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Introduction and Motivation
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• 250-300 villages per PoP
• Wired connectivity not possible in many cases
•Installing more BS, costlier  
•Technology requirements

 Long range, Low cost, Broadband Wireless Access (BWA)
 Guaranteed QoS for VoIP traffic

• Aim: Data and voice connectivity in remote villages

Fig. Ref:  WiFiRe draft [1]



   

Introduction and Motivation (Cont.)
● WiFi (802.11)

– Free licensed spectrum (2.4GHz), 
– Off-the-self chipset
– MAC access, CSMA/CA  doesn't support for long distances

● WiMAX (802.16)
– Support Long Ranges (30 to 40km)
– Efficient MAC, PHY is too costly 

● WiFiRe : WiMAX like MAC on top of WiFi PHY



   

WiFiRe - Architecture

● Star topology(15km radius)

● BS at fiber PoP

● 40m tower at BS with sectorized 
antenna

● 10m pole at ST with directional 
antenna

● Single WiFi channel shared 
among all the sectors

● 25Mbps data rate (UL and DL)

Ref:   WiFiRe draft [1]
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Problem Statement
● Implementation of single sector WiFiRe MAC

– Single BS, multiple STs and Clients under each ST

● Previous work done
– Design of WiFiRe

– Testbed prototype (single ST)

– Suggested improvements in draft

● Present work done
– Testbed with multiple STs in a single sector

– Implementing all required modules

– End-to-End connectivity

– Provide different services ex: HTTP, VoIP, FTP etc.



   

WiFiRe LAN Emulation

● MAC and PHY are two separate entities 
● WiFiRe PHY is under development (IITM)
● Simulation of MAC using OPNET is done already
● To test MAC using existing infrastructure
● MAC to be ported on PHY 



   

Basic Testbed setup
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LAN emulation over Ethernet

● Single BS, multiple STs and Clients
● BS and ST are layer-2 device
● Clients are connected to ST using Ethernet switch
● BS is connected to Proxy using 802.3
● We emulate WiFiRe link between BS and ST
● Propagation delay between BS and ST is negligible
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● Using PF_SOCK in C

● Binding with particular NIC,Byte level access

● Send/receive data using sockets on MAC layer

● Allows non-Ethernet packets (like WiFiRe frame); Ethernet switch 
broadcast those packets, Ethernet  MAC header not mandatory

● Why Socket and not kernel?

• Socket itself supports lower level access
• Kernel module handles various issues, ex: traps, memory etc. 

which are not important/relevant 
• Debugging is easier

● PCAP?

Ethernet sockets
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● BS sends periodic beacons
– When SIGALRM caught by signal_handler
– Operational parameters are transmitted
– [Operation-ID, System-ID, BSID, DLMAP, ULMAP]

● ST's ranging request to BS
– ST receive beacon frame
– ST send request
– BS generate new BCID and PCID
– Update ST_MAPPER table

● ST sends registration request
− Client can not start communication before registration
– BS/ST shutdown and restart conditions are handled

Beacon, Ranging and Registration



   

Beacon, Ranging, Registration etc.

ST sends request



   

CID generator

Type of CID Type of service Connection identifier

0 2 4 15

● Type of CID
– BCID (00), PCID(01), DCID(10 or 11)

● Type of Service
– UGS(00), rtPS(01), nrtPS(10) and BE(11)

● New CID(type of CID, Type of srvice=11);
● Special CIDs

– 0xffff, to Tx broadcast frames
● Single Data CID for ST



   

Tables for BS and ST

● ST_TABLE updates when new client frame Rx at ST
● ST_MAPPER updates when new client frame Rx at BS

– Read when data packet received
● BS_TABLE updates when new ST comes up

– Read when management packet received

Filed Type Size

STIDSTID 6

PCID 2

BCID 2

BSID 2

BS_TABLE (at BS)

Filed Type Size

STID 6

Client ID 6

ST_MAPPER (at BS)

DCID 2

Filed Type Size

Client ID 6

ST_TABLE (at ST)

DCID 2



   

● Soft timer is used

– Generate SIGALRM periodically
– Activate Packet controller to prepare frame

● Debug logs levels
– Keep track of execution of program

● Stats Module
– Console interaction
– To measure performance 

● Configuration module
– Parse the config.wre file
– Set all configuration parameters
– Set default values if not found
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WiFiRe console & stats display
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Experiments - Demo
● Within Same ST

– Ping between client and proxy
– Accessing web pages
– Bulk data download

● Between different ST
– Ping between Client11 and Client21 
– VoIP call between Client11 and Client21

● VoIP call between Client and PSTN phone



   

WiFiRe Demo



   

Learnings

● ARP Cache flush
● Moving from 32-bit to 64-bit machines
● Problem with Non-WiFiRe packets
● Problem with multiple DHCP servers
● Segmentation fault



   

Conclusions

● Implemented protocol is working as expected
● Able to Tx/Rx different application protocol 

frames
– Ex: HTTP, FTP, VoIP

● Modules implemented can be used directly 
while integration



   

Future work

● Extending to multiple sectors
● Efficient scheduler required at S
● Implementing QoS and CAC
● Slot level implementation has to be done
● Integration with actual hardware
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Thank you



   

Meta Frame Construction
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WiFiRe real system component
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Assumptions on PHY

● Clock generate one tic per every slot
● Reading control packet
● Handling multiple Ethernet packets
● Min buffer size required (210 slots x 44B)
● FCFS queue at BS



   

WiFiRe LAN Emulation
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Fig. Ref:  Shravan Thesis[2] 



   

● Threads
– Main_thread and Signal_thread
– In_thread and Out_thread

● Sockets
– Used PF_PACKET socket in C
– Bind with particular NIC
– Byte level access
– Tx/Rx non-Ethernet packets

● Buffers
– Used for temporary storage purpose at socket


