are also divided in three categories

namely basic, intermediate and advanced.

� Modelling & Sequencing [5] : Modelling means learning by observing. The

basic idea is to show learner how a task is performed by an expert. Later the

learner tries the same. Sequencing focuses upon proper arrangement of different

aspects of the subject. Proper arrangement of the learning activities helps learner

to grasp the ideas easily and making the conceptual model in mind. Details about

these two principles can be found in dissertation written by Mayur Katke[9].

29

5.2 Perspective of Game-Based Learning

Desired features of Game-based Learning have been discussed in chapter 2. Firstly to

make the game interesting the User Interface has to be attractive. Next step is making

the game motivating. To make it exciting some reward scheme can be included into

the game aspect of the system. There should be a highest score, and the user will be

rewarded with some score for each successful action. In the end one can compare her

achieved score with the highest possible one. If expectation is not met then she can try

again. As it was mentioned in Design perspective two different types of exercises have

been designed in Carrom Tutor 2.0. Practice exercise are relatively smaller exercises in

which user has to apply a particular skill shown in corresponding demo. Instead of using

point system, feedback texts have been used as reward. If a user executes the desired

skill in a practice exercise and manages to pocket her coin then the system displays text

to congratulate the user. If the opposite happens then the Carrom Tutor 2.0 reloads the

board situation. Sometimes feedback is given to user as a hint to apply the respective skill

if user is unable to perform that specific skill. Now let’s talk about the reward system for

complex exercises. Evaluation of user selected shots have been incorporated in complex

exercises. For each of these complex type exercises highest score is fixed to 100, i.e. a

user can score at most 100 points in any complex exercise. Each successful shot of user

will reward her some points. Shot played by user has to be compared against the best

possible shots that can be played in that situation. If a user plays a shot which pockets

desired coin(s) but the shot is non-optimal then the system will reward relatively less

points to user. At the end of a complex exercise if it is the case that user successfully

finished the exercise but the total points earned is less that 100 then user will understand

that somewhere her shot selection(s) was/were non-optimal. So she can try again to score

maximum points.

The game should be presented to the user in such a way that she finds it easy to relate

with real world scenario. To satisfy this necessity the type of options given to the user

to execute a carrom-shot should have similarities with executing the same in real Carrom

board. User has been given complete flexibility to play any shot in a given situation. To

match the experience of playing a shot in Carrom Tutor 2.0 and on real carrom board it

was needed to incorporate user’s view of the carrom board. If the actual view of a carrom

board from a user perspective can be offered then one can relate it with the actual carrom

game experience. 3D view of the carrom board has been provided for this purpose. In

reality when one is playing carrom then she aligns herself at different angles with respect

30

to the carrom board to play different shots for the ease of executing those shots correctly.

In Carrom Tutor 2.0 user only has to move the mouse to get the desired view of the board

from different angles. Secondly, user can place the striker at any permissible position on

the baseline. Ever on the fly coin detection has been included in the system. After user

plays a shot it should be checked that if any of the coins stops on baseline or not. If it

is the case then user should be restricted to place striker on a position which conflicts

with that coin’s position. Thirdly, the angle of seeing the carrom board is also applied on

striker to match the rotation of the striker with mouse movement. Lastly, user can also

select the force by which she wants to hit a coin. A power slider is shown on-screen to

help user selecting the desired force. This slider goes up an down. When user performs

second mouse click then the force proportional to slider’s height is applied on the striker.

Proper feedback should be displayed to the user. As mentioned previously in practice

exercises feedbacks have been given to either congratulate or to provide support to user. If

user successfully finishes a complex exercise with optimal shot selections then the system

congratulate her mentioning her optimal shot seletion.

Properties of this system matches the functionalities of Model-tracing Tutor men-

tioned by Viswanathan et al. [16]. Model- tracing Tutor is a type of Intelligent Tutoring

System. Model-tracing Tutor emphasizes upon the undertaken steps through which a user

arrives at a particular situation. Carom Tutor 2.0 also emphasizes upon the fact that

whether user has executed optimal shots or not. Tutorial support should also be given in

form of feedback message to the user whenever necessary.

5.3 Design perspective

Two types of exercises, practice exercises and complex exercises, have been designed for

better learning. Each tutorial video is followed by practice exercise(s). Complex exercises

which is given separately, are relatively large exercises and complex. These exercises

generally have more than one possible way to finish. Users will be awarded with marks

according to the path taken to finish the exercises. Details about how to play shots are

described in dissertation written by Mayur Katke[9].

