Sequential and Parallel Reachability Analysis of
Concurrent Java Programs

A Thesis Submitted
in Partial Fulfillment of the Requirements

for the Degree of

MASTER OF TECHNOLOGY

by

Raghuraman Rangarajan

u"”b, oS
© of Techno"

to the
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, GUWAHATI
MARCH, 2000

Abstract

Concurrent programs are more difficult to test than sequential pro-
grams because of their non-deterministic behaviour. Reachability anal-
ysis is an important and well known tool for static analysis of concurrent
programs. It involves the systematic enumeration of all possible global
states of program execution. However, traditional algorithms to gener-
ate all reachable states of a concurrent program take exponential time
and space.

Apportioning is a technique which is based on the idea of classifi-
cation of program analysis points as local (having influence within a
class) and global (having influence outside a class). Apportioning uses
this classification to abstract away some analysis points, thus reducing
the size of the reachability graph generated.

This report presents two algorithms for the generation of the reach-
ability graph of a concurrent Java program. The algorithms are imple-
mented for some of the apportioning-based reachability analysis tools.
The results generated are used to verify the efficiency of apportioning
as a tool for reachability analysis of concurrent Java programs. The
first algorithm is a sequential implementation of the apportioning tech-
nique, while the second generates the reachability graph in parallel.
While the sequential algorithm is used to demonstrate the reduction in
the exponential space complexity of a reachability graph, the second
algorithm attempts to mitigate the time complexity.

Contents

1 Introduction

2 Literature Review

2.1 Overview.
2.2 Work done by Richard Taylor
2.3 Work done by Charles McDowell
2.4 Work done by Sridhar Iyer

Reachability Analysis of Concurrent Java Programs

3.1 Overview.
3.2 Analysispoints
3.3 Algorithm for reachability graph generation
3.4 'The apportioning technique
3.5 Advantages of apportioning
3.6 Some apportioning-based tools

36.1 OMEGA
3.6.2 ALPHA
363 BETA

3.7 Illustrative example
3.8 Error detection,

Experiments Using Apportioning

4.1 Overview e e e e
4.2 Concurrent Java programs
4.3 Implementation issues
4.4 Input and output formats
4.5 Module structure,

10
11
13
15
16
16
16
17
18
21

4.6 Experimental results 28

4.6.1 Producer-consumer problem 28

4.6.2 Dining-philosopher problem 28

4.6.3 Database application 30

4.6.4 Trafficproblem 32

4.7 Discussion 34

5 Reachability Graph Generation In Parallel 35
5.1 Introduction L. 35
5.2 Algorithm oo 36
5.3 Explanation, 37
5.4 Example: producer-consumer problem 42
5.5 Experimental results 47
5.5.1 Producer-consumer problem 47

5.5.2 Dining-philosopher problem 47

5.5.3 Database application 49

5.5.4 Traffic problem 50

5.6 Discussiono 50

6 Conclusion and Future Work 51

i

List of Tables

4.1
4.2
4.3
4.4

5.1
5.2
9.3
5.4
9.5

5.6
5.7

2.8

2.9

Experimental results for the producer-consumer problem.
Experimental results for the dining philosophers problem.
Experimental results for the database application.
Experimental results for the traffic simulation.

Tabularized form of the CFG of a producer/consumer.
Reachability graph of a single thread of producer.
Reachability graph of a single thread of consumer.
Timing comparison for the producer-consumer problem
(ALPHA).
Timing comparison for the producer-consumer problem
(OMEGA).
Experimental results for the producer-consumer problem.
Timing comparison for the dining philosophers problem
(ALPHA).
Timing comparison for the dining philosophers problem
(OMEGA).
Experimental results for the dining philosophers problem.

5.10 Timing comparison for the database application (ALPHA).

5.11 Timing comparison for the database application (OMEGA).

5.12 Experimental results for the database application.
5.13 Timing comparison for the traffic problem (ALPHA). . .
5.14 Timing comparison for the traffic problem (OMEGA). . .
5.15 Experimental results for the traffic simulation.

iii

28
30
31
32

43
43
44

47

48
48

48

48

49

49
49

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5

5.1
5.2
9.3
5.4
2.5
2.6

Apportioning technique. 5
Taylor’s algorithm. 6
Reachability graph generation. 11
Apportioning technique. 15
CFGs for the producer-consumer problem. 19

Illustration of ALPHA on the producer-consumer problem. 20

Input flowgraph format. 25
Reachability graph output format. 26
CFGs for the dining philosopher problem. 29
CFGs for the database problem. 31
CFGs for the traffic problem. 33
A barrier between two threads. 39
A deadlock condition.o 40
CFG for the producer-consumer problem (with ids). . . . 42
Representation of a reachability graph node. 44
Node generation process. 45
Error due to a deadlock. 46

v

Chapter 1

Introduction

Object-oriented programming is an approach that provides a way of
modularizing programs by creating partitioned memory area for both
data and functions that can be used as templates for creating copies of
such modules on demand [3].

Object-oriented programming allows programmers to create modu-
lar, flexible programs with possibility of code reuse. Various features of
object-oriented programming like abstraction (representation of essen-
tial features without including the details), encapsulation (the wrapping
of data and methods into a single unit), inheritance (process by which
objects of a class acquire the properties of another class) and polymor-
phism (ability to take more than one form), help in designing large and
complex programs.

A concurrent program specifies two or more processes that execute
in parallel and co-operate in performing a task [1]. Each process is a
sequential program that executes a sequence of statements. Processes
co-operate by communicating; they communicate using shared variables
or message passing. When shared variables are used, one process writes
into a variable that is read by another. When message passing is used,
one process sends a message that is received by the other.

Concurrent object-oriented programs combine both the features of
concurrency and the object-oriented paradigm.

Java is an object-oriented, multi-threaded, secure, platform inde-
pendent language. Java programs can be run in both interpreted and

compiled form. The portable nature of a Java program allows it to be
deployed across networks. Java provisions such as automatic garbage
collection and elimination of pointers makes it an easy and fast lan-
guage to learn. The object-oriented nature of Java allows programmers
to develop code that can be easily reused in other applications, while
the concurrent nature allows the development of multi-threaded pro-
grams which can be executed in parallel. These threads can access the
same global data within a class and modify it.

Designers of such software programs are faced with a number of d-
ifficult verification problems like a program entering an infinite wait
state or undesirable parallelism in the program. Hence the need for all
the classical synchronization primitives in a concurrent Java program
— locks, mutual exclusion and avoidance of deadlocks. Debugging a
concurrent Java program involves the detection of any synchronization
anomalies such as two or more processes updating the same variable
(i.e. violation of mutual exclusion), and two or more processes waiting
to acquire some resource forever (i.e. occurrence of deadlock).

Analysis of concurrent programs maybe be classified into dynamic
analysis and static analysis. Dynamic analysis involve run-time moni-
toring of the system, for re-creating the program execution. However,
monitoring introduces extraneous delays, making it difficult to recap-
ture the erroneous behaviour. Static analysis technique avoids such
problems since it does not require program execution. However, dy-
namic data and control-flow of a program cannot be handled by static
analysis techniques.

Reachability analysis is an important and well-known tool for static
analysis of concurrent programs and involves the systematic enumera-
tion of all possible global states of program execution. The control-flow
graphs of individual processes are modified to highlight the synchro-
nization structure, abstracting away other details. The complete state-
transition graph or the reachability graph is then constructed, thereby
modeling the concurrent program as the set of all possible sequences.
However, it suffers from ”state-explosion”, i.e., the number of states
generated for analysis increases with the number of concurrent threads
of execution.

A technique which tackles this drawback effectively is Apportioning.

Apportioning reduces the problem of analysing a whole program into
a number of smaller problems of individual and independent analysis
of portions of the original program. This partitioning is not merely
syntactic, but is also an abstraction of the program.

