Design of Multi-tier Wireless Mesh Networks

Raghuraman Rangarajan

Advisor
Prof. Sridhar Iyer

July 2009, IIT Bombay
Introduction

Issues in Wireless Network Design
Multi-tiered Wireless Network Design
Solution Approach

Stage 1: AP-Client Association
Capacity of WLANs
AP-assignment problem

Stage 2: WLAN Topology Design
Generic Framework
Topology Construction
\textsc{WIND}_{\text{wlan}} Tool

Stage 3: WMN Node Locationing and Topology Design
Mesh Network Design Problem
Problem Formulation
\textsc{WIND}_{\text{wmn}} Tool
Goal
Design wireless data networks
 ► mesh networks and wireless local area networks
 ► capacity constraints

Purpose
 ► Construct topology
 ► Position infrastructure nodes
 ► Provision bandwidth
Overview of Wireless Networks

Wireless data networks can be used as

- Infrastructure or peer-to-peer (802.11)
- Local (WLAN) or Backhaul networks (802.16, Mesh)

Wireless vs Wired

- Removes physical connectivity
- Allows user mobility
- Re-configuration of network incurs minimal cost
- Wired n/w have higher data rates
- Capacity provisioning important in wireless n/ws
Introduction
Issues in Wireless Network Design
Multi-tiered Wireless Network Design
Solution Approach

Stage 1: AP-Client Association
Capacity of WLANs
AP-assignment problem

Stage 2: WLAN Topology Design
Generic Framework
Topology Construction
WIND\textsubscript{wlan} Tool

Stage 3: WMN Node Locationing and Topology Design
Mesh Network Design Problem
Problem Formulation
WIND\textsubscript{wmn} Tool

Summary
Wireless Network Design I

Example Campus Network

Network elements

- User devices
- Last-hop access (APs)
- Backhaul network (Routers)
- Application services

Network elements

- User devices
- Last-hop access (APs)
- Backhaul network (Routers)
- Application services
Wireless Network Design II

Design problem

Construct network topology satisfying design constraints

Design constraints

- Coverage
- Capacity
- Application scenarios
- Heterogeneous technologies
- Cost

Outline

Introduction
Issues in Wireless Network Design
Multi-tier Wireless Design
Solution Approach

Stage 1: AP-assignment
Capacity of WLANs
AP-assignment problem

Stage 2: WLAN Topology
Generic Framework
Topology Construction
WIND_wlan Tool

Stage 3: WMN Topology Design
Mesh Network Design Problem
Problem Formulation
WIND_wmn Tool

Summary
Generic Design Problem

Network design problem (NDP)

Given client nodes and deployment layout
Construct network topology
Subject to constraints
While minimizing network infrastructure cost
Wireless Network Design IV

Current approaches

- Site survey
- Simulations
- Test measurements
- Signal strength measurements
- RF planning

Drawbacks [Mclean, How to design a WLAN, 2003]

- Difficult to provision 802.11 DCF
- Suitable for small-sized networks
- Address only coverage issues

Need

Integrated Approach to Wireless Design
Wireless Network Design V

Design issues

- Provisioning 802.11 WLANs in heterogeneous application scenarios
- Capacity-constrained wireless network design
- Minimising network infrastructure cost
- Integrated design of local area and backhaul wireless networks
Outline

Introduction
- Issues in Wireless Network Design
- Multi-tiered Wireless Network Design
- Solution Approach

Stage 1: AP-Client Association
- Capacity of WLANs
- AP-assignment problem

Stage 2: WLAN Topology Design
- Generic Framework
- Topology Construction
- \textit{WIND}_{\text{wlan}} Tool

Stage 3: WMN Node Locationing and Topology Design
- Mesh Network Design Problem
- Problem Formulation
- \textit{WIND}_{\text{wmn}} Tool
Bottom-up Design Flowchart
Three design stages

Outline
Introduction
Issues in Wireless Network Design
Multi-tier Wireless Design
Solution Approach

Stage 1: AP-assignment
Capacity of WLANs
AP-assignment problem

Stage 2: WLAN Topology
Generic Framework
Topology Construction
WIND wlan Tool

Stage 3: WMN Topology Design
Mesh Network Design Problem
Problem Formulation
WIND wmn Tool

Summary
Stage 1: AP-assignment

Given client nodes

Compute APs required

Subject to capacity constraints

While minimizing |APs|
Problem formulation

Stage 2

WLAN topology design

Given client nodes, deployment layout

Construct WLAN topology

Subject to capacity constraints

While minimizing network infrastructure (APs)
Problem formulation

Stage 3

Mesh network design

Given deployment layout, AP nodes deployed and their characteristics

Construct backhaul topology

Subject to capacity constraints

While minimizing network infrastructure (mesh nodes and links)
Outline

Introduction
Issues in Wireless Network Design
Multi-tiered Wireless Network Design
Solution Approach

Stage 1: AP-Client Association
Capacity of WLANs
AP-assignment problem

Stage 2: WLAN Topology Design
Generic Framework
Topology Construction
WIND\textsubscript{wlan} Tool

Stage 3: WMN Node Locationing and Topology Design
Mesh Network Design Problem
Problem Formulation
WIND\textsubscript{wmn} Tool

Summary
Solution Approach

Stage 1

AP-assignment

- Analyse heterogeneous application deployments
- Prioritise applications to improve system utilisation
- Validate with simulation
Stage 2

WLAN topology design

- Framework for deploying WLANs from simple network input parameters
- Construct topology using AP-assignment solutions as input
- Validate with simulation
Solution Approach

Stage 3

Mesh network design

- Framework for deploying WMNs from simple network input parameters
- Optimisation problem for Node locationing and topology construction
- Minimise network deployment cost using node and link costs
Outline

Introduction
- Issues in Wireless Network Design
- Multi-tiered Wireless Network Design
- Solution Approach

Stage 1: AP-Client Association
- Capacity of WLANs
- AP-assignment problem

Stage 2: WLAN Topology Design
- Generic Framework
- Topology Construction
 \textit{WIND}_{\text{wlan}} Tool

Stage 3: WMN Node Locationing and Topology Design
- Mesh Network Design Problem
- Problem Formulation
 \textit{WIND}_{\text{wmn}} Tool

Summary
Associating Clients with APs

AP-assignment

Given client nodes

Compute APs required

Subject to capacity constraints

While minimizing |APs|
Capacity of WLANs

Aim

- Study **single** application scenario
 - Analyse 802.11 DCF mechanism
 - Realtime applications (voice and video codecs)
 - Theoretical vs Simulation results
- Capacity of system (in number of flows)
- Base case for analysis of heterogeneous deployments
System Setup

DCF schemes

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Data rate (in Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b</td>
<td>1, 5.5, 11</td>
</tr>
<tr>
<td>802.11g</td>
<td>1, 11, 54</td>
</tr>
</tbody>
</table>