31

Initially it was decided that there will a bar having divisions for different force values.

User needs to click on the desired value and the respective force will be applied on the

striker. But now a days most of the games use a power slider which oscillates between a

given highest and lowest value. And it is more attractive. For this reason this oscillating

power slider was considered for Carrom Tutor 1.0.

To assist user, if the actual direction of striker can be shown then it will be very useful

for them. In order to do this a red line is displayed which indicates striker’s path after

it’s release. Now we can extend this concept further. If the path along which the striker

will get deflected after first hit is also displayed then also it will become helpful. But this

will reduce the complexity of the exercises. One can take a shot by seeing the striker’s

trajectory only. There will be no need to visualize the shot in mind before taking the

shot. In real life carrom game there is no such type of assistance. So it was finalized to

restrict the visualization of striker’s path up to first target.

5.4 Architectural view of the Tutor

User can navigate to tutorials or can try complex exercises after starting the tutor. In

tutorial screen user can watch the demo of her desired skill. After watching the video user

will be presented with practice exercise(s) similar to the situation presented in the video

of that skill. User can either complete the practice exercises of a skill or navigate back to

the tutorial screen. If user can not apply the desired skill in practice exercises then the

exercise will get reloaded. In some practice exercises some hints are also given in form of

feedback to remind which skill to apply.

In exercise screen a set of complex exercises have been given. These exercises requires

two or more shots to be played successfully to get finished. These successful shots need

to be played consecutively. In other words user has to pocket all black coins in a row

without giving opponent a chance. Failure to do this will result in scene reload. In these

exercise users will be given scores according to her performance. Activity diagram of

Carrom Tutor 2.0 is given in figure 5.1.

32

Figure 5.1: Activity Diagram for Carrom Tutor 2.0

33

Chapter 6

Implementation

As mentioned in Chapter 4, there were several concerns about how the system should be

presented to the user. One of those main concerns was offering more flexibility to user

so that user can play any shot according to her wish. Feel of a real carrom board game

should be present. A game-like environment was needed to be built. These requirements

can be met if the system is implemented using a Game Engine. Now a days games are

generally built using Game Engines. Game engines provide very interactive environments

to create games. Newer game engines allow to add more features inside the game. There

are many game engines available on the web. Blender Game Engine[7] is one of them and

it is an open-source software. Blender is also one of the most popular open-source game

engines available.

Carrom Tutor 2.0 has been created using Blender Game Engine. Implementation

using Blender has three main parts - object modelling, logic editing and python scripting.

Modelling allows to create, transform and manipulate game object properties efficiently.

Logic bricks and python scripting are used to implement functionalities in the game.

Screen-shot of Blender ’s user interface has been given in figure 6.1.

6.1 Modelling

Modelling means creating objects, transforming them according to need, setting up their

properties etc. Blender provides very interactive layers to do modelling. Carrom board is

made up with cubic mesh objects. While interacting with the tutor one can see that the

34

Figure 6.1: User interface of Blender Game Engine

carrom board is inside a room. This room has been designed by creating plane objects

and unwrapping some texture images onto them. The power slider bar, and other objects

which are displayed to the screen, have been attached to the camera object so that they

can move along with the camera. More details have been stated in 9.

6.2 Logic Editor

Blender Game Engine has a scripting layer called Game Logic. Game logic has three

main parts Logic Bricks, Properties and States. Most important part of this Game Logic

is Logic Bricks. Blender Game Engine provides a very interactive graphical interface

named Logic Editor. Logic Editor provides rectangular logical blocks to create the de-

sired functionalities inside the game engine. For these rectangular blocks Logic Editor is

commonly referred as Logic Bricks. We can set up a collection of logical components for

each game objects. These logical components can be combined with each other to get the

desired functionalities out of the system. There are three types of components sensors,

controllers and actuators. Logical connectors are there to establish connections between

these trio. Sensors are related with sensing specific situations/properties etc. Sensors are

triggered when something desirable happens according to the functionalities set into the

sensor(s). When a sensor is triggered it sends out positive pulses. Moreover these pulses

35

can be set up as continuous mode or instance mode. Controllers are required to get the

outputs from sensors and fed them either to actuator(s) or to a python script attached

with that corresponding controller. Actuators are there to perform certain tasks set up

by users. A lot of functionalities can be performed by proper use of Logic Bricks. Some

important modules done in Logic Editor are described below.

1. Designing UI

The user interface consists of many scenes created inside the game. Different game

objects are needed to create these scenes. Some objects act like buttons in these

scenes where users has to click to interact with. More details of these game objects

are described in 9. In the start scene, namely startScene, there are sensors attached

with each objects created for the user to get interact with. ‘start sensor’ is one such

object in start scene. Mouse clicks on these clickable objects are captured with two

sensors of type ‘Mouse ’ . One of them sends positive continuous pulse when mouse

is hovering over that object using ‘Mouse Over’ event while the second one gives a

positive pulse instance when mouse is clicked. There is another ‘Property’ sensor

which triggers a positive pulse when the value of variable named ‘animationProp’

has False value. These three sensors are attached to an ‘And’ controller, that means

when these three sensors send positive pulses together then only the corresponding

actuators execute the desired function assigned to it. Two actuators are connected

with the ‘And’ controller, one of them is of type ‘Action’ type and responsible for

showing a small animation created with respect to the scaling of the object it is

attached with. Second actuator is a ‘Scene’ type and responsible for changing the

scene to another scene named secondScene. Figure 6.2 given below describes it’s

Logic Editor settings.

Basic, Intermediate and Advanced tutorials are shown in three different scenes

namely basicScene, intermediateScene and advancedScene. Logical components and

their interactions in basicScene have been described here as an example. In this scene

there are three objects reacting with user to get the choice of tutorial difficulty(basic,

intermediate, advanced). If user clicks ‘Basic’ then this scene displays the basic

carrom skill options by changing their ‘visibility’ property. Let’s describe it a little

further. Consider the first option under basic tutorial, Straight shot. There is a text

object displaying ‘Straight shot’ . Underneath it there is a plane object which is

connected with Logic Brick sensors. The text object is a child object of this plane.

This plane object is named as ‘straightShot’ and it is set invisible. It is associated

36

Figure 6.2: Logic bricks for start scene

with two global variables in this scene namely basicVisi 1 and animationProp 1.

Both of these variables are set False initially. There are two ‘Property ’sensors

associated with the value stored in basicVisi 1. If the value is false(default value)

then corresponding ‘Visibility’ actuator makes it’s children, i.e. text object, visible.

If basicVisi 1 is True then there are two actuators, one of them makes both of the

plane and text visible. Second actuator makes the plane(parent) invisible. As a

result only the text object remains visible while the parent is not. basicVisi 1 is

set to False when user selects an intermediate or advances tutorial option and is

set to True when basic is selected. Value of animationProp 1 variable controls the

animation shown while clicking over it in a similar fashion as described in previous

paragraph. Similarly other options under basic type have been created. Logic Editor

panel of basicScreen is shown in figure 6.3

2. Designing exercises

In the practice exercise scenes Logic Bricks have been used along with striker, coin

and various other objects. Let’s talk about the striker’s logic bricks first. There are

two ‘Always’ type sensors connected with two different ‘Python’ controllers. One of

them is controlled with striker straightShot 1.py. Inside this script it is checked if

the required conditions are met or not after user plays a shot. If it does not met then

‘Scene’ actuator connected with it reloads the same scene(here straightShot 1 scene,

as Straight shot skill is still being considered as example to describe the scenario).

There is a ‘Keyboard’ sensor which detects whether space-bar is pressed or not. If

space-bar is pressed then it sends a positive pulse for a very short duration. This

37

Figure 6.3: Logic bricks for basicScene

functionality is achieved by setting the Tap property this sensor. This sensor is

connected with a ‘Scene’ actuator via an ‘And’ controller. If space-bar is pressed

then control goes back to basicScene. Please refer to the figure 6.4.

Figure 6.4: Striker’s logical components for practice exercise

38

Several sensors, controllers and actuators are used for the coin in starightShot 1

scene. Initially value 100 is stored in a global variable ‘health coin1’ . There are

four ‘Collision’ sensors to detect whether the coin has collided with any of those

invisible spheres positioned at pockets of the carrom board surface. Actually it is

being detected whether the coin has collided with the properties of those spheres

or not. In Blender Game Engine collisions can be detected between an object and

some properties of another object rather than between two objects. These ‘Collision’

sensors send out a positive pulse for a short duration when the collision occurs with

the sphere properties(namely point 1, point 2, point 3 and point 4) as their Tap

property is set. These four sensors have been connected with an ‘Or’ controller.