Partitioning of the program into its constituent classes is done by
taking advantage of the modular structure of the object-oriented pro-
gram. The abstraction itself is based on the idea of classification of
synchronization points. The synchronization points can be classified
as local (having influence within a class) and global (having possible
influence without a class).

This thesis attempts to experimentally verify the usefulness and the
efficiency of apportioning as a technique for the reachability analysis of
concurrent Java programs. We do this by first experimentally compar-
ing an apportioning-based tool with the traditional reachability graph
generation method, using a sequential algorithm. We then present a
parallel algorithm, which attempts to reduce the exponential time com-
plexity associated with the problem and also present experimental re-
sults for the same.

The second chapter of the thesis describes some traditional methods
of reachability analysis, while the third chapter explains the appor-
tioning technique, which mitigates the problems associated with the
traditional reachability graph generation methods. The apportioning
technique is tested using various examples. The test results are pre-
sented in the fourth chapter. The fifth chapter presents a method for
generating the nodes in the reachability graph of a concurrent Java pro-
gram in parallel. Experimental results for different examples are also
presented. The sixth chapter concludes the thesis.

Chapter 2

Literature Review

2.1 Overview

In this chapter, we review the various work done on reachability anal-
ysis of concurrent programs. We first discuss the work of Taylor, who
proposed the concurrency history technique, based on the enumeration
of all possible paths, for analysis of programs having task synchroniza-
tion.

Next we discuss the work done by McDowell, who gives an algorithm
for static analysis of parallel programs. Both the above mentioned tech-
niques can be classified as traditional reachability analysis techniques.
Both the techniques have exponential space and time complexity. We
briefly describe a technique given by Iyer to reduce the exponential
space required for reachability analysis. We discuss this technique in
detail in the next chapter.

2.2 Work done by Richard Taylor

Richard N. Taylor gave a general purpose algorithm for analyzing con-
current programs in [12]. The algorithm addressed problems such as :
how processes are synchronised, what determines when programs run
in parallel and how errors are detected in the synchronization structure.

The algorithm generates the complete concurrency history for a pro-

gram. In doing so, all possible task synchronization points are deter-
mined, all possible infinite waits are decided.

The algorithm in essence simulates the synchronization aspects of
program behaviour. The algorithm does not make any assumptions re-
garding the execution environment of the program that would influence
the computation of the concurrency states. That is, it does not take
into consideration, the number of processors, the relative speeds of the
processors, and processor time-slicing schemes.

The complexity of the analysis O(N”), where T'is the number of pro-
cesses and N is the size of the control-flow graph for any given process.
For large concurrent programs, the method will become impractical
because of its high complexity and hence, strategies for mitigating the
analysis is called for. Figure 2.1 gives a representation of the reacha-
bility graph generation.

Control Flow Graphs Reachability Graph
P1 P2
A a

\/

Figure 2.1: Apportioning technique.

C c

A brief description of the algorithm is given in figure 2.2. The algo-
rithm uses a breadth-first approach to generate all the states attainable
by the program. The algorithm starts with the initial state of the pro-
gram, and systematically enumerates all possible successors.

procedure Simulate;

Worklist :=null;
[* Pushinitial state on list and enter initial state in Unique State Table (UST) */

while Worklist not empty loop
g :=first element on Worklist;

[* States on the worklist are unexamined e ements of the UST */

for i in 1..T loop
/* Check current node intask i to seif it is possible to generate
* asuccessor state on the basis of task i’ s performing a rendezvous,
* task activation, or the like
*/
if moveable (i) then
Create anew state z, reflecting task i’s movement, as well as other
tasks as required (such asin the case of arendezvous occuring);

* z is checked against the UST */
if unique (z) then
Enter zin UST;
Push z onto Worklist;
else
enter z in duplicate state table;
end if;
end loop;
end loop;
end Simulate;

Figure 2.2: Taylor’s algorithm.

The algorithm is initialized by placing the initial state on the Worklist
and entering it as the first entry in the unique state table. During the
subsequent execution, a state is taken from the worklist and examined
in order to determine all possible successor states. Each successor state
is checked against the UST. If it is a new state it is entered in the UST
and then placed on the Worklist itself. If the state duplicates a state
already in the UST, it is simply entered in the duplicate state table and
is not examined any further. Thus the Worklist only contains states
whose successors, if any, have never been determined. When a state
is pulled off the worklist and examination determines that it has no
successors, it is then entered into the terminal state table.

Taylor also employs a partitioning approach for parceling the analysis
into biconnected components. Such an approach is applicable to pro-
grams composed of disjoint set of tasks and brings about a reduction
in the size of the reachability graph generated.

2.3 Work done by Charles McDowell

Charles McDowell has given an algorithm for static analysis of parallel
programs in [9]. This requires the determination of the reachable pro-
gram states. A program state is a set of task states, the values of shared
variables used for synchronization, and local variables that derive the
values directly from synchronization operations.

To reduce the number of reachable states his algorithm merges a
set, of related states into a single wvirtual state. Using this approach,
the analysis of concurrent programs becomes feasible as the number
of virtual states is often orders of magnitude less than the number of
reachable states.

The paper describes the reduction of the control flow graph of a
concurrent, program to the synchronization graph where only points of
synchronization are represented as nodes. From this graph a Canonical
Concurrency History Graph (CHG) is generated. In this graph, each
node describes one concurrent reachable state of the program. Each
edge corresponds to one task changing state.

McDowell uses abstraction as a method for folding many states in a
reachability graph into a single state and hence is applicable to pro-

7

grams composed of identical sets of tasks. Such an abstraction results
in a reduction in the size of the reachability graph generated.

2.4 Work done by Sridhar Iyer

Sridhar Iyer presents in [5], a technique called apportioning for the
reachability analysis of concurrent object-oriented programs. Appor-
tioning integrates two techniques for combating state-explosion, viz.,
partitioning and abstraction.

Partitioning decomposes the program into smaller components, so
that analysis of the large program is replaced by the individual analysis
of the smaller components. Abstraction hides out some pre-defined
details of the program and hence reduces the size.

Apportioning effectively tackles the exponential problem, by classi-
fication of program analysis points. It is based on the idea of classifi-
cation of program analysis points as local analysis points (LAP) and
global analysis points (GAP). A LAP is said to have influence within a
class while a GAP is said to have possible influence without a class.

The apportioning technique is explained in detail in the next chap-
ter.

Chapter 3

Reachability Analysis of
Concurrent Java Programs

3.1 Overview

A straightforward application of Taylor’s algorithm for static analysis
is unacceptable, because the amount of data that must be maintained
is O(NT), where T is the number of tasks in a concurrent program. In
case of Java, it is the number of threads created. N is a measure of the
size of the tasks. Hence, modification to the algorithm is suggested in
order to reduce the size of the reachability graph generated.

In this chapter we define analysis points in a program, which are used
to generate the abstract representation which retains only the essential
features of a concurrent object-oriented program. An algorithm for
generating the reachability graph is then presented. This algorithm
takes the control-flow graphs of a program as input and generates the
corresponding reachability graph.

Subsequently, we view the apportioning technique which mitigates
the exponential complexity of the traditional reachability analysis method
and give an example to illustrate it.

