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Typical Mobile Wireless Network

• MWN characteristics

– High bit error rate of wireless channel
– Mobility induced disconnections



Typical Protocol Stack Architecture -

Layered

• Application has low 
awareness of physical 
layer and vice-versa

• Layered architecture: 
Layer n has function 
specific Service Access 
Points for layers n − 1, n
+ 1



Cross Layer Feedback: Motivation

• Protocol stack layering useful from software 
engineering perspective

• Strictly layered stacks do not perform well over 
wireless networks
– network conditions are highly variable: random errors 

intermittent disconnection
– Several assumptions from fixed wired networks do not 

hold for wireless, since packet losses, disconnections, 
mobility



Layered inefficiency example

TCP in Wireless

• On packet loss
– TCP assumes network congestion
– reduces throughput

• In wireless networks
– many packet losses are due to bit errors

• TCP’s congestion assumption fails
– unaware of wireless physical layer
– reduction in send window inappropriate



Cross Layer Feedback

• Cross layer information can help improve performance 
over wireless networks

• Upper to lower layers
– TCP timer information
– application QoS requirements
– user feedback

• Lower to upper layers
– link characteristics
– network connectivity status

• Our study (Receiver Window Control) confirms the 
benefits of cross layer feedback



Cross Layer Feedback

Optimizing for MWN

• Any cross layer approach involves one or more 
of:
– Fixed Host (FH) TCP stack modification
– Base Station (BS) per-connection support
– Mobile Host (MH) TCP stack modification

• Our focus
– