

Implementation of WiFiRe MAC protocol

M.Tech Project defense

Ranjith Kumar Madalapu
(05329R08)

Under the guidance of

Prof. Sridhar Iyer and Prof. Anirudha Sahoo

Department of Computer Science
IIT Bombay

July 11th

Outline
● Introduction and Motivation
● WiFiRe Protocol
● Problem statement
● LAN Emulation
● Implementation Modules
● Experiments - Demo
● Learnings
● Conclusions

Introduction and Motivation

15
-2

0k
m

Fiber PoP

village

3 - 4 km

~5 km

Cellular coverage

• 250-300 villages per PoP
• Wired connectivity not possible in many cases
•Installing more BS, costlier
•Technology requirements

 Long range, Low cost, Broadband Wireless Access (BWA)
 Guaranteed QoS for VoIP traffic

• Aim: Data and voice connectivity in remote villages

Fig. Ref: WiFiRe draft [1]

Introduction and Motivation (Cont.)
● WiFi (802.11)

– Free licensed spectrum (2.4GHz),
– Off-the-self chipset
– MAC access, CSMA/CA doesn't support for long distances

● WiMAX (802.16)
– Support Long Ranges (30 to 40km)
– Efficient MAC, PHY is too costly

● WiFiRe : WiMAX like MAC on top of WiFi PHY

WiFiRe - Architecture

● Star topology(15km radius)

● BS at fiber PoP

● 40m tower at BS with sectorized
antenna

● 10m pole at ST with directional
antenna

● Single WiFi channel shared
among all the sectors

● 25Mbps data rate (UL and DL)

Ref: WiFiRe draft [1]

 6

BS 1

ST(s)

Downlink Transmissions Uplink Transmissions

DL Sub-Frame UL Sub-Frame

BS 2

BS 4 BS 5

BS 3

BS 6

System

Sector 1

Sector 4

Sector 2

Sector 5

Sector 3

Sector 6

beacons

Frame format - (TDD-MSTDM)

Ref: WiFiRe draft [1]

Beacon<BSID, signal strength,...>

Ranging Request
Ranging Request

Ranging Response

Ranging Response
Adjustmen
t

(appropriate BS is selected
for further communication)

Registration Request
Registration Request

Registration
ResponseRegistration Response

Listen to
Beacons

Wait for
Response

Configuring own
IP, Ready for
data transfer

Select IP
address and
Secondary
CID

ST BS S

Network Initialization

Fig. Ref: WiFiRe draft [1]

Problem Statement
● Implementation of single sector WiFiRe MAC

– Single BS, multiple STs and Clients under each ST

● Previous work done
– Design of WiFiRe

– Testbed prototype (single ST)

– Suggested improvements in draft

● Present work done
– Testbed with multiple STs in a single sector

– Implementing all required modules

– End-to-End connectivity

– Provide different services ex: HTTP, VoIP, FTP etc.

WiFiRe LAN Emulation

● MAC and PHY are two separate entities
● WiFiRe PHY is under development (IITM)
● Simulation of MAC using OPNET is done already
● To test MAC using existing infrastructure
● MAC to be ported on PHY

Basic Testbed setup

Client

Client

STet
h0

et
h1

BS

et
h0

et
h1

Switch
Proxy
Server

Cross Cable

Client

LAN emulation over Ethernet

● Single BS, multiple STs and Clients
● BS and ST are layer-2 device
● Clients are connected to ST using Ethernet switch
● BS is connected to Proxy using 802.3
● We emulate WiFiRe link between BS and ST
● Propagation delay between BS and ST is negligible

Client13

Client23

Client11

 ST
 1et

h0

et
h1

BS

et
h0

et
h1

Switch
Proxy
Server

VoIP
Gateway

Switch

 ST
 2et

h0

et
h1Switch

Switch

PSTN

Internet

Client12

Client22

Client21

WiFiRe Implementation - Testbed

Client_Socket

Client_Socket In_socket

Wifire_socket

eth1 eth0

BS-UP Link

In_buffer_wifire Out_buffer

Out_thread

In_socketeth0 eth1

ST-UP Link

Wifire_socket

In_buffer Out_buffer_wifire
In_thread

Wifire_socketeth0 eth1

ST-DOWN Link

Out_buffer In_buffer_wifire
Out_thread

eth1 eth0

In_bufferOut_buffer_wifire

In_thread

 Wifire_socket

BS-DOWN Link

Signal_handler
SIGALRM Memory

Management
Unit (MMU)

Rise
SIGALRM

Threads, Sockets and Buffers

● Using PF_SOCK in C

● Binding with particular NIC,Byte level access

● Send/receive data using sockets on MAC layer

● Allows non-Ethernet packets (like WiFiRe frame); Ethernet switch
broadcast those packets, Ethernet MAC header not mandatory

● Why Socket and not kernel?

• Socket itself supports lower level access
• Kernel module handles various issues, ex: traps, memory etc.

which are not important/relevant
• Debugging is easier

● PCAP?

Ethernet sockets

BS_TABLE

WiFiRe_Socket

Timer
Clock

CID

Set timers

To STFrom ST To ServerFrom Server

Raise
SIGALRM

ST_MAPPER

Scheduler
and

MAP gen

Timing
Mechanism eth0 eth1

CID
Generator

In/out_Socket

Filters

Packet Controller
Packet Classifier

Memory
Management

 Unit (Queues)

Emulation
Statistics.

Debug
Logs

Configuration

BS Modules

ST_TABLE

Client_Socket

Set timers

To ClientFrom Client
To BSFrom BS

Raise
SIGALRM

Local Scheduler
(FCFS)

Timer
Clock

Timing
Mechanism

eth0 eth1

WiFiRe_Socket

Filters

Packet Controller

Packet Classifier

Memory
Management

 Unit (Queues)

Emulation
Stats.

Debug
Logs

Configuration

MAP
Parser

ST Modules

Type of
CID?

Management
type

Destination
MAC?

Ranging
module

Registration
module

Broadcast
module

LTD
module

Memory Management Unit (MMU) To Proxy

Rx from
Packet Controller

DCID

RNG-REQ REG-REQ
Local traffic Proxy traffic

Broadcast
traffic

Packet Classifier at BS

DL Transmission Tx

RNG-RSP REG-RSP

BCID/PCID

● BS sends periodic beacons
– When SIGALRM caught by signal_handler
– Operational parameters are transmitted
– [Operation-ID, System-ID, BSID, DLMAP, ULMAP]

● ST's ranging request to BS
– ST receive beacon frame
– ST send request
– BS generate new BCID and PCID
– Update ST_MAPPER table

● ST sends registration request
− Client can not start communication before registration
– BS/ST shutdown and restart conditions are handled

Beacon, Ranging and Registration

Beacon, Ranging, Registration etc.

ST sends request

CID generator

Type of CID Type of service Connection identifier

0 2 4 15

● Type of CID
– BCID (00), PCID(01), DCID(10 or 11)

● Type of Service
– UGS(00), rtPS(01), nrtPS(10) and BE(11)

● New CID(type of CID, Type of srvice=11);
● Special CIDs

– 0xffff, to Tx broadcast frames
● Single Data CID for ST

Tables for BS and ST

● ST_TABLE updates when new client frame Rx at ST
● ST_MAPPER updates when new client frame Rx at BS

– Read when data packet received
● BS_TABLE updates when new ST comes up

– Read when management packet received

Filed Type Size

STIDSTID 6

PCID 2

BCID 2

BSID 2

BS_TABLE (at BS)

Filed Type Size

STID 6

Client ID 6

ST_MAPPER (at BS)

DCID 2

Filed Type Size

Client ID 6

ST_TABLE (at ST)

DCID 2

● Soft timer is used

– Generate SIGALRM periodically
– Activate Packet controller to prepare frame

● Debug logs levels
– Keep track of execution of program

● Stats Module
– Console interaction
– To measure performance

● Configuration module
– Parse the config.wre file
– Set all configuration parameters
– Set default values if not found