3.2 Analysis points

The possible analysis points for any method m, of a class ¢ are:

mg_entry: This corresponds to the passive state of m,, when there
is no invocation upon it. This can be an LAP as well as a GAP.

my_begin: This corresponds to the active state of m,, when it has been
invoked and just after control is transferred to it. During program
execution, the variable parameters of m, are bound to actual object
identifiers, at this point. This can be an LAP as well as a GAP.

my_return: This corresponds to the return of invocation from my,, just
before control is transferred back to its invoker. Multiple return points

are merged to form a single return point. This can be both a GAP and
an LAP.

mg_waiting_ly: This corresponds to a point just before m, invokes
the lock method of [, the lock_object for shared data d. During con-
current execution, race conditions may prevail for ‘acquiring’ l4. If /4
is already is already ‘locked’, then m, waits till [, is released. This can
be an LAP only.

my_released_ly: This corresponds to a point just after m, invokes the
release method of l;. Any one of the other methods waiting for [, may
now acquire lg. This can be an LAP only.

mg_before_invocation_o.m,: This corresponds to a point just before m,
invokes method m, of the object denoted by o, resulting in a transfer
of control to my. If m, is already invoked by some other method, then
my waits till m, returns to its entry point. This can be an LAP or a
GAP depending on the object o.

my_invoked_o.m,: This corresponds to m, having invoked m, and

waiting for its invocation to return from m,. This can be an LAP or a
GAP depending on the object o.

10

mg_after_invocation_o.m,: This corresponds to a point just when con-
trol is transferred back to m, , after the invocation returns from m,,.
This can be an LAP or a GAP depending on the object o.

3.3 Algorithm for reachability graph gen-
eration

The following algorithm ([5]) generates the reachability graph of a pro-
gram. It is called R_gen and takes 3 inputs : the set of class control-flow
graphs, the set of objects (class instances) and the initial state of the
system.

An abstract representation of R_gen is as shown in figure 3.1. C;, M
and RG stand for the control flowgraph of class 7, the control flowgraph
of the main program and the reachability graph generated, respectively.

C

| o
N
s
ko
/A

R_gen() RG
C] /

R_gen()
M R_gen()

Figure 3.1: Reachability graph generation.

11

The algorithm is given below :

R_gen(C,0,I)

C : Set of class control-flow graphs

O : Set of objects

I : Initial state

{
node_set N,; /* Nodes in the reachability graph */
edge_set E,; /* Edges in the reachability graph */
node current; /* Reachability graph node */
node set next; /* Successors of node current */

node set list; /* Nodes whose successors are yet to be determined
*

N, = list = {I}; /* Initial state */
repeat
current = list.element[1]; /* Take the first node */
list = list - current; /* Remove it from list */
i = 1; /* Begin breadth-first generation */
repeat /* For each field (method) in node current */
next = find_successors(current, current.field[i]);
repeat /* For each node in next */
If (next.element[1] ¢ N,i) then {
N, = N,U {next.element[1]};
list = list U {next} - {current};
}
/* Introduce appropriate edges into E, */
next = next - {next.element|1]}; /* remove the successor */
until (elements(next) = 0); /* For all successors */
i=14+1;
until (i = N); /* N is the number of methods in a node */
until (elements(list) = 0); /* For all nodes */

}

The function find_successors() takes the current node as input and
generates all its successors. The successors are generated with respect

12

to the following rules :

e If the current node is a m,_waiting_l; node and if the lock is open,
then acquire the lock and generate the successor node.

e If the current node is a m,_released_l; node and if the lock is
closed, then release the lock and generate the successor node.

e If the node is of any other type, then generate the successors.

3.4 The apportioning technique

Apportioning is based on the idea of classification of synchronization
points. A synchronization point in any method can be classified either
as local analysis point (LAP) that correspond to an interaction with
another method of the same object, or global analysis point (GAP)
that corresponds to an interaction with a method of a different object,
or both.

Apportioning reduces the problem of analyzing a whole program into
a number of smaller problems of individual and independent analysis
of portions of the original program. This partitioning is not merely
syntactic, but is also an abstraction of the program. Partitioning of
the program into its constituent classes is done by taking advantage of
the modular structure of the concurrent object-oriented program.

Any apportioning-based reachability analysis algorithm proceeds as
follows :

(a) Starting from an abstract representation of the program along with
a classification of its analysis points, (i) a set of reduced classes
each corresponding to a class in the program, with the GAP being
abstracted out and (ii) a reduced version of the entire program,
with the LAP being abstracted out, are generated.

(b) The reachability graphs for each of these reduced classes and the
reduced program are generated.

(c) The error to be checked (expressed as a property of analysis points),
is decomposed into a set of sub-properties, some having only LAP

13

(corresponding to the reduced classes) and another having only
GAP (corresponding to the reduced program).

(d) Each reachability graph is analyzed for the corresponding sub-
property.

A representation of apportioning is given in figure 3.2. The notations
used in the figure are :

1. GH(): method to perform GAP hiding.
2. LH(): method to perform LAP hiding.
3. RLG: method to generate the local reachability graph of a class.

4. RGG(): method to generate the global reachability graph of a
program.

: control flowgraph of class .

G

6. M: control flowgraph of the main program.
C;: reduced control flow graph after GAP hiding.
C;

": reduced control flow graph after LAP hiding.

9. R, : local reachability graph of class C;.

10. R’: global reachability graph of program.

14

GH() . RLG()
Ci1 Ci1 Re,
GH() : RLG()
C2 5P Re,
GH() ’ RLG() .
ch, c, Re.
LHO " RGG
Cy Cy 0

LH()

Y

RGG() R v

LH()

n 7
M M

RGG()

\

Figure 3.2: Apportioning technique.

3.5 Advantages of apportioning

The practical utility of the apportioning technique can be seen from
the following observations :

The complexity (number of states generated for analysis) of tradi-
tional reachability analysis([12]), is O(p?), where T is the number of
threads and p is the number of interactions for any thread. Extending
such techniques to concurrent object-oriented programs by perform-
ing additional analysis for each class, would result in a complexity of
O(c(m)™ + (p)T), where ¢ is the number of classes, m the number of
methods in each class, and p; is the number of LAP in any method.

Apportioning mitigates this complexity to O(cp]™ + pg), where p,
is the number of GAP in any method. Typically for many programs
p ~ (p + py). Although the complexity of the apportioned analysis is
exponential, the amount of reduction is also composed of exponential
terms, and is quite significant.

15

3.6 Some apportioning-based tools

Apportioning is a general technique which can be used to develop differ-
ent algorithms, based on an appropriate classification for the analysis
points. Classifying the analysis points differently before apportioning,
gives rise to tools that are safe for different sub-classes of programs.
Three such tools, OMEGA, ALPHA and BETA are discussed here.

3.6.1 OMEGA

OMEGA classifies the analysis points corresponding to global invo-
cations, i.e., analysis points of the form m,_before_invocation_o.m,,
mg_tnvoked_o.m, and mg_after_invocation_o.m,, as GAP.

All other analysis points, i.e., analysis points of the form m,_waiting_l4,
my_released_ly, m,_before_invocation_self.m,, mg_invoked_self.m, and
my_after_invocation_self.m,, belong to both LAP and GAP.

Thus, OMEGA is the representation of the traditional reachabili-
ty analysis method. OMEGA can be said to be safe for all kinds of
programs, while it is the least efficient of all the apportioning-based
algorithms developed, since no abstraction is performed.

3.6.2 ALPHA
ALPHA classifies the analysis points in any method m, as follows :
LAP: Analysis points of the form m,_waiting_ly, m,_released_ly, and
analysis points mg_before_invocation_self.m,, mg,_invoked_self.m, and
my_after_invocation_self.m,,, belong to LAP.
GAP: Analysis points of the form m,_before_invocation_o.m,,
mg_invoked_o.m, and mg_after_invocation_o.m,, where o is a variable

object identifier, belong to GAP.

The analysis points m,_begin and m,_return, belong to both LAP
and GAP.

16

ALPHA does not consider the analysis points corresponding to local
invocations of a class as effecting the global outlook of the program and
hence classifies them as LAP. Only the analysis points corresponding
to global invocations get reflected in the global reachability graph.