Codec parameters

<table>
<thead>
<tr>
<th>Parameters / Codecs</th>
<th>G.711</th>
<th>G.723.1</th>
<th>G.729</th>
<th>GSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit rate (in kbps)</td>
<td>64</td>
<td>6.4</td>
<td>8</td>
<td>13.2</td>
</tr>
<tr>
<td>Framing interval (in ms)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Payload (in bytes)</td>
<td>160</td>
<td>24</td>
<td>20</td>
<td>33</td>
</tr>
</tbody>
</table>

MAC parameters and Stack overheads
Theoretical Calculation

Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkt</td>
<td>Packet size (at MAC, in bytes)</td>
</tr>
<tr>
<td>ACK</td>
<td>Size of ACK packet (14 bytes for 802.11)</td>
</tr>
<tr>
<td>r</td>
<td>Data rate (in Mbps)</td>
</tr>
<tr>
<td>DIFS</td>
<td>DIFS time (in μS)</td>
</tr>
<tr>
<td>SIFS</td>
<td>SIFS time (in μS)</td>
</tr>
<tr>
<td>slot</td>
<td>Slot time (in μS)</td>
</tr>
<tr>
<td>backoff</td>
<td>Backoff</td>
</tr>
<tr>
<td>PHY</td>
<td>PHY overhead (in μS)</td>
</tr>
</tbody>
</table>

Throughput (T)

$$T = \frac{\text{Payload}}{t_{\text{total}}} = \frac{\text{pkt} \times 8}{\text{DIFS} + \text{SIFS} + 2 \times \text{PHY} + \frac{\text{backoff}}{2} \times \text{slot} + t_{\text{pkt}} + t_{\text{ack}}}$$

Where,

$$t_{\text{pkt}} = \frac{(\text{pkt} + \text{MAC}) \times 8}{r}, \quad t_{\text{ack}} = \frac{\text{ACK} \times 8}{r}$$
Simulation Setup

Implementation details
- Opnet Modeler
- Voice scenarios modeled as application definition
- Number of flows increased until constraints failed

Constraints
- Throughput satisfaction
- Delay ≤ 75 msec
Results: G.711 Codec

Theoretical vs Simulation

<table>
<thead>
<tr>
<th>Scheme</th>
<th>802.11b</th>
<th>802.11g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data rate (r)</td>
<td>1 5.5 11</td>
<td>1 11 54</td>
</tr>
<tr>
<td>Theoretical</td>
<td>3 8 10</td>
<td>4 25 39</td>
</tr>
<tr>
<td>Simulation</td>
<td>3 8 10</td>
<td>4 18 34</td>
</tr>
</tbody>
</table>
Results: Voice Codecs

<table>
<thead>
<tr>
<th>Scheme</th>
<th>802.11b</th>
<th>802.11g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data rate (r)</td>
<td>1</td>
<td>5.5</td>
</tr>
<tr>
<td>G.711</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>G.723.1</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>G.729</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>GSM</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Table: Maximum number of voice calls: theoretical results.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>802.11b</th>
<th>802.11g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data rate (r)</td>
<td>1</td>
<td>5.5</td>
</tr>
<tr>
<td>G.711</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>G.723.1</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>G.729</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>GSM</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

Table: Maximum number of voice calls: simulation results.
Observations

- Simulation results closely follow theoretical results
- Theoretical results form upper bound
- 802.11g vs 802.11b: Effect of shorter timings seen in 11 Mbps case
- Delay ≪ Delay constraint (Max delay ≤ 18 μS)
- Minimal variation in number of calls between codecs
- CSMA/CA mechanism is main limitation
- Results well known [Anurag Kumar, Comm Networking, 2005]
Results: Video Capacity

<table>
<thead>
<tr>
<th>Scheme</th>
<th>802.11b</th>
<th>802.11g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data rate (r)</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>1 5.5 11</td>
<td>1</td>
<td>11 54</td>
</tr>
<tr>
<td>SQCIF 128x96, 30fps</td>
<td>4 13 16</td>
<td>5 34 59</td>
</tr>
<tr>
<td>QCIF 176x144, 15fps</td>
<td>3 13 20</td>
<td>3 31 83</td>
</tr>
<tr>
<td>CIF 352x286, 10fps</td>
<td>1 6 10</td>
<td>1 13 46</td>
</tr>
</tbody>
</table>

Table: Maximum number of video flows: theoretical results.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>802.11b</th>
<th>802.11g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data rate (r)</td>
<td>1</td>
<td>11 54</td>
</tr>
<tr>
<td>1 5.5 11</td>
<td>1</td>
<td>11 54</td>
</tr>
<tr>
<td>SQCIF 128x96, 30fps</td>
<td>4 13 16</td>
<td>5 29 76</td>
</tr>
<tr>
<td>QCIF 176x144, 15fps</td>
<td>3 13 20</td>
<td>3 27 94</td>
</tr>
<tr>
<td>CIF 352x286, 10fps</td>
<td>1 6 10</td>
<td>1 14 52</td>
</tr>
</tbody>
</table>

Table: Maximum number of video flows: simulation results.
Homogeneous applications can be provisioned in DCF

Realtime applications can be provided QoS guarantees - voice and video

AP bottleneck: Equal opportunity CSMA/CA leads to AP starvation

Heterogeneous deployment difficult
 ▶ Single FTP flow breaks delay constraint (G.711 max calls scenario)
 ▶ Extending DCF

802.11e standard for QoS provisioning
 ▶ Complex standard, difficult to implement
 ▶ Not widely adopted
 ▶ Wireless MultiMedia (WMM) uses parts of 802.11e

Homogeneous analysis forms base case for analysis of heterogeneous deployments
Outline

Introduction
Issues in Wireless Network Design
Multi-tiered Wireless Network Design
Solution Approach

Stage 1: AP-Client Association
Capacity of WLANs
AP-assignment problem

Stage 2: WLAN Topology Design
Generic Framework
Topology Construction
WIND_{wlan} Tool

Stage 3: WMN Node Locationing and Topology Design
Mesh Network Design Problem
Problem Formulation
WIND_{wmn} Tool
Problem Statement: Recap

AP-assignment

Given heterogeneous client nodes

Compute APs required

Subject to capacity constraints

While minimizing |APs|
Deploying Heterogeneous Applications I

Issues with homogeneous capacity analysis

- Network utilisation is not maximal (On average, number of flows less than maximum flows)
- Homogeneous capacity unrelated to heterogeneous capacity
- WLAN capacity usually evaluated as maximum capacity
Deploying Heterogeneous Applications II

Heterogeneous capacity analysis

- Capacity in terms of heterogeneous applications
- Analysis of realtime applications with non-realtime applications
- Example: VoIP and FTP deployment
Deploying Heterogeneous Applications III

Sub-optimal heterogeneous application deployment
Deploy restricted number of priority applications
- Implement priority mechanism
- Number of flows = k (< n, where n = homogeneous capacity)
Sub-optimal heterogeneous application deployment
Deploy additional non-prioritised applications