This controller connects to an ‘Action’ actuator. Now here is a little trick. As

the coin collides with a sphere the Z -axis location of the coin is decremented by 2

Blender units to smooth out playing experience. It is done by setting the motion

type as simple motion and setting the Z -axis value to -2 and setting the L(stands for

local) property of ‘Action’ actuator(figure 6.5). Next we are detecting the collision

between the coin and the planes underneath the pockets. This is done in the similar

fashion described before. After the coin is collided with any of those planes 50

is deducted from ‘health coin1’ . Later we are checking if a coin is pocketed in a

particular hole or not using it’s ‘health coini ’ value. Also collision(s) with the four

borders are detected for some other use. Logic Editor panel for coin is shown below

in figure 6.5. All logical components in figure 6.5 were not expanded. Unexpanded

sensors have same structures like the expanded one just above them.

Complex exercises listed in exerciseScene are somewhat big and consist of some

intermediate steps. When user pockets one coin then the resulting scenario after

pocketing one coin should be represented to user. Let’s consider about coin 1. It is

desired that user pockets it at the top left hole. So after the coin collides with the

hole 1 the positive pulse is feed to a ‘Game’ actuator. Setting the option to Save

bge.logic.globalDict in this actuator does the state save. It saves the overall scenario

of the whole game into a global dictionary when it is triggered. After the state is

saved into the global dictionary we need to load it to recreate that exact scenario.

An ‘Actuator’ type sensor is used. This type of actuators give positive pulse when

some certain actuator gets activated. Here it senses whether the actuator related

with saving state into global dictionary is triggered or not. If yes then it loads the

content of global dictionary using the ‘Game’ actuator associated with it. Scene

can also be restarted using ‘Scene’actuator. After user successfully completes the

exercise control will be redirected to exerciseScene. This is shown below in figure

39

Figure 6.5: Logic bricks for coins

6.6.

Logic editor panel for Dependencies between intra-Scene objects & Displaying

videos and presenting practice exercises are presented in dissertation written by

Mayur Katke[9].

6.3 Python Scripting

Python is used as scripting language in Blender game Engine. This game engine provides

a very interactive layer for creating and editing python scripts. Usage of Python program-

ming enhances the functionalities and vastness of Blender. All game object properties can

be manipulated using python scripts. Python scripts manipulate Blender ’s data in same

fashion as the UI and other layers do.

40

Figure 6.6: Usage of global dictionary in logic bricks

Blender provides a python scripting layer called “Text Editor”. This editor is very

interactive. It makes creation and testing of a .py script very easy. We can test the

correctness of a python script just by pressing the ‘Run Script’ button in the Text Editor

panel. Python scripting in Blender provides the freedom to control game objects and get

the desired functionalities from them. Scripts are used in “Python” controllers in Logic

Editor panel. Sensor components in Logic Editor feed positive pulses to these “Python”

controllers, when triggered. These controllers run the scripts attached with it after getting

positive pulses. Actuators can also be connected with these type of controllers to perform

specific actions.

To accomplish the desired features of the system, Carrom Tutor 2.0, python scripts were

used upon game objects like striker, coin, empty object and text objects. This is done

in almost all of the scenes. Many scripts were written and two scripts were downloaded

from blender communities to enhance the tutor. Some main modules of these scripts are

given below.

1. Power slider

41

After user clicks for the first time during any exercise, power slider gets activated.

It moves up and down between its highest and lowest value continuously. The

power slider is made by using ten mesh objects of type ‘plane’. The height of the

power slider is varied by showing different numbers of planes with respect to time.

This visualization of varying number of planes is done in a way so that they follow

sine wave characteristics. A variable “timer” is used to make those planes visible.

This power slider is attached to the camera so that it moves according to mouse

movement. Python code for the first three slider planes is given on next page.

if ((striker["slider_enabled"]) and (not striker["striker_released"])):
half_time_period = 70
time_period = 2 * half_time_period

striker["timer"] += 1
if(striker["timer"] == time_period):

striker["timer"] = 1
v = (sin(3.141592*(striker["timer"]/half_time_period) -
1.570796)+1)*500

if(v > 0):
striker["slider_1"] = True
striker["force_multiplier"] = 5

else:
striker["slider_1"] = False

if(v > 100):
striker["slider_2"] = True
striker["force_multiplier"] = 10

else:
striker["slider_2"] = False

if(v > 200):
striker["slider_3"] = True
striker["force_multiplier"] = 15

else:
striker["slider_3"] = False

2. Displaying videos

In tutorial scene, user can see the list of basic, intermediate and advanced skills.

