

Discovering Dependencies in Courseware
Repositories

Nidhi Malik

Dept. of Comp.Sc. and engg.
Indian Institute of Technology Bombay

Mtech Defense
July 24,2008

● eLearning is a type of education in which
medium of instructions is some computer
technology.

● huge amount of data available on web in form of
wikis, tutorials, blogs etc.

● different types of tools available from simply
viewing the content to create lessons with the
help of authoring tools.

Problem Definition

● Given a set of lecture files from some content
repository, give the user the most relevant
lecture module to study for his query.

● Suggest pre-requisites and follow-up modules
also.

● We will also present the dependency graph for
the whole course.

Outline of the Report

● Literature survey

● Overview of Solution approaches

● Implementation Details

● Evaluation of the System

● Feedback module

● Summary

Related Work

● Different types of LMS available

– Atutor : available open source, being used
internationally, translated into over fifteen
languages.

– OLAT : provide forums, quizzes, chats etc.
– Other LMS available open source are Moodle,

SCORM, eFront etc.

● Some universities/institutes have made thier
content available free of cost. For example:
NPTEL, MIT's OCW. Stanford University's
eLearning initiative.

● Different search engines available based on
factors such as model,type of information etc.

● Some of the open source search engines are
Nutch, Egothor, Isearch etc.

Workflow of the System

Demo

● 6 courses from NPTEL repository
● Workflow as shown in previous slide
● Dependency DAG generated
● 4 different heuristics evaluated

Parsing

● Lucene indexes only text data.

● Pdfbox – java library

● Nutch uses PDFbox for extracting pdf files to
text.

● also allows to merge pdf documents, creating
images etc.

Indexing

● Lucene is an free open source information
retrieval library written in Java.

● Lucene is an API.

● Allows to print the index using LUKE.

● provide keyword statistics such as count of the
keyword, frequency of occurrence, highlighting
the term etc.

● basic classes of Lucene are indexwriter and
indexsearcher.

Architecture of Lucene

NPTEL, content repository

● We have taken Computer Networks course from
NPTEL with 40 pdf files in it.

● Indexed using Lucene.

● Got indexed printed using Luke.

● Get pre-requisites and follow-up files for each
file.

● For every file, we have count of each keyword in
each file.

● We have topkwords of each file.

Refining counts

● We need to refine the counts of keywords as
these don't help to identify importance of
keywords.

● Mean Threshhold - values less then mean are
discarded.

● Percentage Threshold

● helps to get better counts and gives better
results than mean threshhold.

● For a given file, with the help of refined counts
we will get

– the topkwords for this file
– for each word in the topkwords, we will get

the topkfiles.
● Now, we need to order these files in order
to get the pre-requisites and follow-up files.

Heuristic 1

● Take count of each Keyword in each file.

● For each file get topKkeywords

● For each keyword sort the file entries and get
unique files

● Assign weight to each file based on sum of
counts of all keywords appearing in it.

● Order the files according to their weights.

● For files whose index = 1 to i − 1; get the topK
files according to weight.

● For files whose index > i;get the topK files
according to weight.

Heuristic 2

● Take count of each Keyword in each file.

● For each file get topKkeywords.

● For each keyword get topKfiles.

● Sort the file entries and get unique files.

● For each file take position of the file for each
keyword in topKfiles.

● Assign weight as w = K-p+1.

● For files whose index = 1 to i − 1; get the topK
files.

● For files whose index > i;get the topK files.

Heuristic 3

● Take count of each Keyword in each
file.(percentage threshold).

● For each file get topKkeywords

● For each keyword get topKfiles

● Sort the file entries and get unique files

● Assign weight to each file based on the average
of sum of counts of all keywords appearing in it.

● Order the files according to their weights.

● For files whose index = 1 to i − 1; get the topK
files according to weight.

● For files whose index > i;get the topK files
according to weight.

Heuristic 4

● Take count of each Keyword in each file.

● For each file get topKkeywords

● For each keyword get topKfiles

● Sort the file entries and get unique files

● Multiply all keyword entries of the ith file to
those of the others.

● Take sum of the resulting counts.

● For files whose index = 1 to i − 1; get the topK
files according to weight.

● For files whose index > i;get the topK files
according to weight.

● We have also kept records of the heuristics for
the simplest counts(without any threshold) and
the meanThreshold counts.

Generating DAG

● The graph is generated with the help of DOT.

● DOT is a graph description language, part of the
Graphicviz package.

● After applying the different heuristics, we got
pre-requisites and follow-up files for each file.

● We captured all the dependencies from our
program in a .dot file.

● digraph graphname {

– a -> b -> c;
– b -> d;}

● Several attributes can be applied to control
aspects like shape, color etc. in the graph.

● Currently, we are showing 3 pre-requisites and
3 follow-up files for each file.

Refining Graph

● Initially, we showed all dependencies captured
from the program.

● The graph becomes messy and it is difficult to
figure out the requisites for each file.

● For easy visualization, we refined the graph as
follows:

● There exists a link between X and Y iff X is
a pre-requisite for Y and Y is a follow-up of
X.

Evaluating the System

● To evaluate the performance of the system, we
have compared results generated by our
program with those of the program generated
results.

● We created goodness metric for each course.
We have created goodness metric separately
for pre-requisites and follow-ups.

● P
i
 denotes the no. of pre-requisites generated

by the expert.

● F
i
 denotes the no. of follow-ups generated by

the expert.

● X
i
 denotes the no. of pre-requisites generated

by the program.

● Y
i
 denotes the no. of follow-ups generated by

the program.

Course T0 - F0 T0 - F1 H1 H2 H3

Networks

AI

SE

Embedded

OS

SAD

76.87 77.49 78.95 78.54 79.16

60.56 69.91 73.57 72.76 73.17

87.1 90.67 88.69 83.92 85.11

81.15 77.97 85.11 76.38 78.96

80.15 81.74 86 77.77 78.57

92.85 92.85 90.85 91.85 92

Feedback

● Quiz Question bank

● separately stored questions for each topic

● objective in nature

● subject matter expert can view the statistics
about the quiz such as how many learners
appeared for it, %age of correct and incorrect
answers.

● subject matter expert may change the
curriculum depending on the feedback.

Summary

● Tried out all heuristics for 6 different courses.

● For some of the requisites there were no expert
answers.

● After getting expert answers, we can make
DAGs for any number of courses.

References

● Weimin Ge and Yuefeng Chao. Implementation
of e-learning system for unu-iist.2005.

● Khan. Managing e-learning: Design, delivery,
implementation and evaluation. 2005.

● Erik Hatcher and Otis Gospodnetic. Lucene in
Action (In Action series). Manning Publications
Co., Greenwich, CT, USA, 2004.

● Mit open courseware http://ocw.mit.edu.

● National programme on technology enhanced
learning http://www.nptel.iitm.ac.in.

● http://en.wikipedia.org/wiki/List_of_search_engines

● http://en.wikipedia.org/wiki/OLAT.

● http://en.wikipedia.org/wiki/DOT_language.

http://en.wikipedia.org/wiki/List_of_search_engines
http://en.wikipedia.org/wiki/OLAT
http://en.wikipedia.org/wiki/DOT_language