- Best effort service
- Applications can be of same class as priority applications

Use restricted number of flows to set ACL policies
Deploying Heterogeneous Applications V

Example Sub-optimal G.711 Calls

- 802.11b 11 Mbps, G.711 codec
- Theoretical capacity

\[T = \frac{\text{Payload}}{t_{total}} = \frac{\text{pkt} \times 8}{\text{DIFS} + \text{SIFS} + 2 \times \text{PHY} + \frac{\text{backoff}}{2} \times \text{slot} + t_{\text{pkt}} + t_{\text{ack}}} \]

\[= \frac{200 \times 8}{\text{DIFS} + \text{SIFS} + 2 \times \text{PHY} + \frac{31}{2} \times \text{slot} + 170.18 + 10.18} \]

\[= \frac{1600}{934.36} = 1.712 \text{ Mbps} \]

- G.711 bandwidth \(b = 0.16 \text{ Kbps} \)
- Maximum theoretical calls = \(\lfloor T/b \rfloor = 10 \text{ calls} \)
Deploying Heterogeneous Applications VI

- Sub-optimal capacity

\[\lfloor k \cdot \frac{T}{b} \rfloor = \lfloor 1.73k \cdot \frac{1}{16} \rfloor \]

- Example: 30% bandwidth reservation for voice calls

\[\lfloor 1.73k \cdot \frac{1}{16} \rfloor = \lfloor 1.73 \cdot 0.3 \cdot \frac{1}{16} \rfloor = 3 \text{ calls} \]
Sub-optimal Capacity: G.711 deployment

<table>
<thead>
<tr>
<th>k</th>
<th>Number of calls: $\left\lceil \frac{kT}{b} \right\rceil$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>802.11b (in mbps)</td>
</tr>
<tr>
<td>2.5</td>
<td>11.390 10.818 10.818</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\frac{T}{b}$</th>
<th>1</th>
<th>0.9</th>
<th>0.8</th>
<th>0.7</th>
<th>0.6</th>
<th>0.5</th>
<th>0.4</th>
<th>0.3</th>
<th>0.2</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.8</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.9</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table: k vs Number of voice calls for G.711 codec.
Sub-Optimal Application Deployment

Problem definition

Application classes

- **Alpha (α)**: Prioritised applications under ACL
- **Beta (β)**: Applications with normal priority
- **Gamma (γ)**: Applications of same class as Alpha running un-prioritised
Sub-Optimal Application Deployment

Problem definition

SOAP1

Given \(k \) Alpha flows \((|\alpha| = k)\)

Compute number of Beta flows \((|\beta|)\)

Subject to constraints \(R \)
Sub-Optimal Application Deployment
Implementation details

- Contention-window based service differentiation mechanism
- Impose ACL mechanism on α flows
- Add additional β and/or γ flows as best effort service
- Extension of DCF MAC in OPNET Modeler
- Constraints R:
 - α: Throughput and delay constraints
 - β, γ: Throughput constraint

<table>
<thead>
<tr>
<th>Application</th>
<th>CWmin</th>
<th>CWmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>VoIP (priority)</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>FTP</td>
<td>31</td>
<td>1023</td>
</tr>
</tbody>
</table>

Table: Contention window parameters for SOAP.
Sub-Optimal Application Deployment

Simulation setup

- 802.11g mechanism
- G.711 codec
- Application classes

<table>
<thead>
<tr>
<th>Application class</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>VoIP - G.711</td>
</tr>
<tr>
<td>β</td>
<td>FTP - 250 & 500 Kbps</td>
</tr>
<tr>
<td>γ</td>
<td>VoIP - G.711</td>
</tr>
</tbody>
</table>

- Constraints R:
 - For all classes: Throughput satisfaction
 - α: $\alpha_k < 75 ms$

Other simulation parameters
Sub-Optimal Application Deployment

Results

| k | $|\alpha_k|$ | α_k delay (in s) | $|\beta_k|$ | β_k throughput (in bps) | β_k delay (in s) |
|-----|--------------|-------------------------|-------------|-------------------------------|------------------------|
| 1.0 | 18 | 0.086 | 1 | 101247 | 0.008 |
| 0.9 | 16 | 0.070 | 2 | 758230 | 0.105 |
| 0.8 | 14 | 0.073 | 4 | 1481418 | 0.013 |
| 0.7 | 12 | 0.073 | 5 | 2229776 | 0.015 |
| 0.6 | 10 | 0.072 | 7 | 2969675 | 0.015 |
| 0.5 | 9 | 0.071 | 9 | 3386316 | 0.016 |
| 0.4 | 7 | 0.038 | 12 | 4293402 | 0.022 |
| 0.3 | 5 | 0.011 | 15 | 5179227 | 0.021 |

Other results
Sub-Optimal Application Deployment

Observations

- \(\alpha = \text{G.711 voice codec and } \beta = \text{FTP 500 Kbps} \)
- At \(k = 0.4 \) effect of \(\beta \) on \(\alpha \) negligible
- System utilisation improves from 30% to 50%
- Table used to set ACL - operating point of AP
Stage Summary

- Theoretical and simulation study of homogeneous and heterogeneous deployments
- Joint deployment of realtime and non-realtime applications
- Application prioritisation for sub-optimal application deployment
- System utilisation improvement \(\sim 75\% \) over normal DCF (with SOAP1)
- Access control limit mechanism for AP management

SOAP improves system utilisation
WLAN topology design problem

Given client nodes & deployment area,
Construct WLAN topology,
Subject to capacity constraints,
While minimizing nw infrastructure (num of APs).
Outline

Introduction
issues in Wireless Network Design
Multi-tiered Wireless Network Design
Solution Approach

Stage 1: AP-Client Association
Capacity of WLANs
AP-assignment problem

Stage 2: WLAN Topology Design
Generic Framework
Topology Construction
WIND_{wlan} Tool

Stage 3: WMN Node Locationing and Topology Design
Mesh Network Design Problem
Problem Formulation
WIND_{wmn} Tool
Generic Framework

Advantages

- Allows planning for capacity at design stage
- Automate design process
- Eases validation with simulation
Outline

Introduction
Issues in Wireless Network Design
Multi-tiered Wireless Network Design
Solution Approach

Stage 1: AP-Client Association
Capacity of WLANs
AP-assignment problem

Stage 2: WLAN Topology Design
Generic Framework
Topology Construction
WIND\textsubscript{wlan} Tool

Stage 3: WMN Node Locationing and Topology Design
Mesh Network Design Problem
Problem Formulation
WIND\textsubscript{wmn} Tool

Summary
Example I

Office layout: (a) floor plan, (b) corresponding deployment layout
Example II
Topology construction
Outline

Introduction
Issues in Wireless Network Design
Multi-tiered Wireless Network Design
Solution Approach