A video showing how to play a particular skill is shown to user when he clicks on

button for that skill. After video, two board situations are given to user one by one

for applying the same skill. Firstly various properties of screen, which is actually

a plane object, were set properly to nullify malfunctioning. A python controller is

there for every skills in list to play the video using script. This script is downloaded

42

from www.tutorialsforblender3d.com[3]. This script gets the owner of the controller

on which it is applied. Then it changes the material of that object according to

the value stored in the variable used for material(for an example “materialBasic”

in case of basic skills). Path of the videos corresponding to each skills have been

stored in different global variables named “moviei”. This script plays the respective

video when a button is clicked by finding the file using the path variable. There is

an optional boolean variable used named “loop”. If it’s value is True then the video

gets played repetitively during the given delay. It is set to false in this case.

3. Scoring in exercises

Each exercise given in the tutor tests how well user can apply the skills. Evaluation

is present in the system. Complex exercises have a total point of 100 to be scored. In

these exercises user has two or more black coins to pocket without giving opponent a

chance. Score given to user depends upon the shot chosen. If optimal shot is chosen

then user is awarded with maximum points. This optimality of shot selection is

done by detecting collisions among striker, coins, border of board. Each coin has

a property “health coini”(where i is the coin number assigned for implementation)

which is set to 100 initially. When finally a coin is pocketed then this value is

changed to 1000 so that points can be assigned to score object. A snippet of code

is given below which handles the pocketing of coin1 and coin3 in Exercise 1 and

assigns points.

Python code snippets related to Changing users view according to mouse

movements, Showing strikers path as a line, Strikers orientation and

applying force have been given in dissertation written by Mayur Katke[9] with

explanation. Script named “mousemove.py”[13] captures mouse movement func-

tionalities and applies that on camera. Regarding this blender community[1] was

also helpful. This script has been downloaded and used from blender community[13].

Details have been given in dissertation written by Mayur Katke[9].

43

score_text.text = str(score_text["points"]) + ’/100’

if (coin1["health_coin1"] == 1000 and own["flag1"] == False):

if (coin3["health_coin3"] != 1000):

if (coin2["touch_coin2"] != 0):

score_text["points"] += 75

own["flag1"] = True

else:

score_text["points"] += 40

own["flag1"] = True

if (coin3["health_coin3"] == 1000 and own["flag2"] == False):

score_text["points"] += 25

own["flag2"] = True

44

Chapter 7

Demonstration

Carrom Tutor 2.0 starts with startScene, which gives three options to users; Start, How

to and Quit. “Start button” loads the second scene with other options. “How to” but-

ton displays some instructions about playing shots in exercises. Figure 7.1 shows the

startScene with instructions.

Figure 7.1: Start screen

Figure 7.2 given below shows the second scene loaded after clicking on start button.

There are four buttons in this scene, viz. Tutorial, Exercise, Strategies and Game rules.

45

The corresponding scenes will be loaded after clicking on these buttons.

Figure 7.2: Second screen

The tutorial scene has three buttons namely Basic, Intermediate and Advanced. Carrom

skills are divided in these three categories and corresponding list of skills is displayed after

clicking on these buttons. Figure 7.3 shows the tutorial scene with list of advanced skills

displayed in it. If user clicks on any of these skills, the corresponding video of skill is

shown in right portion of figure 7.3. This video gives instructions and a demo of skill to

user. After watching this video user is automatically directed to corresponding practice

exercise scene in which user can try to play the same shot from the video. When user

plays this correctly, second practice exercise scene gets loaded where user can apply same

skill.

Exercise scene has the list of exercises provided to users for testing their skills. User is

directed to the corresponding exercise scene after clicking on any button. Each exercise is

a complex board situation. User must pocket her coins without giving opponent a chance

to get maximum points. Score out of hundred is shown at the right corner of scene. It

is updated after each shot played by user. If user does not pocket all coins then same

exercise scene is reloaded for playing. Second exercise is shown in figure 7.4.

46

Figure 7.3: Tutorial screen

Figure 7.4: Screen shot of second exercise

Carrom board game strategies for singles and doubles are listed in the scene “Strate-

gies”. Also carrom game rules are given in scene “Game Rules”. Links for these scenes

are provided in second scene.

47

Chapter 8

User Experiment

Description of user experiment done for Carrom Tutor 2.0 has been described in this

chapter. Firstly the sample ,i.e. desired audience, then data collection procedure has

been mentioned. Later analysis of the collected data has been given.

8.1 Sample

Any one who has a basic knowledge about carrom and played carrom game few times can

participate in the user experiment. Eleven users participated in Carrom Tutor 2.0 ’s user

experiment. These group of users were mixture of beginners, intermediates and experts

in carrom.

8.2 Data Collection Methodology

Pre-test was also conducted for Carrom Tutor 2.0 by telling the user to play complex

exercises prior to the exposure with the tutorials and corresponding practice exercises.

After going through complex exercises user was advised to experience the whole tutor step

by step starting from tutorials then practice exercises and in the end complex exercises.

This was done to check the level of difficulty faced by user while going through complex

exercises with and without the help of tutorials and practice exercises. Additionally each

user was given an online carrom application, Carrom King [10] to play with. This

application is similar to other carrom games available online. Later users were asked to

48

compare between Carrom Tutor 2.0 and Carrom King. Half of the users were asked to

play with this Carrom King application before interacting with Carrom Tutor 2.0 and

rest of them were instructed to do the opposite.

Users were asked to give answers to the following questions given in a form after she is

done with the experiments.

� User’s exposure to Carrom

� How many new Carrom skills have you learnt?

� How was it playing the exercises before watching the demos?

� How was it playing the exercises after watching the demos?

� How diffucult was it to relate the demos with the shots needed to play?

� Compare with other Carrom application you played with

The data collected so far was for checking the learning gain. For usability testing of the

system, SUS (System Usability Scale) analysis was done using [2, 4]. In this analysis, five

point likert scale questions were asked to users. These questions were asked for checking

accessibility, efficiency, effectiveness and attractiveness of the user interface of system.

8.3 Data Analysis and Results

SUS analysis was done to check usability, attractiveness, efficiency of Carrom Tutor 2.0.

Details about the questions asked in SUS and their responses are discussed in dissertation

written by Mayur Katke[9]. Average percentage of SUS score for our Carrom Tutor 2.0

is 84.09. A SUS score of 68 is generally considered as average. Carrom Tutor 1.0 has an

average score of 77.14(grade B). Carrom Tutor 2.0 has an average score of 84.09(grade

A). According to the average SUS percentage Carrom Tutor 2.0 also has surpassed it’s

predecessor. It can be inferred that user flexibility, interface design, content design play

important roles in a tutor design. Figure 8.1 given below plots average rating of each

question.

49

Figure 8.1: SUS analysis of M & M Carrom Tutor

Now let’s think about the reliability and validity of this result. It has been seen that

SUS provides reliable result[15]. SUS questions are arranged in a very proper way. Few

questions are also repeated but asked from a different angle. These types of questions

help reducing the effects of random answers given by people. It has also been observed

that SUS can produce reliable data from a very very small set of users. Validity is how

well the usability of a system is measured by SUS analysis. SUS can efficiently measure

the effectiveness, attractiveness of a system[15].

Following information has been gathered from the form mentioned in 8.2. All users

stated that playing the complex exercises without interacting with tutorials and practice

exercises was difficult. Similarly it has been mentioned by the users that complex exercises

seemed easier after watching the tutorials and practice exercises. When asked about

how many new carrom skills they have learnt after using the tutor, answers vary in

between 3 and 6. Relating the demos with the exercises were easy for the users too.

So it is prevalent that learning is happening while user interacts with the tutor. Users

also provided very good and motivating feedbacks to our tutor compared to other carrom

applications available online. Essence of those feedbacks is listed below,

� very interactive tutoring system

50

� presence of 3D/user view is an added advantage

� interface(GUI) is far better compared to Carrom Tutor 1.0 and other applications

� feel of a real carrom board while playing the exercises

� other applications does not provide any tutoring so this tutor encourages learning

� rotation of striker with mouse movement is very good

� line to draw striker’s path is very useful for smooth handling of striker

51

Chapter 9

Challenges

After Carrom Tutor 1.0 it was needed to build a better system which will provide more

flexibility and control to user. The experience while interacting with it has to be more

vivid. So in order to give more flexibility to user experience it is needed to create a

game-like environment. For this purpose Blender Game Engine was used. Learning the

functionalities of a game engine is itself a challenge. It took substantial amount of time

to get used to this game engine. Initially some basic modelling was tried to get a feel

of how the objects can be transformed, what are the different property types and their

functionalities etc. First step of making Carrom Tutor 2.0 was creating the carrom board.