Hence, ALPHA can be said to be safe for all programs in which a
method does not invoke another method of the same object. This is
because, all local invocations are classified as LAP, and so any cyclic
invocation involving such invocations won’t be caught. ALPHA can
detect errors such as access to shared data without acquiring locks,
method completion before release of locks and deadlocks.

The number of nodes ALPHA generates will generally be less than
that of OMEGA, since OMEGA performs no apportioning. In the worst
case, there might be no local invocations or shared memory access in
the program, then ALPHA generates the same number of nodes as that
of OMEGA.

3.6.3 BETA

BETA relaxes the condition given for ALPHA, that a method cannot
invoke another method of the same object. It classifies analysis points
as follows :

LAP: Analysis points of the form m,_waiting_ly; and m,_released_l,,
belog to LAP.

GAP: The analysis points of the form mg_before_invocation_o.m,,,
mg_tnvoked_o.my and mg_after_invocation_o.my, where o is an object
identifier, belong to GAP.

The analysis points m,_begin, m,_return, my_before_invocation_o.m,,
mg_tnvoked_o.m, and mg_after_invocation_o.m,, belong to both LAP
and GAP.

BETA relaxes the condition given in ALPHA, and allows the reflec-

tion of local invocations in the global reachability graph. Hence, other
than the errors detected by ALPHA, BETA can also detect cyclic wait-

17

ing for return of local invocations and cyclic waiting involving a mixture
of local and global invocations.

In general, BETA will generate more number of nodes than ALPHA.
In its best case, it will generate the same number of nodes as ALPHA,
i.e., if there are no local invocations present. In its worst case, BETA
will generate the same number of nodes as OMEGA, considering the
presence of no shared memory access.

3.7 Illustrative example

We illustrate the details of the ALPHA tool using a simple variation
of the producer-consumer problem. The control flow graph of the
producer-consumer problem is given in figure 3.3.

There are three classes in the producer-consumer problem. A produc-
er class, a consumer class and a buffer class. The buffer class contains
a bounded buffer and shared variables [_first and [_last to keep track of
the bounds. The buffer class also has two methods, namely, put() and
get() which can be invoked to perform their respective operations.

The producer class contains the method produce() which in turn in-
vokes the put() method of the buffer object to put data into the buffer.
While the consumer class defines a method consume() which in turn
invokes the get() method of the buffer class.

The producer object invokes the put() method of the buffer object
to place an item, while the consumer object invokes the get() method
of the buffer to remove an item. The buffer is bounded and shared
variables [_first and [_last are used to keep track of the items. The
illustration of the ALPHA tool on the producer-consumer problem is
given in figure 3.4.

Concurrent execution may give rise to the following errors : access of
buffer data without proper locks, cyclic waiting among methods put()
and get() for acquisition of locks, and termination of consumers before
that of producers.

18

buf.put()

buf.get()

entry / begin

entry / begin

lock(l_last)

lock(l_first)

lock(l_first)

lock(l_last)

release(l_first)

release(l_last)

release(l_last)

release(l_first)

return

return

consume()

produce()

entry / begin

entry / begin

buf1.get(item)

buf1.put(item)

return

return

Figure 3.3: CFGs for the producer-consumer problem.

GAP_hiding(put()) GAP_hiding(get()) Partial local RG for class Buffer
| begn [Aa| begn | |first | 1last| putg) | get)

\L \L open | open B‘O b‘O
| look(Jast) |-B b~ lodk(lfirs) |

=<l

‘ open‘closed\B,Iast‘ b,0 ‘ ‘closed‘ open‘ B,0 ‘I_firi‘

| lock(_firs) |-Cc | lock(l_las) |

I T

‘ return FD d{ return ‘ ‘closed‘closed\ Clast ‘c,first ‘ Deadlock
LAP_hiding(put()) ~ LAP_hiding(get()) Partial global RG for the program
‘ begin FX x{ begin ‘ prod() | put() | get() | cons()

\L \L A X X a

‘ return FY y{ return ‘

o [x [x [a] [lx]x 1]

LAP_hiding(prod()) LAP_hiding(cons()) _ -~~~ .

\ e x5

N

‘ begin FAa{ begin

buf puttem) | EE | buf.get(item) | c [y ly[c]
4& e
‘ return FD d{ return ‘ ‘ D ‘ Y y ‘ d ‘

Figure 3.4: Illustration of ALPHA on the producer-consumer problem.

20

3.8 Error detection

A concurrent object-oriented program may exhibit a variety of errors
during execution, such as deadlocks, improper access of shared data,
overflow, livelocks, etc. In the context of reachability analysis a pro-
gram is analyzed for the existence of a certain class of errors, viz., errors
in the synchronization structure such as deadlocks. Analysis for errors
such as those that depend on dynamic data values (overflow), livelocks,
are beyond the scope of reachability analysis.

The implementation of this project focusses on errors that may be
captured as properties of the global state of the program execution.
Many errors such as improper access of shared data, deadlocks and
incorrect termination belong to this category.

A synchronization anomaly exists if any of the reachability graphs of
the program contains a concurrency state that has no successor and that
state is not the terminated state. A parallel access anomaly exists if in
any reachability graph there exists a state with at least two tasks such
that both are accessing a shared data and at least one is attempting to
modify it.

21

Chapter 4

Experiments Using
Apportioning

4.1 Overview

We present in this chapter the implementation results of some reachabil-
ity graph generation tools !. The results presented are the comparative
analysis of one of the apportioning tools (ALPHA) with the traditional
reachability analysis method (OMEGA). The implementation is an ex-
tension of the attempt made in [8]. The implementation was debugged,
modified to allow program control flowgraphs with loops as input and
then extended for the analysis of the different apportioning tools. Test
results were then generated for different examples.

The program takes the input file name and the output file name
as the command line arguments. The input file contains the control
flowgraphs of the input program. The reachability graphs that are
generated for each class and the global reachability graph are stored in
the output file specified.

We first take a look at the support Java has for concurrent pro-
gramming. We then discuss the various implementation issues of the
program. The formats of the input control flowgraph and the output
reachability graphs are then given. The structure of the implemented

'A concise version of this chapter has been published in [6].

22

program is then presented and finally, we present the implementation
results for various examples, along with a discussion based on the re-
sults.

4.2 Concurrent Java programs

We discuss here a few concepts about the support Java has for concur-
rent programming.

Java supports concurrent programming with the help of threads. Ja-
va supports multithreading, i.e., multiple flows of control in a single
program. A new thread can be created in Java in following ways :

e By creating a Thread class : Define a class that extends the Thread
class and override its run() method with the code required by the
thread.

e By converting a class to a thread : Define a class that imple-
ments the Runnable interface. The Runnable interface has only
one method, run(), that is to be defined in the method with the
code to be executed by the thread.

The approach to be taken depends on the whether the class is ex-
tending an other class or not. If the class requires extending an other
class, then we have to implement the Runnable interface, since Java
doesn’t allow multiple inheritance.

Mutual exclusion in Java is provided by the use of the keyword syn-
chronized. A method in a class itself can be declared as synchronized or
a synchronized statement can be used to access the object in a thread-
safe manner.

4.3 Implementation issues

The program implements the tools ALPHA, BETA and OMEGA using
C++, for the analysis of Java programs having the following features :

e The program consists of a set of class definitions and a set of
object declarations. All objects are created and initialized at

23

the start of program execution. The number of objects is fixed
thereafter.

e Concurrency is supported by having multiple threads of execu-
tion. Creation of a new thread class is by declaring the new class
as a subclass of the Thread class; the Runnable interface is not
currently supported. All threads are created at the start of pro-
gram execution, with each thread being in its entry state; the
entry point of a thread is the entry of its run() method. All
threads have the same priority and the program terminates when
all threads reach their return state.

e The execution model is such that a thread enters an object when
any of its methods are invoked and returns when the method is
completed. Invocations are synchronous and the invoking method
is blocked until the return of invocation.

e Threads communicate by using shared data within an object; a
thread waiting and joining other threads is not currently support-
ed. Synchronization for mutually exclusive access to shared data
is supported by use of the keyword Synchronized.

4.4 Input and output formats

The flowgraphs of a program form the input to the reachability graph
generator. The various information presented in the flowgraph are as
follows :

1. Number of classes, their id’s and objects.
2. Depiction of a class and its methods.
3. Details of each node in the flowgraph.

The format of the flowgraph input is given in figure 4.1.

Node_Id is a unique number that is used to distinguish nodes of a
procedure. The Type of the node is one of the following : m, _begin,
my_waiting-ly, my_released_ly, myfunction_call. m, and mg_return.

24

1. Number of classes, their id’sand objects
int Number Of Classes
Class Name_1 Thread/Not_ A_Thread Number_Of Objects obj_1obj 2 ... obj_n
Class Name 2 Thread/Not_ A_Thread Number_Of Objects obj_1obj 2 ... obj_n

Class Name_n Thread/Not_ A_Thread Number_Of Objects obj_1obj 2 ... obj_n

2. Depiction of a classand its methods
Class Name |
Number Of LocksLock 1Lock 2 ... Lock n
Number_Of Methods Method 1 Method 2 . . . Method n
Method 1
Node 1
Node-2

Node n
Method 2

Method _n

3. Structure of anode
int Node Id
int Type
union {
char* LockName
char* FunctionName

}

int Successors|] 95

Figure 4.1: Input flowgraph format.

The various information needed for presenting the output reachabil-
ity graphs are as follows :

1. The number of local reachability graphs.
2. Depiction of a reachability graph.

3. Details of all the nodes in the local and the global reachability
graphs.

The format of both the local and the global reachability graph is the
same and is as shown in figure 4.2. The array Position denotes the
position of the threads (in their flowgraphs) from which the current
node in the reachability graph had been created. The array LockStatus
shows the status of the locks at that given node.

1. Number of local reachability graphs
int Number_Of_Graphs

2. Depiction of a reachability graph

Class Id class id
Node 1
Node 2

Node n
End of reachability graph

3. Structure of a node
int Node |Id
int Position [Number_Of Threads|]
int LockStatus [Number_Of L ocks]

Figure 4.2: Reachability graph output format.

26

4.5 Module structure

A brief description of the module structure is as follows. The program
first gets the input control flow graphs for all the classes, generates the
local reachability graphs for each class and then generates the global
reachability graph for the program. It then prints out the node details of
all the graphs generated. A high-level view of the modules implemented
for performing the operations described in section 3.4 (figure 3.2) is as
follows :

e Main() invokes Getlnput() for reading the given program control-
flow graph. Getlnput() iteratively calls GetClass() to get the de-
tails of each class Cj, such as the class name, objects, locks and
details of the procedures in Cj;.

These details are got using the functions GetName(), GetObject-
Names(),GetLockNames(), GetProcedureNames() and GetNodes-
OfProcedure(). The GetNodesOfProcedure() iteratively gets all
the node details of a procedure, like identity of a node, type of
the node, analysis point type, information about the node and
the node’s successors.

e Main() then invokes GenLRGraph() to generate the local reach-
ability graphs for each class C;. GenLRGraph() first abstracts
away the global analysis points (GAP) using the function Hide-
GAP() and then calls the function GenerateGraph() to generate
the reachability graph in a breadth first manner.

GenerateGraph() uses FindSuccessors to identify all possible suc-
cessors of a given reachability graph node. FindSuccessors follows
the rules explained in section 3.3. It uses a queue to collect the
successors found. At each iteration, an element from the queue is
taken and its successors generated.

e Subsequently, Main() invokes GenGRGraph() to generate the glob-
al reachability graph for the given program. GenGRGraph() im-
plements the operations LAP_hiding() and GenerateGraph(), in
a manner similar to that of GenLRGraph(), described above.

27

e Finally, Main() invokes PrintGraph() to output the details of the
reachability graphs generated, such as the total number of nodes
in each graph and the details of each node according to the format
given in section 4.4.

4.6 Experimental results

In order to show the efficiency of ALPHA v/s OMEGA, we compare
the number of nodes in the reachability graphs generated by them, as
well as the CPU time taken to generate these nodes, on a HP K-class
server running HP-UX 11.0.

The Nodes entry in each table gives the sum of the number of nodes
in the global and the local reachability graphs, while the Time entry
gives the CPU time taken in hours:minutes:seconds.tenths.

4.6.1 Producer-consumer problem

Table 4.1 gives the comparative results of ALPHA and OMEGA, for
the producer-consumer problem described in section 3.7.

Tool 1 prod 1 cons 2 prod 1 cons 2 prod 2 cons 3 prod 2 cons 3 prod 3 cons
Nodes | Time | Nodes | Time | Nodes Time Nodes Time Nodes Time
OMEGA 203 0.1 1588 2.0 13679 3:35.5 | 114239 | 7:38:43.3 - -
ALPHA 75 0.1 255 0.2 1335 3.6 7815 3:27.5 46595 | 3:50:27.8
Reduction % | 63.05% 83.94% 90.24% 93.16% -

Table 4.1: Experimental results for the producer-consumer problem.

4.6.2 Dining-philosopher problem

The dining-philosopher problem illustrates contention for resources in
a concurrent program. Briefly, there are n philosophers seated for din-
ner, with one fork between every adjacent pair of philosophers. The
philosophers alternatively think and eat. In order to eat, each philoso-
pher picks up two forks, first the one to the right and then the one to
the left. The forks are subsequently released.

28

A representation of the problem is given in figure 4.3
and its description is as follows :

e A fork class provides the methods up() and down() for taking up
and putting down a fork. On invocation, up() waits until the
fork is free and then assigns it to the invoking philosopher. The
method down() releases the fork taken by the philosopher. The
shared variables f.sts and f own, record the fork status and the
identity of the owning philosopher, respectively. The lock [_sts is
used to ensure mutual exclusion to the above mentioned variables.

e A philosopher class defines [_fork and r_fork for recording iden-
tities of the fork objects. The method work(), thinks and eats

phil.work() fork.up() fork.down()
begin begin begin
r_fork.up() lock(]_status) —‘ lock(]_status)
release(|_status)
|_fork.up() release(|_status)
r_fork.down() release(|_status) return
r_fork.down() return

Figure 4.3: CFGs for the dining philosopher problem.

29

iteratively and it invokes the up() and down() methods of the
fork object to take up and put down the forks.

Table 4.2 presents the results for the dining philosophers problem.

2 phils 3 phils
Tool Nodes Time Nodes Time
OMEGA 707 0.49 16503 11:07.6
ALPHA 371 0.1 5879 1:12.1
Reduction % | 47.52% 64.37%

Table 4.2: Experimental results for the dining philosophers problem.

4.6.3 Database application

A database file supports operations for inserting, deleting, and access-
ing records. An unsorted sequential access file is considered for sim-
plicity. Any request is handled by scanning all the records sequentially
and permitting access when the stored key matches the given key. In
the object-oriented framework, the sequential file may be viewed as a
collection of record objects, each storing one key value with associated
data and providing methods for their access.

Figure 4.4 gives a representation of the database application and its
description is as follows :

e A record class provides the methods insert(), read(), modify()
and delete(), which may be invoked for performing the respec-
tive database operations. The shared variables r_key, r_data and
r_next store the key value, associated data and the identity of
the successor record respectively. The lock [_key ensures mutual
exclusion to these variables.