Stage 1: AP-Client Association
Capacity of WLANs
AP-assignment problem

Stage 2: WLAN Topology Design
Generic Framework
Topology Construction
\texttt{WIND_wlan} Tool

Stage 3: WMN Node Locationing and Topology Design
Mesh Network Design Problem
Problem Formulation
\texttt{WIND_wmn} Tool
Composite Unit I

Definition
Virtual network element constructed for aggregating nodes, or branch of network, and their properties

\[CU = (CU' \mid NU)^+ \]

Where,
\(CU = \) Composite Unit
\(NU = \) Node Unit (any network element)
Design of Wireless Mesh Networks

Outline
Introduction
Issues in Wireless Network Design
Multi-tier Wireless Design
Solution Approach
Stage 1: AP-assignment
Capacity of WLANs
AP-assignment problem
Stage 2: WLAN Topology
Generic Framework
Topology Construction
WIND_wlan Tool
Stage 3: WMN Topology Design
Mesh Network Design Problem
Problem Formulation
WIND_wmn Tool
Summary

Composite Unit II
Class definition

```cpp
class CU {

private:

    int id;
    string name;

    double outLoadTotal;
    double inLoadTotal;

    LinkList* linkList;
    ASList* asList;
    CUList* childList;

public:

    void print(int tab);
    CU(NodeType* nt); // NU constructor
    CU(); // CU constructor

    ASList* getASList();
    LinkType* getBestLink();
    void addChild(CU* cu);
    void rstChildProperty(LinkType*);
    void setProperty();
    void resetLinks(LinkType*);
    void resetTraffic();

    LinkList* getUnusedLinks();
    ASList* getUnfulfilledTraffic();

};
```
Wireless Infrastructure Network Deployment Tool (WIND)

- Implemented using C++
- Input and output descriptions correspond with OPNET Modeler XML formats (for validation)

Pseudo code for WIND
Validation I

Deployment layout

Example parameters

- 5 PDAs running a VoIP call (Load 100 Kbps)
- 5 Workstations running FTP client (Load 1000 Kbps)
Validation II
Constructed topology

Simulation results

- Average VoIP throughput ~ 100 Kbps
- Average FTP throughput ~ 1000 Kbps
Stage summary

- Framework for deploying WLANs from simple network input parameters
- Inputs and Outputs modeled on simulator formats for integration
- Validation with simulation

Topology construction tool for WLANs
Example Campus Mesh Network

- Each building represents a WLAN
- APs connected to mesh with AP-mesh links
- Mesh nodes provide routes to gateway (through mesh links)
- AP-mesh forms a two-tier architecture
Mesh Network Design Problem

Mesh network design problem

Given deployment layout, AP nodes and their characteristics

Construct backhaul topology,

Subject to demand constraints

While minimizing network infrastructure (mesh nodes and links)

Constraints

- **Capacity**: Satisfy demand placed by APs (& their underlying networks)
- **Cost**: Minimise mesh nodes and links
- **Connectivity**: Connect all APs
Example Deployment: 6 APs, 5 Mesh Nodes

Deployment details

- Potential mesh nodes = 5
- Transmission range AP = 1.5 and mesh = 2
- Upper bound on mesh links (G) = 4
- Demands (100 Kbps) = < 1 – 2 >, < 2 – 5 >, < 2 – 6 >, < 3 – 4 >, < 3 – 6 >, < 4 – 6 > & < 5 – 2 >
Outline

Introduction
- Issues in Wireless Network Design
- Multi-tiered Wireless Network Design
- Solution Approach

Stage 1: AP-Client Association
- Capacity of WLANs
- AP-assignment problem

Stage 2: WLAN Topology Design
- Generic Framework
- Topology Construction
- WIND_{wlan} Tool

Stage 3: WMN Node Locationing and Topology Design
- Mesh Network Design Problem
- Problem Formulation
- WIND_{wmn} Tool

Summary
Network Model

Requirements
- Determine potential links (Mesh and Mesh-AP)
- Node and link costs
- Objective function
- Constraints
Computing Potential Links

- **Distance-based**: Compute distance between nodes and compare with transmit radius of AP

 Example:

 Given \(AP = (x, y, r, \ldots) \), \(Mesh = (x', y', r', \ldots) \)

 Potential link condition:

 \[
 \sqrt{(x - x')^2 + (y - y')^2} < r
 \]

- **Power-based**: Compute distance between nodes using transmit power

- Calculating potential links using channel conditions
Node and Link Costs

- φ_v: cost of installing mesh node v.
- κ_e: cost of installing link e.

Cost of link

- Cost of hardware (σ_e)
- Cost of power requirements (determined by transmit power)
 - Fixed power: $\kappa_e = \sigma_e + \text{ceil} \left(\frac{r_e^2}{\rho_e} \right)$
 Where,
 - r_e is transmit radius of node in link e
 - ρ_e is a cost factor
 - Variable power: $\kappa_e = \sigma_e + \text{ceil} \left(\frac{tx_dist_e^2}{\rho_e} \right)$
 Where,
 - tx_dist_e is transmission distance
 - ρ_e is a cost factor
Objective Function

Minimize

\[F = \sum_{e} \kappa_e u_e + \sum_{v} \phi_v s_v \]

Where,

- \(u_e \) = binary variable specifying whether link \(e \) is ON/OFF
- \(s_v \) = binary variable specifying whether node \(v \) is ON/OFF
Demand constraints

- Total demand flowing on each link not to exceed link capacity (1,5)
- Each demand has path from source AP to destination (2,3,4)
- Upper bound on number of demands per AP

Link constraint

- Upper bound on the number of links per node - G (6)
Comments

- Modeling of nodes and links as binary variables
- Mixed-Integer Linear Programming problem (MILP)
- Finds node location and topology
- Routing algorithm computes all pairs shortest path
Outline

Introduction
 Issues in Wireless Network Design
 Multi-tiered Wireless Network Design
 Solution Approach

Stage 1: AP-Client Association
 Capacity of WLANs
 AP-assignment problem

Stage 2: WLAN Topology Design
 Generic Framework
 Topology Construction
 WIND\textsubscript{wlan} Tool

Stage 3: WMN Node Locationing and Topology Design
 Mesh Network Design Problem
 Problem Formulation
 WIND\textsubscript{wmn} Tool
Extending WIND

WIND\textsubscript{wmn} tool overview

Outline

Introduction
Issues in Wireless Network Design
Multi-tier Wireless Design
Solution Approach

Stage 1: AP-assignment
Capacity of WLANs
AP-assignment problem

Stage 2: WLAN Topology
Generic Framework
Topology Construction
WIND\textsubscript{wmn} Tool

Stage 3: WMN Topology Design
Mesh Network Design Problem
Problem Formulation
WIND\textsubscript{wmn} Tool

Summary

- Input parameter details
- Module details
Implementation Details

- Implemented using PERL and ILOG OPL
- CPLEX solver used for MILP formulation
Experiment Details