Cutting four holes(pockets) from a cubical mesh object was some what tricky. Boolean

modifier was needed to do this difference operation. After the carrom board surface is

made an unexpected problem arose. Coins(cylindrical objects) were not passing through

those holes though the holes were created properly. After a lot of experimentation finally

it was found that there is an issue with the bounding box of the carrom surface. As

the object created for carrom board was a cube so its bounding box was also having

the same shape of a cube. Even if after doing the boolean difference the object’s shape

had been modified but the bounding box remained same. Though the board surface

was changed as it should have been but there was an invisible bounding box which was

not letting the coins to pass through. Another problem was there regarding the carrom

board surface object. Boolean difference operation also modified the surface near to those

pockets a bit. It created a more complex mesh around the holes resulting the coins and

striker to bounce while in motion. A different approach was needed. Later the carrom

board surface was made by three cubic mesh objects. Holes were created by applying

boolean difference operation on small cubic mesh objects with cylindrical mesh object

where circular diameter was equal with sides of those small cubes.

52

Though Blender takes care of applying physics laws on objects but setting them up

properly is difficult. Firstly, the type of objects are needed to be set. Moving objects

like striker, coins are set as dynamic object. Dynamic object follows the laws of physics.

Additionally python scripts can also be used to manipulate the behavior of these dynamic

objects. Carrom board surface, border etc. are static objects. Static objects generally

remain at a fixed position. Next is setting different parameters of these objects so that

object behavior matches with reality. Parameters like friction coefficient, damping coeffi-

cient, elasticity etc. were very crucial for real-like visualization of carrom shots. Different

set of values of these parameters were tested. After many trial and error testing, a set of

values was finalized. This finalization of values was done completely based on intuition

and experience of playing carrom. This set of values gave more realistic result among the

tried sets of values.

Logic Editor is one of the integral part of Blender Game Engine. But at the begin-

ning it was troublesome to apply it properly. There are many different types of sensors,

controllers and actuators available as logical components. To understand what each of

these components does took a significant amount of practice. Each component also has

some different properties of it and altogether it makes some what complex scenario during

implementation. As an example if basicScene is considered, one can see the numerous

interconnections between different logical components. Implementation in Logical Editor

gets more and more complicated as the required functionalities of a scene increases. Ini-

tially it was hard to create the interconnections among intra-scene objects due to lack

of knowledge. At first exercises were created as different .blend files. External .blend

files can be invoked in a different .blend file, but there is a problem if in-game save/load

is required. If the external .blend file terminates then the control does not return back

to the .blend file from which it is called. So this created a problem implementing the

system. Later it was decided to create scenes in one .blend file rather than creating and

calling many external .blend files. Saving/loading is performed using the ‘Scene’ actuators

and using python scripting. Proper usage of the global dictionary to save and load the

situations also required some practice.

One of the most challenging part in creating Logic Bricks is managing numerous con-

nections in a relatively complex scene. If the basicScene is taken for an example, there

are numerous connections established between logical components. In basicScene there

is a screen object. Property sensors of five basic skills are connected to it’s five differ-

ent python controller. There is one delay sensor and one property sensor for each basic

53

skills that are connected to five different and controllers. Those and controllers are also

connected to different scene actuators. For each basic skill there are four property sen-

sors and two mouse sensors that are connected to three visibility, two action and three

property actuators via four and controllers. Basic, intermediate, advanced plane objects

have four sensors, two controllers. These are connected to actuators of each basic skill.

Approximately in basicScene there are 150 logical components and 150 logical connec-

tions in total. It becomes very confusing to handle these many logical connections in a

single panel. There are 46 scenes in Carrom Tutor 2.0. Images of Logic Editor panel for

basicScene is given in figures 9.1, 9.2, 9.3.

Building this tutor was a great experience altogether. It prized the knowledge of how

a game engine is used to make a game and the versatility of its power.

54

Figure 9.1: Logic bricks for basicScene, part 1

55

Figure 9.2: Logic bricks for basicScene, part 2

56

Figure 9.3: Logic bricks for basicScene, part 3

57

Chapter 10

Conclusion and Future Work

10.1 Conclusion

Main aim of Game Based Carrom Tutor is to increase knowledge about carrom game

in people. As mentioned earlies there is no such game based carrom tutor available on

web. Carrom Tutor 1.0 was the first initiative towards achieving this goal. This system is

actually a web application, which teaches various carrom skills to users. It also tests user’s

learning through exercises. Though it was not robust when user flexibility, attractiveness

etc. are considered. According to it’s usability study, it can be seen that irrespective

of having some shortcomings this system performs well when learning is considered. To

overcome the shortcomings of Carrom Tutor 1.0, Carrom Tutor 2.0 was built. Carrom

Tutor 2.0 is very much interactive. User can place striker at any place along the base line,

can execute any shot according to her wish with desired force. This is what people do in

actual carrom board game. One places striker at a suitable position along the baseline,

thinks about which shot to perform and then play the shot with appropriate force. Also

the demos of various carrom skills were redesigned to offer a better feel and also to increase

the scope of learning. Carrom Tutor 2.0 has better user feedback, higher SUS score etc.

