
Cross Layer Feedback in Mobile

Device Protocol Stacks

Vijay T. Raisinghani

PhD candidate

Advisor: Prof. Sridhar Iyer

Committee: Profs. Abhay Karandikar, Anirudha Sahoo, Krishna Paul

K R School of Information Technology

IIT Bombay

11-Dec-2006

Overview

• Background: Cross Layer Feedback

• Problem Definition: CLF architecture/related work

• ECLAIR Architecture

• ECLAIR Prototype/Validation

• ECLAIR Evaluation/Comparison

• ECLAIR sub-architecture/optimization

• Architecture Selection

• Future Work

• Publications

Typical Mobile Wireless Network

• MWN characteristics

– High bit error rate of wireless channel
– Mobility induced disconnections

Typical Protocol Stack Architecture -

Layered

• Application has low
awareness of physical
layer and vice-versa

• Layered architecture:
Layer n has function
specific Service Access
Points for layers n − 1, n
+ 1

Cross Layer Feedback: Motivation

• Protocol stack layering useful from software
engineering perspective

• Strictly layered stacks do not perform well over
wireless networks
– network conditions are highly variable: random errors

intermittent disconnection
– Several assumptions from fixed wired networks do not

hold for wireless, since packet losses, disconnections,
mobility

Layered inefficiency example

TCP in Wireless

• On packet loss
– TCP assumes network congestion
– reduces throughput

• In wireless networks
– many packet losses are due to bit errors

• TCP’s congestion assumption fails
– unaware of wireless physical layer
– reduction in send window inappropriate

Cross Layer Feedback

• Cross layer information can help improve performance
over wireless networks

• Upper to lower layers
– TCP timer information
– application QoS requirements
– user feedback

• Lower to upper layers
– link characteristics
– network connectivity status

• Our study (Receiver Window Control) confirms the
benefits of cross layer feedback

Cross Layer Feedback

Optimizing for MWN

• Any cross layer approach involves one or more
of:
– Fixed Host (FH) TCP stack modification
– Base Station (BS) per-connection support
– Mobile Host (MH) TCP stack modification

• Our focus
– Cross layer feedback on the MH

Overview

• Background: Cross Layer Feedback

• Problem Definition: CLF architecture/related work

• ECLAIR Architecture

• ECLAIR Prototype/Validation

• ECLAIR Evaluation/Comparison

• ECLAIR sub-architecture/optimization

• Architecture Selection

• Future Work

• Publications

Scope of Work

• Scope: How to do cross layer feedback;
architectural aspects

• Out of scope
– Specific cross layer optimization

• Large body of literature exists on cross layer optimizations

– Issues specific to cross layer feedback
• Dependency cycles and conflicts

Cross Layer Feedback: “Punch hole” /

Ad hoc approach

• Ad-hoc approach

– Introduce additional code in
layer for CLF

CLF: Punch Hole – Problems

• Each additional CLF code block
can slow down data path (thruput)
of layer

• Porting CLF will require rewriting
for specific OS

• Difficult to disable/ remove code
intertwined with regular layer code

• Difficult to do fast
prototyping/additions since ad-hoc

• Multiple event monitors within a
layer could slow down data path
(thruput) of layer

• Difficult to control protocol’s
correctness since updates by
different CLF code blocks

Existing Approaches

• Physical Media Independence (Inouye et al, 1997)
– Adaptation modules for each layer
– Layer by layer propagation of events
– Operating System APIs for adaptation

• Interlayer Signaling Pipe (Gang et al, 1999)
– Information exchange through packet headers; layers need to be modified

• ICMP Messages (Sudame et al, 2001)
– Special ICMP messages and special handler at socket layer
– Adaptation for application and transport defined by each application

separately; layers need to be modified

• CLASS (Wang et al, 2003)
– Direct interaction between layers; problems similar to ad hoc approach

• MobileMan (Conti et al, 2004)
– Add network status data structure; rewrite protocols to be network aware

• User-space (Mehra et al, 2003)
– All modules in user-space

Problem: CLF architecture

• CLF basically stack modification

– Multiple ad-hoc cross layer modifications can impact stack’s efficiency,
maintainability, correctness

– Existing approaches do not address all of these issues
– Any to any layer interaction is not supported in all approches

• Problem: There is a need for an appropriate architecture for
cross layer feedback
– Design goals for architecture

• Rapid prototyping: easy development / deployment of new CLF idea
• Minimum intrusion: protect stack correctness; easy to extend / reverse CLF
• Portability: easy porting to different systems
• Efficiency: minimal overheads (e.g. cpu, memory, data path delay);

enhanced performance
• Any-Any layer communication: Any layer can communicate with any other

layer in the stack

Contributions

• ECLAIR: Architecture for CLF
– Definition, prototype implementation, validation(RWC)

• Core: Sub-architecture for reducing overheads

• Metrics for CLF architecture evaluation

• Notation for layer and CLF implementation
aspects

• Design guide for cross layer feedback

Overview

• Background: Cross Layer Feedback

• Problem Definition: CLF architecture/related work

• ECLAIR Architecture

• ECLAIR Prototype/Validation

• ECLAIR Evaluation/Comparison

• ECLAIR sub-architecture/optimization

• Architecture Selection

• Future Work

• Publications

ECLAIR Motivation

Based on the design goals

• Rapid prototyping

– Provide clean hooks to enable quick changes in cross layer algorithms, without
disturbing existing stack

• Portability

– Provide APIs to reduce dependency on OS specifics

• Minimum intrusion

– Use a mechanism to change protocol behavior with minimum possible
modifications to existing stack

• Efficiency

– Cross layer components should not impact the data path

• Any-to-any layer feedback

– Components should not restrict direction of cross layer feedback or be restricted
to specific layers

ECLAIR overview

• Optimizing SubSystem:
Protocol Optimizers (Cross
layer feedback algorithms);
receive layer events; decide
other layers behavior

• Tuning Layer: Monitor layer
events; provide API to
protocol optimizer; access
layer’s control data structure
values to monitor and change
behavior

ECLAIR

details

ECLAIR – Implementation View

TL PO Interface

Protocol Optimizer for User TLProtocol Optimizer for User TL

Application TL Interfaces

ECLAIR Details – Tuning Layer

• Application and User Tuning Layers are in user-space
– Other TLs are in kernel space

• User TL (in user-space) interacts with system thru a special user-PO
in kernel space (RWC example later)

• For portability
– TL is split into generic tuning layer and implementation dependent access

sub-layer
– Generic API is used by PO; this invokes implementation specific API

• TL provides register and unregister functions for POs
– Multiple POs may register for an event
– Event means a change in some data structure of a protocol
– Event notification to PO is through a call-back function or event queue

• If there is any fatal error during processing of a TL, the TL
– Unloads (till next reboot)
– Unregisters all its POs; aborts all its actions

ECLAIR Details – Optimizing SubSystem

• PO implements
– Cross layer procedure (cross layer algorithm)
– Event handler(s)
– Register/unregister procedure, error handler, log procedure

• On receipt of event
– Cross layer algorithm in PO determines values for updating data structures
– PO calls appropriate TL APIs

• On fatal error
– Unloads (unregisters from all TLs) until reboot

• Cross layer shutdown
– User-PO registers with all TLs
– On shutdown event from user, user-PO sends shutdown event to all TLs;

thru TLs to all POs

ECLAIR TL API Examples

• User TL
– get_stack_paramter() / set_stack_parameter()
– crosslayer_shutdown()

• Transport TL
– get_receiver_window() / set_receiver_window()

• Network TL (IP)
– get_frag_assy_timer() / set_frag_assy_timer()

• MAC TL (802.11)
– get_contention_window() / set_contention_window()

ECLAIR Validation

Receiver Window Control: CLF example

• TCP congestion control: sender – congestion
window; receiver – receiver / advertised window

• Manipulate receiver window to manipulate
throughput of flows

• At receiver
– Flows with similar rtt and bandwidth on path get similar

throughput, assuming no congestion
– Reduce advertised window of low priority flow to decrease

throughput

Receiver Window Control – Algorithm

RWC Example

• Initially

7)815(30

8)30
4

1
(

15)30
4

2
(

1,1,2

10,10,10

1,1,1,30

3

2

1

321

321

321

=+−=

=×=

=×=

===
•

===
•

====

awnd

roundawnd

roundawnd

xxx

awndawndawnd

xxxA

feedback user After

Thus

ECLAIR Prototype: Linux

Receiver Window Control

1: Get TCP control
data structures

2a: PO registers
2b: User event

3: App info, user
inputs to PO

4a,b: PO reads
receiver window
values via TCPTL

5a,b: PO sets receiver
window values via
TCPTL

ECLAIR Prototype: Linux (contd..)

Receiver Window Control

• Source code search tools used
– CScope

• Source code indexing and search utility
– CBrowser

• Front end for cscope
– Linux Cross Reference web-site

• Source code indexer and viewer via web-browser

• Identified relevant TCP code and data structures
– Receiver window control manipulation points
– Relevant data structures/variables window_clamp,

rcv_ssthresh

ECLAIR Prototype: Linux (contd..)

Receiver Window Control

No changes
to existing
stack

RWC Code

RWC Code

RWC Code

ECLAIR Validation using RWC

Step1: RWC Simulation: ns-2

Step2: RWC Wireline Experiment

Step3: RWC Wireless Experiment (802.11)

RWC Simulation Results

No RWC

RWC
No pkt
loss

RWC

0.1%
pkt
loss

RWC Wireline Results

No RWC RWC, invoke time = 8sec

RWC Wireless Experiment

No RWC RWC; Window=2KB; at 5 sec

RWC Wireless Experiment- Mean/std dev table

ECLAIR Validation Results

• Wireline and wireless experiment results using
RWC modules
– In-line with simulation results

• ECLAIR prototype works as expected

• Confirms ECLAIR prototype does not seem to
introduce any new errors

Differences: Experiment v/s simulation

• Simulation ftp flows, stopped after 9 sec

• wget transfers in experiment

• WLAN no RWC

– First flow gets most of the bandwidth, due to WLAN
characteristics

• In experiment, throughput of controlled flow remains low

– Receiver window value not reset

• Differences not significant

– Do not impact validation results

Overview

• Background: Cross Layer Feedback

• Problem Definition: CLF architecture/related work

• ECLAIR Architecture

• ECLAIR Prototype/Validation

• ECLAIR Evaluation/Comparison

• ECLAIR sub-architecture/optimization

• Architecture Selection

• Future Work

• Publications

Performance Metrics

• Design goals: rapid prototyping, minimum intrusion, portability,
efficiency, any-any layer communication

• We propose following metrics for evaluating cross layer
architectures

• Efficiency metrics
– Time / space(runtime/footprint) overhead
– User-kernel crossing
– Data path delay

• Maintainability metrics
– Rapid Prototyping: Effort required to add or modify cross layer

optimization
– Degree of intrusion: Impact points within the existing stack
– Portability: Impact points within the cross layer optimization

• Any-to-Any layer interaction: Subjective assessment

Protocol Stack Notation (data path)

Evaluation Approach

• Implementations of architectures not available

• Comparison through analysis

– ECLAIR and user-space RWC

• Quantitative comparison through simulations

– Data path delay
– User-kernel crossing
– Time/space overhead evaluation not possible without implementation

• Simulation of

– Modification to protocol stack (archs like MobileMan, ISP, CLASS,
ICMP, User-space on data-path)

– User space implementation (user-kernel crossing impact)
– ECLAIR

• Qualitative comparison

– All metrics

ECLAIR v/s User-space

RWC Structure Charts

• User-space RWC

• ECLAIR RWC

RWC Sequence Diagrams

ECLAIR:
RWC not on
data path

User-space:
RWC on
data path

ECLAIR v/s User-space comparison

O(n x m)--Data path
delay

ECLAIR: using ioctl()

User-space: getsockopt(),
setsockopt()

O(n x m)O(1)User-kernel
crossing

Space complexity: space for
app information

O(n)O(n)Space
overhead

n = number of applications

t = no. invocations of RWC
(ECLAIR)

m = no. invocations of RWC
(User-space), once for each
receive

O(n x m)O(t x n)Time
overhead
(complexity)

DescriptionUser-spaceECLAIREvaluation
metric

Relative Overhead Measurement

Kernel Instrumentation

• Tools evaluated: MAGNET (Monitoring Apparatus for Generic kerNel Event Tracing), LTT (Linux
Trace Toolkit), OProfile

• MAGNET
– Traces packet movement

within stack
– hooks placed in link, IP, TCP
– Uses CPU cycle counter

• LTT
– Cannot trace packet movement
– Allows creation of user defined

events

• OProfile
– Continuous overhead profiler
– Regularly samples CPU registers
– Statistical reports about programs executed
– Cannot trace packet movement

Kernel Instrumentation

• Kernel 2.4.19 used; initial experiments done with

– MAGNET and LTT (both patches applied)
• Resulted in extremely large variations in packet movement time;

discarded

– Only OProfile patch
• Not useful; discarded

– Only MAGNET patch
• Results were reasonably consistent

• Data path delay: MAGNET used for tracing packet movement within
kernel

• User-kernel crossing: for sub-µsec measurements – get_cycles()
used within application and kernel

Design of Experiments

• Stack activity

– Single download initiated from web, using wget
– Two sites – low throughput, high throughput (increased stack

activity)

• Cross layer overhead simulated by empty loop

– 2, 5, 10, 15, 20 (x 105 cycles)

• ECLAIR overhead

– Empty loops (dummy for loop) within RWC module
– Kernel module loaded, loop executed within module – multiple times,

module unloaded
– Loop invoked at different frequencies, 10 to 100 times per second

Design of Experiments

• Protocol modification
– Empty loops within TCP (load on data path)
– tcp_v4_rcv() in TCP receive path modified
– Loops executed within function i.e. for each packet

• User-kernel crossing with TCP socket search
– User-space architecture

• Operating system API used – setsockopt()
– ECLAIR RWC

• RWC module with tcp_hashfn() used to reduce search time
– TCP socket hash collisions created to measure impact of

change in bucket depth
– CPU cache invalidated to rule out savings due to cache

Data Path Delay
(Low packet rate)

Data Path Delay
(High packet rate)

Data Path Delay – Mean / std dev tables

Low packet arrival rate High packet arrival rate

User-Kernel Crossing + search

CPU caching allowed
Array used

CPU cache invalidated
Array used

User-kernel crossing Mean/std dev tables

ioctl(), NO array, CPU caching setsockopt, NO array, CPU caching

ioctl(), NO array, CPU cache invalidated setsockopt(), NO array, CPU cache
invalidated

User-kernel crossing Mean/std dev tables

ioctl(), Array, CPU caching setsockopt, Array, CPU caching

ioctl(), Array, CPU cache invalidated setsockopt(), Array, CPU cache
invalidated

Results

• Modification to protocol stack can significantly increase
data path delay

– Applies to architectures such ISP, MobileMan, CLASS, ICMP
Messages

• ECLAIR impact on data path is much lower, compared to
protocol stack modification

– At a load of 10 x 105 , invoke frequency of 100 times per second
• ECLAIR : ~3 times of No CLF

• Modification to protocol: ~30 times of No CLF

• Appropriate design using ECLAIR can help reduce user-
kernel crossing overhead

Qualitative Evaluation

Key Architectural Features and Impact

• Any-to-any layer cross layer feedback supported by
ECLAIR, CLASS, MobileMan

User-space.
Certain extent
PMI, ICMP,
ECLAIR

HighLow-high data path delay

High user-kernel crossing

Components
in user-space

MobileMan,
ISP, CLASS,
ICMP
Messages

LowHigh data path delay

Low time/space overhead

Integrated
within stack

PMI, ICMP
Messages,
ECLAIR

HighLow data path delay

High time/space overhead

Components
outside
stack/within
kernel

ArchitecturesMaintainabilityEfficiencyFeature

ECLAIR Optimization

• To maximize benefit from cross layer feedback
– Identify critical data items
– Minimize overhead

• Critical data items
– Provide high utility – improvement in stack efficiency

• Partition critical data items into two sets
– Partition based on cost of cross layer feedback
– Cost of cross layer feedback would reduce when an item is

placed in core

ECLAIR Optimization: Core

• Core: Set of data
items picked from
layers; separately
cached to reduce
ECLAIR overhead

• Data item
selection: Choose
data items offering
high utility;
consider cost of
read/write from/to
core v/s non-core

Core Item Selection

• Item suitable for core, if core potential score i.e.
increase in efficiency > 0

01 >
′

×−−
i

i

r

w

r

r

c

c

c

c

ω
ω

layer generating than other layers allby access offrequency offrequency estimated of sum

core into writingoffrequency estimated of sum

core in not item of read singleof cost

core from item of read singleof cost

core into item of writesingleof cost

=

=′

=

=

=

i

i

rc

rc

wc

ω

ω

Identifying Critical Data Items

• Utility of data item
– Frequency of access by layers other than layer generating

cross layer item
– di at layer j. ωi = sum of frequency of access by layers i ≠ j