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>100mx100m</td>
</tr>
<tr>
<td>AP/Mesh Tx Range</td>
<td>70m</td>
</tr>
<tr>
<td>Mesh node cost φ</td>
<td>1000</td>
</tr>
<tr>
<td>Mesh link cost factor ρ</td>
<td>10</td>
</tr>
<tr>
<td>Max. Links G</td>
<td>4</td>
</tr>
<tr>
<td>Link capacity</td>
<td>10 Mbps</td>
</tr>
<tr>
<td>Demand</td>
<td>1 Mbps</td>
</tr>
</tbody>
</table>

- Mesh and AP nodes deployed randomly
- 11 artificially generated loads for each network scenario
Results

<table>
<thead>
<tr>
<th>AP</th>
<th>Potential mesh</th>
<th>Exec time (s)</th>
<th>Mesh nodes (min,max)</th>
<th>Links (min,max,avg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
<td>< 1</td>
<td>2, 3</td>
<td>8, 10, 10</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>50.93</td>
<td>3, 4</td>
<td>10, 13, 12</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>69.86</td>
<td>3, 4</td>
<td>10, 13, 12</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>178.12</td>
<td>3, 6</td>
<td>12, 16, 15</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>854.51</td>
<td>3, 5</td>
<td>12, 16, 15</td>
</tr>
</tbody>
</table>

▲ Average number of links: avg = ceil(average of all scenarios)
Stage Summary

- Framework for deploying WMNs from simple network input parameters
- Node locationing and topology construction
- Minimise network deployment cost using node and link costs

Node locationing and topology construction tool for WMNs
Summary

Contributions

- Provisioning 802.11 WLANs in homogeneous and heterogeneous scenarios.
- Capacity-constrained design of wireless networks.
- WIND tool for design of local area and backhaul wireless networks.

Possible extensions

- Include coverage as constraint in design problem
- Scheduling and routing issues in WMN design
- Use of tool in other areas: Sensor networks (lifetime constraint), Sparse networks (reachability)
Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design
Publications

▶ Automated design of VoIP-enabled 802.11g WLANs. *OPNETWORK*, 2005. Joint work with: Sridhar Iyer and Atanu Guchhait.

MAC Parameters and Stack Overheads

802.11 DCF MAC parameters

<table>
<thead>
<tr>
<th>Parameter (in μS)</th>
<th>802.11b</th>
<th>802.11g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot time</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>SIFS</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>DIFS ($= SIFS + 2 \times$ Slot time)</td>
<td>50</td>
<td>28</td>
</tr>
<tr>
<td>PHY preamble</td>
<td>192</td>
<td>20</td>
</tr>
<tr>
<td>Signal extension</td>
<td>-</td>
<td>6</td>
</tr>
</tbody>
</table>

Table: 802.11 b and g MAC parameters: timing, preamble transmission time and signal extension.

Stack overheads

<table>
<thead>
<tr>
<th>Overhead</th>
<th>Value (in bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTP</td>
<td>12</td>
</tr>
<tr>
<td>UDP</td>
<td>8</td>
</tr>
<tr>
<td>IP</td>
<td>20</td>
</tr>
<tr>
<td>MAC</td>
<td>34</td>
</tr>
</tbody>
</table>

Table: RTP, UDP, IP and MAC stack overheads.
Voice Capacity: Maximum Calls I

Figure: Maximum G.723.1 voice calls: theoretical vs simulation results.
Voice Capacity: Maximum Calls II

Figure: Maximum G.729 voice calls: theoretical vs simulation results.
Voice Capacity: Maximum Calls III

Figure: Maximum GSM voice calls: theoretical vs simulation results.
Voice Capacity: Maximum Calls IV

![Figure: Delay for voice schemes in 802.11b/g.](image)

Figure: Delay for voice schemes in 802.11b/g.
Voice Capacity: Detailed Calculations

<table>
<thead>
<tr>
<th>Scheme</th>
<th>802.11b</th>
<th></th>
<th>802.11g</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>1</td>
<td>5.5</td>
<td>11</td>
</tr>
<tr>
<td>(\text{pkt}) (in bytes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.711</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>G.723.1</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>G.729</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>GSM</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>73</td>
</tr>
<tr>
<td>DIFS</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>28</td>
</tr>
<tr>
<td>SIFS</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>PHY</td>
<td>192</td>
<td>192</td>
<td>192</td>
<td>20</td>
</tr>
<tr>
<td>backoff slot</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>t_{\text{pkt}} (in (\mu s))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.711</td>
<td>1872</td>
<td>340.364</td>
<td>170.182</td>
<td>1872</td>
</tr>
<tr>
<td>G.723.1</td>
<td>784</td>
<td>142.546</td>
<td>71.273</td>
<td>784</td>
</tr>
<tr>
<td>G.729</td>
<td>752</td>
<td>136.727</td>
<td>68.364</td>
<td>752</td>
</tr>
<tr>
<td>GSM</td>
<td>856</td>
<td>155.636</td>
<td>77.818</td>
<td>856</td>
</tr>
<tr>
<td>t_{\text{ack}} (in (\mu s))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.711</td>
<td>112</td>
<td>20.364</td>
<td>10.182</td>
<td>112</td>
</tr>
<tr>
<td>G.723.1</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>G.729</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>GSM</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Throughput (T) (in Mbps)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.711</td>
<td>0.584</td>
<td>1.435</td>
<td>1.712</td>
<td>0.727</td>
</tr>
<tr>
<td>G.723.1</td>
<td>0.310</td>
<td>0.558</td>
<td>0.613</td>
<td>0.460</td>
</tr>
<tr>
<td>G.729</td>
<td>0.297</td>
<td>0.527</td>
<td>0.577</td>
<td>0.444</td>
</tr>
<tr>
<td>GSM</td>
<td>0.339</td>
<td>0.628</td>
<td>0.694</td>
<td>0.493</td>
</tr>
<tr>
<td>Bandwidth (b) (in Mbps)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.711</td>
<td>0.160</td>
<td>0.160</td>
<td>0.160</td>
<td>0.160</td>
</tr>
<tr>
<td>G.723.1</td>
<td>0.051</td>
<td>0.051</td>
<td>0.051</td>
<td>0.051</td>
</tr>
<tr>
<td>G.729</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>GSM</td>
<td>0.058</td>
<td>0.058</td>
<td>0.058</td>
<td>0.058</td>
</tr>
<tr>
<td>Number of calls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.711</td>
<td>3</td>
<td>8</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>G.723.1</td>
<td>6</td>
<td>10</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>G.729</td>
<td>6</td>
<td>10</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>GSM</td>
<td>5</td>
<td>10</td>
<td>11</td>
<td>8</td>
</tr>
</tbody>
</table>

Table: Number of voice calls: voice capacity calculations.
Voice Capacity: 39 Call Scenario
Simulation: 802.11g - G.711 codec

- Maximum 39 voice calls
- Packet drop $\leq 20\%$
- Delay bounded

Figure: Load and throughput for G.711, 54 mbps 802.11g - 39 call scenario.
Video Capacity: Theoretical Calculation

Throughput equation: Extension for large payloads

- Maximum MAC payload size = 2304 bytes
- Large packets are fragmented
- Depending on codec, video packets may be fragmented

\[
T_{frag} = \frac{\text{Payload}}{\frac{\text{backoff}}{2} \times \text{slot} + t_{frag} \times \text{frag}_\text{num}}
\]

Where,

\[
t_{frag} = \text{DIFS} + \text{SIFS} + 2 \times \text{PHY} + t_{pk}_\text{frag} + t_{ack}
\]

\[
t_{pk}_\text{frag} = \frac{(pk_{frag} + \text{MAC}) \times 8}{r}
\]

\[
\text{frag}_\text{num} = \lceil pkt/pk_{frag} \rceil
\]
Figure: Maximum CIF video flows: theoretical vs simulation results.
Figure: Maximum QCIF video flows: theoretical vs simulation results.
Video Capacity: Maximum Calls III

Figure: Maximum SQCIF video flows: theoretical vs simulation results.
Video Capacity: Maximum Calls IV

Figure: Delay for video schemes in 802.11b/g.
Video Capacity: Observations

- Large packet size affects maximum number of flows
- Maximum number of flows varies with codec (unlike Voice codecs)
- Efficient use of channel due to large packet size

Go back
Video Capacity: Detailed Calculations

<table>
<thead>
<tr>
<th>Scheme</th>
<th>802.11b</th>
<th>802.11g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>5.5</td>
</tr>
<tr>
<td>Data rate (r)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pkt (in bytes) SQCIF</td>
<td>304</td>
<td>304</td>
</tr>
<tr>
<td>(in bytes) QCIF</td>
<td>1112</td>
<td>1112</td>
</tr>
<tr>
<td>CIF</td>
<td>3256</td>
<td>3256</td>
</tr>
<tr>
<td>frag_size</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>fragments per pkt SQCIF</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>QCIF</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CIF</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DIFS</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>SIFS</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>PHY</td>
<td>192</td>
<td>192</td>
</tr>
<tr>
<td>backoff fragments per pkt SQCIF</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>QCIF</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CIF</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>slot PHY</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>t_{pkt} (in μs) SQCIF</td>
<td>2704</td>
<td>491.636</td>
</tr>
<tr>
<td>QCIF</td>
<td>9168</td>
<td>1666.909</td>
</tr>
<tr>
<td>CIF</td>
<td>12000</td>
<td>2181.818</td>
</tr>
<tr>
<td>t_{ack} (in μs)</td>
<td>1.978</td>
<td>0.36</td>
</tr>
<tr>
<td>Throughput (T) SQCIF</td>
<td>0.681</td>
<td>1.921</td>
</tr>
<tr>
<td>(in Mbps) QCIF</td>
<td>0.887</td>
<td>3.644</td>
</tr>
<tr>
<td>(in Mbps) CIF</td>
<td>0.686</td>
<td>3.281</td>
</tr>
<tr>
<td>Bandwidth (b) SQCIF</td>
<td>0.146</td>
<td>0.146</td>
</tr>
<tr>
<td>(in Mbps) QCIF</td>
<td>0.267</td>
<td>0.267</td>
</tr>
<tr>
<td>(in Mbps) CIF</td>
<td>0.521</td>
<td>0.521</td>
</tr>
<tr>
<td>Number of calls SQCIF</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>QCIF</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>CIF</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

Table: Number of video flows: video capacity calculations.
Extending DCF to provide guarantees I

Figure: Contention window for ACL scheme - VoIP + FTP flows.

Extended DCF

▶ Simple scheme to differentiate traffic flows
▶ Prioritise realtime time applications
▶ Additional flows of best effort service
Extending DCF to provide guarantees II

<table>
<thead>
<tr>
<th>Application</th>
<th>CWmin</th>
<th>CWmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>VoIP (priority)</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>FTP</td>
<td>31</td>
<td>1023</td>
</tr>
</tbody>
</table>

Table: Contention window parameters for SOAP.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command mix (get/total)</td>
<td>50%</td>
</tr>
<tr>
<td>Inter-request time (s)</td>
<td>exponential(60)</td>
</tr>
<tr>
<td>File size (bytes)</td>
<td>constant(125000)</td>
</tr>
<tr>
<td>Fragmentation size (bytes)</td>
<td>1500</td>
</tr>
<tr>
<td>Type of service</td>
<td>Best Effort (AC_BE)</td>
</tr>
</tbody>
</table>

Table: FTP simulation parameters.
Extending DCF to provide guarantees III

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Load (in bps)</th>
<th>Throughput (in bps)</th>
<th>Delay (in sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCF</td>
<td>81265</td>
<td>73712</td>
<td>0.009</td>
</tr>
<tr>
<td>Extended DCF</td>
<td>89575</td>
<td>85612</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Table: Comparison of VoIP plus FTP performance DCF.

Observations

- FTP flows in extended DCF = 4
- VoIP delay in extended DCF ≤ 0.062s
- VoIP delay in DCF ≥ 0.1s
Sub-optimal Capacity: Voice Codecs

| k | $\frac{T}{b}$ | $\begin{array}{c|c|c|c}
802.11b \\
(in \text{ mbps})
\end{array}$ | $\begin{array}{c|c|c}
802.11g \\
(in \text{ mbps})
\end{array}$ |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.5</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>6.494</td>
<td>11.15</td>
<td>12.115</td>
</tr>
<tr>
<td>0.9</td>
<td>5.5</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>0.8</td>
<td>5</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>0.7</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>0.6</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>0.5</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0.4</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0.2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table: k vs Number of voice calls for G.723.1 codec.
Sub-optimal Capacity: Voice Codecs

<table>
<thead>
<tr>
<th>k (\downarrow)</th>
<th>Number of calls: (\lfloor k \frac{T}{b} \rfloor)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>802.11b (in mbps)</td>
</tr>
<tr>
<td>1</td>
<td>5.5</td>
</tr>
<tr>
<td>$\frac{T}{b} \rightarrow$</td>
<td>6.631</td>
</tr>
<tr>
<td>1.0</td>
<td>6</td>
</tr>
<tr>
<td>0.9</td>
<td>5</td>
</tr>
<tr>
<td>0.8</td>
<td>5</td>
</tr>
<tr>
<td>0.7</td>
<td>4</td>
</tr>
<tr>
<td>0.6</td>
<td>3</td>
</tr>
<tr>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>0.1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table: k vs Number of voice calls for G.729 codec.
Sub-optimal Capacity: Voice Codecs

Table: k vs Number of voice calls for GSM codec.

<table>
<thead>
<tr>
<th>k</th>
<th>802.11b (in mbps)</th>
<th>802.11g (in mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 5.5 11</td>
<td>1 11 54</td>
</tr>
<tr>
<td>$\frac{T}{b}$ →</td>
<td>6.204 10.989 12.019</td>
<td>9.298 33.841 42.847</td>
</tr>
<tr>
<td>1.0</td>
<td>6 10 12</td>
<td>9 33 42</td>
</tr>
<tr>
<td>0.9</td>
<td>5 9 10</td>
<td>8 30 38</td>
</tr>
<tr>
<td>0.8</td>
<td>4 8 9</td>
<td>7 27 34</td>
</tr>
<tr>
<td>0.7</td>
<td>4 7 8</td>
<td>6 23 29</td>
</tr>
<tr>
<td>0.6</td>
<td>3 6 7</td>
<td>5 20 25</td>
</tr>
<tr>
<td>0.5</td>
<td>3 5 6</td>
<td>4 16 21</td>
</tr>
<tr>
<td>0.4</td>
<td>2 4 4</td>
<td>3 13 17</td>
</tr>
<tr>
<td>0.3</td>
<td>1 3 3</td>
<td>2 10 12</td>
</tr>
<tr>
<td>0.2</td>
<td>1 2 2</td>
<td>1 6 8</td>
</tr>
<tr>
<td>0.1</td>
<td>0 1 1</td>
<td>0 3 4</td>
</tr>
</tbody>
</table>
Sub-Optimal Application Deployment

Problem definition

SOAP 2

Given k Alpha flows ($|\alpha| = k$)

Compute number of Beta flows ($|\beta|$) & Gamma flows ($|\gamma|$)

Subject to constraints R
Other Simulation Parameters

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command mix (get/total)</td>
<td>100%</td>
</tr>
<tr>
<td>Inter-request time (s)</td>
<td>exp(1)</td>
</tr>
<tr>
<td>File size (bytes)</td>
<td>FTP 250 - cons(31250)</td>
</tr>
<tr>
<td></td>
<td>FTP 500 - cons(62500)</td>
</tr>
<tr>
<td>Fragmentation size (bytes)</td>
<td>1500</td>
</tr>
<tr>
<td>Type of service</td>
<td>Best Effort (AC_BE)</td>
</tr>
</tbody>
</table>

Table: SOAP simulation parameters for FTP - Average load 250 and 500 kbps.
SOAP1 Results I

| k | $|\alpha_k|$ | α_k delay (in s) | $|\beta_k|$ | β_k throughput (in bps) | β_k delay (in s) |
|-----|-------------|------------------------|-------------|-----------------------------|------------------------|
| 1.0 | 18 | 0.086 | 1 | 63672 | 0.007 |
| 0.9 | 16 | 0.067 | 3 | 713658 | 0.010 |
| 0.8 | 14 | 0.074 | 7 | 1447647 | 0.012 |
| 0.7 | 12 | 0.075 | 10 | 2181612 | 0.013 |
| 0.6 | 10 | 0.071 | 13 | 2920485 | 0.015 |
| 0.5 | 9 | 0.071 | 16 | 3306418 | 0.017 |
| 0.4 | 7 | 0.027 | 20 | 4134720 | 0.023 |
| 0.3 | 5 | 0.009 | 24 | 5002889 | 0.021 |

Table: SOAP1 results for FTP 250 Kbps with G.711 codec on 11 Mbps 802.11g.
Figure: SOAP1 FTP 250 Kbps: k vs Number of α_k and β_k flows.
SOAP2 Results I

| $|\beta_k|$ | $|\gamma_k|$ | γ_k delay | α_k delay |
|-----------|-------------|------------------|------------------|
| 7 to 3 | 0 | - | - |
| 2 | 2 | 0.033 | 0.074 |
| 1 | 4 | 0.337 | 0.012 |

Table: SOAP2 results for $k = 0.8$ ($|\alpha_{0.8}| = 14$), FTP 250 Kbps with G.711 codec on 11 Mbps 802.11g. α_k and γ_k delays are in seconds.
Algorithm 1: Pseudo-code for WIND\textsubscript{wlan}

\begin{verbatim}
input : ib: info base, ip: input parameters
cuList ← NULL
// G\textsubscript{DL}: Deployment layout
forall v ∈ V(ip.G\textsubscript{DL}) do
 // af: affinity factor
 deployedList ← ∪\textsubscript{i} (v.af\textsubscript{i} * ip.num\textsubscript{NU\textsubscript{i}}) . NU\textsubscript{i}
end
cuList ← computeCU(cuList, ib)
printTopology(cuList)
\end{verbatim}
Algorithm: ComputeCU()

\textbf{input} : cuList, ib: info base
\textbf{if} sizeof(cuList) = 1 \textbf{then} return cuList
newCULList ← NULL
L ← linktypes_present(cuList)
forall \(lt \in L \) do
 \(\text{cuList}_{lt} \leftarrow \text{cuList}_{lt} + \{ \text{cuList}[i], \text{cuList}[i].\text{linktype} = lt \} \)
while \(\text{cuList}_{lt} \) NOTEMPTY do
 \(\text{cuList}' = \text{lt}.\text{maxNodes}(\text{cuList}_{lt}) \)
 // Average load
 \(t \leftarrow \sum_{j} \frac{\text{cuList}'[j].\text{total}_\text{load}}{\text{sizeOf(\text{cuList}')}} \)
 \text{new cu'}
 \text{cu'.child(cuList')}
 \text{cuList}_{lt}.\text{remove(\text{cuList}')}
 \text{newcu}_{\text{relay}} = \text{findRelayNode}(lt, t)
 \text{cu'.child(newcu}_{\text{relay}})
 for \(\text{cu} \in \text{cuList}' \) do \text{cu.resetProperty()}
 \text{cu}_{\text{relay}.\text{resetProperty()}}
 \text{cu'.setProperty()}
 \text{newCULList.add(cu')}
end
end
\textbf{return} computeCU(newCULList, ib)

Algorithm 2: Psuedo-code for computeCU()
Information Base and Affinity Factor

<table>
<thead>
<tr>
<th>NU</th>
<th>Traffic out</th>
<th>Traffic in</th>
<th>Addr src</th>
<th>Addr destn</th>
<th>Link</th>
<th>AS-Link Map</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>NU_{PDA}</td>
<td>10000</td>
<td>100000</td>
<td>< N_{PDA} ></td>
<td>< N_{S} ></td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>NU_{WS}</td>
<td>10000</td>
<td>1000000</td>
<td>< N_{WS} ></td>
<td>< N_{S} ></td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>NU_{S}</td>
<td>10^6</td>
<td>10000</td>
<td>< N_{S} ></td>
<td>Undefined</td>
<td>2</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>NU_{Relay}</td>
<td>5 \times 10^5</td>
<td>5 \times 10^5</td>
<td>Undefined</td>
<td>Undefined</td>
<td>1,2</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table: Example information base. Traffic_{out}, Traffic_{in} are in bits per second. Link type 1 represents a 802.11 10 Mbps wireless link and type 2 represents a 10 Mbps Ethernet link.