On invocation, insert() inserts the given key and data if the stored
key is null, else it invokes the insert() of the next record. Similarly,
read(), modify() and delete() perform their respective operations
and invoke the same operation of the next record on account of
failure.

30

user.access()

record.insert()

record.read()

begin begin begin
— | |
dbase.insert() lock(l_key) lock(l_key)
l |
dbase.read() @
$ No Yes Yes No
dbase. modify() release(l_key) @ release(l_key) release(l_key)
L L
dbase.del ete() r_next.read()
create() ‘
I
return
release(l_key)
|
r_next.insert()

e A user class provides a method access() that invokes the methods

of the record class.

%H

return

Figure 4.4: CFGs for the database problem.

Table 4.3 gives the results for a database application.

Tool 2 users 3 users
Nodes Time Nodes Time
OMEGA 4863 27.6 19603 5:10:04.8
ALPHA 3471 24.1 8979 1:36.1
Reduction % | 28.62% 54.20%

Table 4.3: Experimental results for the database application.

31

4.6.4 'Traffic problem

The traffic problem involves movement of traffic across a bridge such
that at any time, traffic is moving in only one direction. There is also
a maximum limit on the number of vehicles that can be on the bridge
at a time. Figure 4.5 gives a representation of the traffic problem and
its explanation is as follows :

e The class Bridge contains the shared variables [_dir and [_num,
which allow access to the variables controlling the direction of
travel (dir) and the number of vehicles traveling (num), respec-
tively.

The Bridge class also contains a method cross(), which allows
a object of Car class to cross the bridge by accessing the above
mentioned shared variables. The cross() method checks if the
current direction of travel is the same as that of its direction, and
if the number of cars are less than the maximum allowed, and
crosses the bridge if both conditions are satisfied.

e The Car class has a method called start(). When the car wants to
cross the bridge, the method start() invokes the cross() method
of the Bridge class.

Table 4.4 gives the results for a simulation of traffic movement across
a bridge.

Tool 2 cars 3 cars 4 cars 5 cars
Nodes Time Nodes Time Nodes Time Nodes Time
OMEGA 221 0.1 2444 9.2 26973 41:11.8 - -
ALPHA 50 0.01 230 0.1 1310 3.6 7776 3:31.52
Reduction % | 77.37% 90.59% 95.14% -

Table 4.4: Experimental results for the traffic simulation.

32

bridge.cross()

lock(l_dir)

No Yes

release(l_num) release(l_dir)

release(l_num)

lock(l_dir)

lock(l_num)

release(l_dir)

car.start()

begin

]

bridge.cross()

Figure 4.5: CFGs for the traffic problem.

33

4.7 Discussion

It is evident from the results shown, that the percentage of reduction
in complexity due to the apportioning-based analysis increases as the
number of threads increases. This is because, for the traditional anal-
ysis (OMEGA), the local analysis of each of the methods gets reflected
repeatedly in the global outlook. This does not happen in the case of
the apportioning-based analysis (ALPHA). An increase in the number
of threads or the number of shared objects, would make the difference
more substantial.

34

Chapter 5

Reachability Graph
Generation In Parallel

5.1 Introduction

From the results of the sequential reachability graph generation, we
infer that the generation of the reachability graph of a concurrent pro-
gram takes both exponential time and space. Thus, for analysis of
programs with a large number of threads a faster way of generation of
reachability graphs must be found. Even though apportioning reduces
the number of states of the reachability graph, thus reducing both time
and space, a large number of threads will still take exponential time to
analyse.

In order for such a tool to be practically useful, it must be able to
generate the reachability graphs in a reasonable amount of time for
a program with large number of threads. In this chapter, a parallel
algorithm is described which attempts to reduce at-least, the time taken
to generate the reachability graphs.

35

5.2 Algorithm

The algorithm is as follows :

1. /* Generate the reachability graph of each single thread of exe-
cution in the program, using the algorithm given in section 3.3. */

Vi € T : Generate R; ;

where,
T is the set of threads in the program and
R; is the reachability graph of thread :.

2. /* Generate the cross-product of the sets of nodes in each of the
above reachability graphs */

Generate G = all tuples ($1, 82, ... Si oo ySn) ;
where,
s; is a state in R;.

3. /* Remove all invalid nodes from the combination, checking for
violation of the mutual exclusion principle and the deadlock con-
dition */

(a) /* Catch errors due to violation of the mutual exclusion prin-
ciple. */

If 3 [such that | € z;,] € z; then

n = invalid;

where,

[is some lock,

s; and s; are states of threads ¢ and j respectively,

x; and z; are the lock statuses of s; and s;, and

n is some node in graph G' containing states s; and s;.

36

(b) /* Catch errors due to violation of the deadlock condition.

*/

If3 e .T;-, d1ly € LL"] such that [, € l‘j,lg € l‘i,ll ?é ls then
n = invalid;

where,

l1, Iy are some locks,

x; and z; are the lock statuses of s; and s;,

z; and x; are the lock statuses before the action of s; and s;,
s; and s; are states of threads 7 and j respectively,

n is some node in graph G' containing states s; and s;.

5.3 Explanation

The algorithm works as follows :

e The first step of the algorithm generates the reachability graph of
each thread. The reachability graph of a single thread of execu-
tion, enumerates all possible states achievable by it. This is the
set of states which a thread can contribute to the global reacha-
bility graph. The states of this thread which are actually present
in the global reachability graph will be a subset of this set.

This step catches the following errors in programs :

1. Method completion before release of acquired locks.

2. Methods in an object waiting for acquisition of locks, in a
cyclic manner (i.e. a deadlock).

3. Trying to acquire the same lock twice.
4. Trying to release the same lock twice.
5. Cyclical invocations involving local, global or a mixture of

local and global invocations

e The second step of the algorithm generates all possible combi-
nation of nodes which can be achieved by the threads running
concurrently.

37

e We now have all the possible nodes in the program, a subset of
which will form the reachability graph. In order to arrive at the
reachability graph, we have to remove all the spurious states. This
step removes all the invalid, i.e, unreachable nodes by checking
for the following error conditions :

1. Errors occurring due to violation of the mutual ex-
clusion principle :
A mutually exclusive area in a program is a region of isola-
tion, where only a single thread can execute at a time. In
the second step of the algorithm we have taken into consid-
eration all possible combinations of nodes which can occur
in the program.
In such a case, some nodes will be generated which may
have more than one thread in a mutually exclusive region.
Access is allowed to a mutually exclusive region through the
acquiring of some locks. Hence, if two or more threads are
shown to be present in a mutually exclusive region, they will
all be holding the same locks needed for mutual exclusion.
Hence, a summation of locks will show such an error.

A thread acquiring a lock, which results in it entering a
mutually exclusive region, can be thought of as some kind of
a barrier, where other threads have to wait until the thread
holding the lock for that region releases it.

Once the thread holding the lock releases it, another thread
(which was waiting on that lock) can proceed ahead by ac-
quiring the lock. In other words, we can say that a barrier
is made up of a thread releasing a lock at one end and one
or more threads waiting on that lock at the other end (fig-
ure 5.1). Hence, two or more threads cannot co-exist across
any barrier, since it would mean that more than one thread
holds the same resource.

Our check for violation of mutual exclusion would be then to
check if there exists threads across any barrier. If so, declare
the state as invalid or unreachable. The check is done by
summing up the lock statuses of all threads and finding out

38

Thread 1 Thread 2

|

|
! [Tock() |
|
|

Barrier

| release(l) |
|

Figure 5.1: A barrier between two threads.

if more than one thread holds the same lock. This is done
as follows :

If 31 such that | € z;,1 € z; then,

n = invalid;

where,

[is some lock,

s; and s; are states of threads 7 and j respectively,

x; and z; are the lock statuses of s; and s; and

n is some node in graph G' containing states s; and s;.