• Order items by ω, select items above threshold
}:{ vdD ii >= ω

Core: Cost of Data Item

• Cost related to data item

– Writing into core
– Reading from core

iwi c ωφ ′×=′

iri c ωφ ×=

layer generating than other layers allby

 access offrequency offrequency estimated of sum

core into writingoffrequency estimated of sum

core in not item of read singleof cost

core from item of read singleof cost

core into item of writesingleof cost

=

=′

=

=

=

i

i

rc

rc

wc

ω

ω

Core: Costs

• Core interaction cost

• Total utility of core

• Item suitable for core, if
core potential score i.e.
increase in efficiency > 0

∑ +′=Ψ)(ii φφ

∑=Θ iω

0)()(>+′−× iiirc φφω

01 >
′

×−−
i

i

r

w

r

r

c

c

c

c

ω
ω

Core Item Selection

• Sort items on their Core
Potential Score
(descending)

• Select items till utility of
core less cost of core is
higher than specified
design threshold

for end

if end

break

else

}{

 then- if

do allfor

i

i

dCC

Dd

∪=
<ΨΘ

′∈
τ

Cross Layer Feedback Types

Flow is a connection established over a path over the nodes in network

Layer adapts before
proceeding

Adaptation in
parallel to
regular execution

Architecture Selection

• Impact on efficiency

– Synchronous architecture for asynchronous requirement leads to
increased data path delay

• Impact on correctness

– Asynchronous architecture for synchronous requirement
• Difficult to synchronize cross layer system with stack execution

• If synchronized, could lead to increased data path delay, since not
well integrated with stack

• ECLAIR suited for synchronous cross layer feedback,
since outside stack

ECLAIR Limitations

• May require modification to stack, if some data structure
not accessible

• Per packet adaptation not built-in

– However can be provided

• Direct solution to problems intrinsic to cross layer
feedback not provided

– Cross layer conflict
– Protocol correctness
– However, components can be used for addressing this

Security Issues

• If ECLAIR allows interaction with the network,
authentication mechanism may be required

• Certification/signing may be required to protect ECLAIR
components from malicious attacks

Contributions

• ECLAIR: Architecture for CLF
– Definition, prototype implementation, validation(RWC)

• Core: Sub-architecture for reducing overheads

• Metrics for CLF architecture evaluation

• Notation for layer and CLF implementation
aspects

• Design guide for cross layer feedback

Directions for Future Work

• Improve synchronous cross layer feedback efficiency of ECLAIR
– Optimizations to reduce data path delay

• Enhance ECLAIR sub-architecture
– Determine exact read/write costs and models to determine utility

• Extend ECLAIR for base-station and other nodes
– Components for device specific adaptation and identification of

connections
– Scaling to large number of connections

• Extend ECLAIR for seamless mobility
– Network node component to interact with device and aid seamless

mobility

• Enhance ECLAIR to resolve conflicts and dependency cycles
– Special PO to collect information from TLs and detect cycles
– Extend TLs to permit TL behavior change on the fly

Acknowledgment

• Advisor: Prof. Sridhar Iyer

• Employer: TATA Infotech Ltd. (Now TCS), Dr. Arun Pande (Head
Adv. Tech and Apps, TCS)

• PhD Committee: Professors Abhay Karandikar, Anirudha Sahoo,
Krishna Paul

• Colleagues at TCS and IIT

• My parents, wife and kids

Publications
All with Sridhar Iyer

• Journal/Magazine

1. (1st review completed, Oct 2006) ECLAIR, Architecture Evaluation.
IEEE Transactions on Mobile Computing

2. ECLAIR overview, RWC Implementation.
IEEE Communications, Jan 2006

3. Cross Layer Survey.
Computer Communications (Elsevier), May 2004

• Conference

1. ECLAIR overview, RWC, evaluation, sub-architecture.
IEEE/ACM COMSWARE, N.Delhi, Jan 2006.

2. RWC Analysis.
IEEE ICPWC, N.Delhi, Jan 2005

3. ECLAIR overview.
World Wireless Congress, SF, USA, May 2004

4. User Feedback.
23rd ICDCS, USA, 2003 (Poster)

5. (with AK Singh and Sridhar Iyer) Benefits of cross layer feedback, Receiver
Window Control, ATCP.
IEEE ICPWC, N.Delhi, Dec. 2002.

Thank you