<table>
<thead>
<tr>
<th>Node type ↓, Vertex →</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NU_{PDA}</td>
<td>0.6</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>NU_{WS}</td>
<td>0.6</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>NU_{S}</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table: Affinity factors.
Potential Links: Including Channel Conditions

\[
(\psi_{rcv})_{dB} = (\psi_{xmt})_{dB} - 10\eta \log_{10}(d/d_0) - \xi
\]

Where,

- \((\psi_{rcv})_{dB}\) & \((\psi_{xmt})_{dB}\) are received and transmit powers
- \(d\) is transmit distance
- \(d_0\) is reference distance
- \(\eta\) is path loss exponent
- \(\xi\) is shadowing component
Mesh Topology Design Formulation

Variables:
- x_{fw}: flow realising all demands originating at AP w on access arc f
- x_{tw}: flow realising all demands originating at AP w on transit arc t
- y_e: capacity of link e
- $u_e = 1$ if link e is provided; 0, otherwise
- $s_v = 1$ if mesh node v is installed; 0, otherwise

Objective function:
minimize $F = \sum_e \kappa_e u_e + \sum_v \varphi_v s_v$

Constraints:
\[
\sum_t w_{et} \sum_w x_{fw} + \sum_f w_{ef} \sum_w x_{fw} \leq y_e, \quad e = 1, 2, \ldots, E - (1)
\]
\[
\sum_f \beta_{fw} x_{fw} = H_w, \quad w = 1, 2, \ldots, W - (2)
\]
\[
\sum_f \beta_{fw} x_{fw} = -h_{ww'}, - (3)
\]
\[
\sum_t \beta_{tv} x_{tw} + \sum_f \beta_{fv} x_{fw} = 0 - (4)
\]
\[
y_e \leq M_e u_e - (5)
\]
\[
\sum_e \beta_{ev} u_e \leq G_v s_v - (6)
\]
Mesh Topology Design Formulation

Indices:

- $w = 1, 2, \ldots, W$: APs
- $v = 1, 2, \ldots, V$: mesh nodes
- $e = 1, 2, \ldots, E$: links
- $f = 1, 2, \ldots, F$: directed access arcs (between AP & mesh nodes)
- $t = 1, 2, \ldots, T$: directed transit arcs (between mesh nodes)
Mesh Topology Design Formulation

Constants:

\(h_{ww'} \): volume of demand from AP \(w \) to \(w' \)
\[H_w = \sum_{w'} h_{ww'} \]: total demand outgoing from AP \(w \)
\(\beta_{ev} = 1 \) if link \(e \) is incident with mesh node \(v \); \(0 \), otherwise
\(\beta_{fw} = -1 \) if access arc \(f \) is incoming to AP \(w \)
\[= 1 \] if access arc \(f \) is outgoing from AP \(w \)
\[= 0 \] otherwise
\(\beta_{fv} = -1 \) if access arc \(f \) is incoming to mesh node \(v \)
\[= 1 \] if access arc \(f \) is outgoing from mesh node \(v \)
\[= 0 \] otherwise
\(\beta_{tv} = -1 \) if transit arc \(t \) is incoming to mesh node \(v \)
\[= 1 \] if transit arc \(t \) is outgoing from mesh node \(v \)
\[= 0 \] otherwise
\(w_{ef} = 1 \) if access arc \(f \) is realised on link \(e \); \(0 \), otherwise
\(w_{et} = 1 \) if transit arc \(t \) is realised on link \(e \); \(0 \), otherwise
\(\kappa_e \): cost of installing link \(e \)
\(M_e \): upper bound on the capacity of link \(e \)
\(\varphi_v \): cost of installing mesh node \(v \)
\(G_v \): upper bound on the number of radios of mesh node \(v \)
Mesh Topology Design Formulation

Variables:
- \(x_{fw} \): flow realising all demands originating at AP \(w \) on access arc \(f \)
- \(x_{tw} \): flow realising all demands originating at AP \(w \) on transit arc \(t \)
- \(y_e \): capacity of link \(e \)
- \(u_e = 1 \) if link \(e \) is provided; \(0 \), otherwise
- \(s_v = 1 \) if mesh node \(v \) is installed; \(0 \), otherwise

Objective function:
minimize \(F = \sum_e \kappa_e u_e + \sum_v \varphi_v s_v \)

Constraints:
\[
\sum_t w_{et} \sum_w x_{fw} + \sum_f w_{ef} \sum_w x_{fw} \leq y_e , \quad e = 1, 2, \ldots, E \quad (1)
\]
\[
\sum_f \beta_{fw} x_{fw} = H_w , \quad w = 1, 2, \ldots, W \quad (2)
\]
\[
\sum_f \beta_{fw'} x_{fw} = -h_{ww'} \quad (3)
\]
\[
\sum_t \beta_{tv} x_{tw} + \sum_f \beta_{fv} x_{fw} = 0 \quad (4)
\]
\[
y_e \leq M_e u_e \quad (5)
\]
\[
\sum_e \beta_{ev} u_e \leq G_v s_v \quad (6)
\]
Mesh Algorithm Formulation

cost_min \leftarrow COSTMIN
forall ON/OFF combination of mesh_nodes do
 // on mesh nodes which have been switched ON
 forall ON/OFF combination of links &
 num_of_mesh_links < max_links do
 forall demands do
 if demand < remaining_link_capacity() then
 cost \leftarrow cost_of_shortest_path() if cost <
 cost_min then cost_min \leftarrow cost
 adjust_link_capacity()
 end
 end
 end
end

Algorithm 3: Psuedo-code for mesh routing.
Input Parameters

1. Network elements: Number of AP and potential mesh nodes
2. Network element properties: Properties of nodes and their associated links
3. Network scenario strategy: Properties of deployment layout and node distribution
4. Traffic demands: User generated traffic demands for each AP
5. Link cost functions: Cost functions for fixed and variable transmit powers
6. Optimizer parameters and heuristics: Heuristics and initial settings for the optimiser
WIND\textsubscript{wmn} Modules I

- Network scenario generator: Created based on deployment layout parameters and number of nodes. Creates locations of AP nodes and potential mesh nodes.
- Link constructor: Uses heuristics to generate list of potential links.
- Optimization preprocessor: Constructs inputs for optimiser and demand matrix for the constraint verifier.
WIND\textsubscript{wmn} Modules II

- Optimizer: External optimizer invoked to solve MILP problem
- Constraint verifier: Verifies capacity constraints imposed on scenario by comparing optimizer output with demand matrix
- Topology generator: Constructs corresponding capacity-constrained topology
- Simulator: External simulator invoked to validate topology generated