. Errors occurring due to violation of the deadlock
condition :

A deadlock occurs when two or more threads cyclically wait
for resources. The program cannot proceed further ahead
from this point of execution. In terms of a barrier, a deadlock
can be considered as a set of barriers crossing each other.
As mentioned before, no two threads can co-exist across a
barrier. So now by crossing each other, we mean that these
barriers itself cannot co-exist, because they exist across each
other.

39

We had mentioned earlier that, a barrier is made up of one
thread releasing a lock (which it had formerly acquired) and
one or more threads waiting to acquire this lock. Now a
deadlock is a state were all threads wait cyclically for locks,
i.e., each of these threads are at one end of a barrier (the
waiting for the lock end). The corresponding other end in
each barrier, that of a thread releasing a lock will never
occur, since a program cannot proceed ahead of a deadlock.

Suppose the threads ignore such a deadlock, manage to get
their required resources and proceed further. These are now
threads with states across two or more barriers and their
resources overlap. Any node which follows, will then have a
sum of locks greater than the total number of locks.

Now let us consider a node where, all of the threads involved
in the deadlock have reached a state where they are all re-
leasing the corresponding locks involved in the deadlock (the
locks which they had spuriously acquired). Such a node is
shown in figure 5.2. If such a node does not exist (the pro-
gram may not specify for some of the locks acquired), i.e.,
one or more of the threads does not have such a release, then
anyway that thread holds the lock forever (after it initially
acquires it) and hence our first condition of violation due to

Thread 1 Thread 2

' |
| lock(I_1) |- peadiock = lock(_2) |

I
I
Barriers |
|

|
|re|ease(|_2) |]releasg(l_l) |

Figure 5.2: A deadlock condition.

40

mutual exclusion would catch that error.

At such a state, each of the lock is held by two threads (a
violation of the mutual exclusion condition). Now, the lock
status of the node is the result of the operations performed
by each of the threads. So the threads release the locks
involved in the deadlock, and hence, even though the lock
status formed by the effect of all these threads does not
violate the mutual exclusion condition, the node so formed
is an invalid node, because none of the threads could have
reached that state.

In essence, we can capture all spurious states resulting from
the violation of the mutual exclusion condition except for
the above described nodes, whose parents violate the mutual
exclusion condition, but still the nodes result in a valid lock
status.

Considering such a case for two threads, we can represent
the error checking as :

If3l e LE;-, d1ly € JT; such that [, € xj,lg € wi;ll 75 5 then
n = invalid;

where,

l1, Iy are some locks,

x; and z; are the lock statuses of s; and s; and

z; and x'] are the lock statuses before the action of s; and s;,
s; and s; are states of threads ¢ and j respectively,

n is some node in graph G containing states s; and ss.

The above mentioned errors are the only errors that can occur when
analysing any concurrent program which uses shared memory. Hence,
by catching these errors we can safely conclude that, the remaining
nodes are error-free and hence reachable.

41

buf.put() buf.get()

consume() produce()
10 —]0
entry / begin entry / begin
before_invoc 1 before_invoc 1
buf1.get(item) buf1.put(item)
after_invoc 3 after_invoc 3
buf1.get(item) buf1.put(item)

N
N

return return

Figure 5.3: CFG for the producer-consumer problem (with ids).

5.4 Example: producer-consumer problem

We explain the algorithm now, with the help of the producer-consumer
problem. We assume a program consisting of a single thread each of
producer and consumer. Figure 5.3 gives the control flowgraph for
the producer-consumer problem given in section 3.7 with each state
identified. Table 5.1 gives the tabularized form of the control flowgraph.

42

Node | Successors
1
4

o

2,1
5
6

7,9
9
3

O|Co| O U x| WIN|

Table 5.1: Tabularized form of the CFG of a producer/consumer.

Node | Lock states before | Lock states after | Successors | Old node id
0 00 00 1 -
1 00 00 4 -
2 00 00 - -
3 00 00 2,1 -
4 00 00 5 -
5 00 10 6 -
6 10 11 7,10 -
7 11 10 8 -
8 10 00 9 -
9 00 00 3 -
10 11 11 11 9
11 11 11 12,13 3
12 11 11 - 2
13 11 11 14 1
14 11 11 - 4

Table 5.2: Reachability graph of a single thread of producer.

1. In the first step of the algorithm we generate the reachability
graphs of all threads. The reachability graph of the producer and
the consumer is given in table 5.2 and table 5.3 respectively.

2. In the second step, we generate the combination of all states in
each of the reachability graph generated, i.e., the combinations :

{(0,0); (0,1); ... (1,0); (1,1); ... (14,14) }.

3. Now we remove the errors due to the violation conditions spec-
ified. Figure 5.4 shows the format of a node in the reachability

43

Node | Lock states before | Lock states after | Successors | Old node id
0 00 00 1 -
1 00 00 4 -
2 00 00 - -
3 00 00 2,1 -
4 00 00 5 -
5 00 01 6 -
6 01 1 7,10 -
7 11 01 8 -
8 01 00 9 -
9 00 00 3 -
10 11 11 11 9
11 11 11 12,13 3
12 11 11 - 2
13 11 11 14 1
14 11 11 - 4

Table 5.3: Reachability graph of a single thread of consumer.

graph. The figure 5.5 shows how the nodes generated, are checked
for violations. A node is checked for validity by adding up the
lock statuses (after the effect of each thread) of each thread state.
Invalid states occurring due to violation of the mutual exclusion
condition are also shown.

An error occurring due to violation of the deadlock condition is
shown in figure 5.6. Here, both the producer and the consumer
threads are releasing a lock which they could not have acquired
(i.e. a state after a deadlock). The error is caught by checking

Lock states before
effect of AP

Lock states before
effect of AP

Thread State Thread State
(Producer) (Consumer)

Lock states after

Lock states aft
ock States ater effect of AP

effect of AP

Figure 5.4: Representation of a reachability graph node.

44

ol
NS

10
+ 00
10 <-valid status

10
+ 01
11 <-vdlid status

el
OlS
QNGO
Ol

11
+ 11
22 <-invalid status

11
+ 01
12 <-invalid status

Figure 5.5: Node generation process.

45

@ Prod_1 Cons_1 @

7 7
11 <- Status before effect of 10 <- Status after effect of
release(l_first) :Prod_1 release(l_first) :Prod_1
+ 01 <- Status after effect of + 11 <- Status before effect of
release(l_last) :Cons 1 release(l_last) :Cons 1
21 <- Invalid Status 21 <- Invalid Status

Figure 5.6: Error due to a deadlock.

whether the state of the lock remains the same, even after the
release of the locks.

We do this by rolling back the status of the producer thread, i.e.,
adding the lock status of the thread before the effect of the release
action. We then do the same for the consumer thread. Both
these statuses violate the deadlock condition, hence invalidating
the node.

46

5.5 Experimental results

In order to show the efficiency of the parallel algorithm with respect to
the sequential method of generation, we provide the results of the same
comparison of ALPHA v/s OMEGA. The algorithm was implemented
using C and C++, on a HP K-class server running HP-UX 11.0. While
the algorithm is a parallel algorithm, the implementation runs sequen-
tially, since the machine used lacked the parallel run-time libraries. We
compare the number of nodes in the reachability graphs generated by
them, as well as the CPU time taken to generate these nodes. We also
provide a comparison of the timings of both the algorithms given in
this thesis.

ALPHA, and OMFEGA, respectively are the results of the new
algorithm for ALPHA and OMEGA. The Nodes entry in each ta-
ble gives the sum of the number of nodes in the local and the global
reachability graphs, while the Time entry gives the CPU time taken in
hours:minutes:seconds.tenths.