If game based learning is considered then it can easily be seen that design of a system

plays a very important role. The system should be interactive, interesting, attractive,

diverse. Strategies to present the system to user play essential roles in it’s success.

58

10.2 Future Work

Presently the number of complex exercises given in the tutor is less. It is expected that

more exercises will be added very soon.

There are few unexpected behavior experienced in Blender which are yet to be dealt

with. One of these is related to collision bound. This problem introduces some unwanted

behavior in some objects. Solving these issues will make the tutor run smoother in future.

It will be beneficial if a full carrom game against artificial intelligence can be incorpo-

rated with this tutor. Having this feature will surely enhance the scope of applying learnt

skills.

59

Bibliography

[1] Blender community. http://blenderartists.org.

[2] Sus analysis application. http://www.mohini.0fees.net/iit/welcome.
php.

[3] Tutorials For Blender 3D. http://tutorialsforblender3d.com.

[4] John Brooke. SUS - A quick and dirty usability scale. Digital Equipment Corporation,
1986.

[5] Allan Collins. Cognitive Apprenticeship, chapter 4, Handbook of the Learning Sci-
ences. Cambridge Univ. Press, 2006.

[6] Paul J. Diefenbach. Practical game design and development pedagogy. Published by
IEEE Computer Society, pages 84–88, May/June 2011.

[7] Blender Game Engine. http://blender.org.

[8] Richard Wainess Harold F. O’Neil and Eva L. Baker. Classification of learning
outcomes: evidence from the computer games literature. The Curriculum Journal,
16(4):455–474, December 2005.

[9] Mayur Katke. Carrom tutor : Playing strategies and impementation. Master’s thesis,
IIT Bombay, June 2014.

[10] Carrom King. http://twoplayergames.org/play/719-Carrom_King.
html.

[11] Imgrad Schinnerl Maja Pivec, Olga Dziabenko. Aspects of game-based learning. In
Proceedings of I-KNOW ’03, Graz, Austria, pages 6–20, July 2003.

[12] Iván Mart́ınez-Ortiz José Luis Sierra Baltasar Fernández-Manjón Pablo Moreno-Ger,
Daniel Burgos. Educational game design for online education. Computers in Human
Behavior, pages 2530–2540, 2008.

[13] Riyuzakisan. 3d art - game design. http://riyuzakisan.weebly.com.

[14] Tutor. http://en.wikipedia.org/wiki/Tutor.

[15] Measuring usability. http://measuringusability.com/sus.php.

60

http://blenderartists.org
http://www.mohini.0fees.net/iit/welcome.php
http://www.mohini.0fees.net/iit/welcome.php
http://tutorialsforblender3d.com
http://blender.org
http://twoplayergames.org/play/719-Carrom_King.html
http://twoplayergames.org/play/719-Carrom_King.html
http://riyuzakisan.weebly.com
http://en.wikipedia.org/wiki/Tutor
http://measuringusability.com/sus.php

[16] David Rosenthal Viswanathan Kodaganallur, Rob Weitz. Tools for building intelli-
gent tutoring systems. Proceedings of the 39th Hawaii International Conference on
System Sciences - 2006, pages 1–10, 2006.

Ai

	Contents
	List of Figures
	Introduction
	Background and Related Work
	Examples of Game-based Tutors
	System 1
	System 2
	System 3

	Principles for Game Based Carrom Tutor Design

	Carrom Tutor 1.0
	Design of the Tutor
	Educational technology perspective
	Design Perspective
	Architectural view of Carrom Tutor 1.0

	Implementation
	Demonstration
	User Experiment
	Sample
	Data Collection Methodology
	Data Analysis and Results

	Motivation for Carrom Tutor 2.0
	Design Decisions for Carrom Tutor 2.0

	Design of Carrom Tutor 2.0
	Educational Technology Perspective
	Perspective of Game-Based Learning
	Design perspective
	Architectural view of the Tutor

	Implementation
	Modelling
	Logic Editor
	Python Scripting

	Demonstration
	User Experiment
	Sample
	Data Collection Methodology
	Data Analysis and Results

	Challenges
	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