Configuration module

Configuration
values

Set of
commands

WiFiRe console & stats display

Data Tx/Rx
stats from BS

List of STs

List of Clients

 ST
 1et

h0

et
h1

BS

et
h0

et
h1

Switch
Proxy
Server

VoIP
Gateway

Switch

 ST
 2et

h0

et
h1Switch

Switch

PSTN

Internet

Experiments – Demo, Testbed setup

Client1

Client2

Client3

Experiments - Demo
● Within Same ST

– Ping between client and proxy
– Accessing web pages
– Bulk data download

● Between different ST
– Ping between Client11 and Client21
– VoIP call between Client11 and Client21

● VoIP call between Client and PSTN phone

WiFiRe Demo

Learnings

● ARP Cache flush
● Moving from 32-bit to 64-bit machines
● Problem with Non-WiFiRe packets
● Problem with multiple DHCP servers
● Segmentation fault

Conclusions

● Implemented protocol is working as expected
● Able to Tx/Rx different application protocol

frames
– Ex: HTTP, FTP, VoIP

● Modules implemented can be used directly
while integration

Future work

● Extending to multiple sectors
● Efficient scheduler required at S
● Implementing QoS and CAC
● Slot level implementation has to be done
● Integration with actual hardware

References

[1] Sridhar Iyer (IIT Bombay), Krishna Paul (Intel), Anurag Kumar (IISc Bangalore), and
Bhaskar Ramamurthi (IIT Madras). Broadband Wireless for Rural Areas–
WiFiRe: Medium Access Control (MAC) and Physical Layer (PHY) Specifications . August
2006.
[2] Shravan Kumar Hullur. Design and Implementation of MAC Layer of WiFiRe Protocol,
M.Tech Thesis, WiFiRe team, IIT Bombay, 2007.
[3] Sameer Kurkure. Design and Implementation of WiFiRe MAC Layer Protocol, M.Tech
Thesis, WiFiRe team, IIT Bombay, 2007.
[4] Bhaskaran Raman Pravin Bhagavat and Dheeraj Sanghi. Turning 802.11 Inside-Out. In
ACM SIGCOMM, pages 33– 38, 2004n
[5] Sockets. The Linux Socket Filter: Sniffing Bytes over the Network. http://www.
linuxjournal.com/article/4659.

Thank you

Meta Frame Construction

DL-TB's, B1

DL-TB: WiFiRe
 Data Packet

Control
packet

Ethernet
Header

Ethernet Packet

DL-TB's, B3 DL-TB's, B5 DL-TB's, B

Slots in UL-Frame Slots in DL-Frame

UL-Frame

Group B1 Group B3 Group B5 Beacon

BS-MAC SwitchEthernet Packets

BS2

BS4

BS6

BS1

BS3

BS5

BS-PHY's

WiFiRe real system component

WiFiRe MAC

Ethernet MAC
Ethernet
Cable

N
IC

System ‘ S’
Switch

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

A1

A2

A3

A4

A5

A6

Ethernet
Cables

To TCP/IP Layer

Assumptions on PHY

● Clock generate one tic per every slot
● Reading control packet
● Handling multiple Ethernet packets
● Min buffer size required (210 slots x 44B)
● FCFS queue at BS

WiFiRe LAN Emulation

WiFiRe MAC

Physical Device
Drivers

WiFiRe MAC

Physical Device
Drivers

Base Station
Subscriber
TerminalEthernet Frame

(socket)

PHY PHY

Pay load
(UL/DL)

Represents
Communication
channel

MAC functionalities
Network initialization
Processing frames
Handling buffers

PHY functionalities
Tx frames
Rx frames

What is emulation?
exact reproduction of external behavior of the system

Fig. Ref: Shravan Thesis[2]

● Threads
– Main_thread and Signal_thread
– In_thread and Out_thread

● Sockets
– Used PF_PACKET socket in C
– Bind with particular NIC
– Byte level access
– Tx/Rx non-Ethernet packets

● Buffers
– Used for temporary storage purpose at socket