5.5.1 Producer-consumer problem

Table 5.4 and 5.5 give the comparison of the time taken by both the
algorithms for ALPH A and OM EGA. Table 5.6 gives the comparative
results of ALPHA and OM EGA, for more threads.

Tool 2 prod 1 cons 2 prod 2 cons 2 prod 2 cons 3 prod 3 cons
Nodes | Time | Nodes Time | Nodes Time Nodes Time
ALPHA 0.2 3.6 3:27.5 3:50:27.8
ALPHA,, 255 0.051 1335 0.094 815 0.430 46595 2.861
Reduction % 49% 97.4% 88.06% 99.98%

Table 5.4: Timing comparison for the producer-consumer problem (AL-
PHA).

5.5.2 Dining-philosopher problem

Table 5.7 and 5.8 give the comparison of the timings of both the algo-
rithms for ALPHA and OMEGA. Table 5.9 presents the results for

47

Tool 2 prod 1 cons 2 prod 2 cons 2 prod 2 cons 3 prod 3 cons
Nodes | Time | Nodes Time Nodes Time Nodes Time
OMEGA 2.0 3:35.5 7:38:43.3 -
OMEGA, 1588 0.150 13679 1.84 114239 34.15 46595 9:10.391
Reduction % 92.5% 99.15% 99.87% -

Table 5.5: Timing comparison for the producer-consumer problem

(OMEGA).
Tool 3 prod 3 cons 4 prod 4 cons 5 prod 4 cons
Nodes Time Nodes Time Nodes Time
OMEGA 924807 | 9:10.391 - - - -
ALPHA 46595 2.361 1679655 | 2:9:612 | 60466215 | 1:43:20.980
Reduction % | 99.99% - -

Table 5.6: Experimental results for the producer-consumer problem.

more philosophers.

2 phils 3 phils
Tool Nodes | Time | Nodes Time
ALPHA 0.1 1:12.1
ALPHA, 371 0.059 5879 0.265
Reduction % 41% 99.63%

Table 5.7: Timing comparison for the dining philosophers problem (AL-

PHA).
2 phils 3 phils
ool Nodes Time Nodes Time
OMEGA 0.49 11:07.6
OMEGA, o7 0.066 16503 0.843
Reduction % 86.53% 99.87%

Table 5.8: Timing comparison for the dining philosophers problem

(OMEGA).

48

Tool 4 phils 5 phils 6 phils
Nodes Time Nodes Time Nodes Time
OMEGA 404671 | 31.175 | 9838799 | 20:15.47 - -
ALPHA 105023 7.342 1889615 | 3:25.251 340122288 1:24:5.0
Reduction % | 74.05% 80.79% -

Table 5.9: Experimental results for the dining philosophers problem.

5.5.3 Database application

Table 5.10 and 5.11 give the comparison of the timings of both the
algorithms for ALPHA and OM EGA. Table 5.12 gives the results for
more users in a database application.

Tool 2 users 3 users
Nodes Time Nodes Time
ALPHA 24.1 1:36.1
ALPHA, 3471 0.059 8979 0.268
Reduction % 99.75% 99.75%

Table 5.10: Timing comparison for the database application (ALPHA).

Tool 2 users 3 users
Nodes Time Nodes Time
OMEGA 27.6 5:10:04.8
1
OMEGA, 4863 0.082 9603 3.040
Reduction % 99.70% 99.98%

4 users
Tool Nodes Time
OMEGA 2673627 | 2:49.964
ALPHA 108123 5.540
Reduction % 96.1%

Table 5.11: Timing comparison for the database application (OMEGA).

Table 5.12: Experimental results for the database application.

49

5.5.4 Traffic problem

Table 5.13 and 5.14 give the comparison of the time taken by both the
algorithms for ALPHA and OM EGA. Table 5.15 gives the results for

more number of cars.

Tool 2 cars 3 cars 4 cars
Time | Reduction | Time | Reduction | Time | Reduction
ALPHA 0.01 0.1 3.6
ALPHA, 50 0.01 230 0.02 1310 0.07
Reduction % 0% 80% 98.06%

Table 5.13: Timing comparison for the traffic problem (ALPHA).

Tool 2 cars 3 cars 4 cars
Time | Reduction | Time | Reduction Time Reduction
OMEGA 0.1 9.2 41:11.8
OMEGA, 221 0.02 2444 0.17 26973 2.84
Reduction % 80% 98.15% 99.88%

Table 5.14: Timing comparison for the traffic problem (OMEGA).

Tool 5 cars 6 cars
Nodes Time Nodes Time
OMEGA 52836 5.25 420189 | 58.22
ALPHA 7790 0.43 46670 3.020
Reduction % | 85.28% 88.89%

Table 5.15: Experimental results for the traffic simulation.

5.6 Discussion

The results shown above are that of the sequential implementation of
the algorithm. The sequential implementation itself shows a significant
reduction in the time taken to generate the reachability graph. A par-
allel implementation would show an even greater reduction in the time

complexity.

a0

Chapter 6

Conclusion and Future Work

The aim during the course of this work was to experimentally verify
apportioning as an effective and practically viable tool for reachability
analysis of a concurrent Java program. The effectiveness of the tech-
nique was proved by showing a reduction in space as compared with
that of the traditional reachability analysis algorithm. For the chosen
experiments, a typical reduction of 67% was observed in the number
of nodes generated. The reduction in nodes increased with increasing
number of threads in the program.

Still, sequential reachability graph generation takes both exponen-
tial time and space. Towards this end, we developed an algorithm for
generation of the reachability graph in parallel. The results of this
algorithm as compared with that of the sequential approach showed
more than 86% decrease in analysis time. Also, due to this reduction
in analysis time, we could analyse programs with a larger number of
threads, hence proving the practical validity of the attempt.

Some avenues for possible extension of this work are :

1. Accept a wider range of programs for analysis.

2. Implementation can be extended to other apportioning-based tool-
s like BETA.

3. A more rigorous verification of the parallel algorithm.

ol

Bibliography

[1]

2]

[3]
[4]

[5]

[6]

[7]
8]

[9]

G. R. Andrews. Concurrent programming, principles and practice.
Addison- Wesley, 1991.

K. Arnold and J. Gosling. The Java’™ programming language, 2nd
ed. Addison-Wesley, 1998.

E. Balagurusamy. Programming with Java. Tata-McGraw Hill, 1998.
D. Ince. Object oriented software engineering with C++. McGraw Hill,
1991.

S. Iyer. Efficient reachability analysis for concurrent object-oriented
programs. Ph.D. Thesis, Indian Institute of Technology, Bombay, 1997.
S. Iyer, Raghuraman R. and A. Majumdar. Apportioning-based reach-
ability analysis for concurrent Java programs. In Proceedings of In-
ternational Conference on Information Technology, Tata-McGraw Hill,
Bhubaneshwar, India, 1999.

J. JaJa. An Introduction to parallel algorithms. Addison- Wesley, 1992.
A. Majumdar. Reachability graph generation of concurrent Java pro-
grams. Indian Institute of Technology, Guwahati, 1999.

C. E. McDowell. A practical algorithm for static analysis of parallel
programs. Journal of Parallel and Distributed Computing, 515-536,
1989.

92

[10] Parallel programming guide for HP-UX systems, 1st ed. Hewlett-
Packard, 1998.

[11] R. S. Pressman. Software engineering - a practitioner’s approach, 3rd
ed. McGraw Hill, 1992.

[12] R. N. Taylor. A general purpose algorithm for analyzing concurrent
programs. Communications of the ACM, 26(5):362-376, May 1983.

[13] R. N. Taylor and L. J. Osterweil. Anomaly detection in concurrent
software by static data flow analysis. IEFEE Transactions. Software

Engineering, 265 - 278, 1980.

23

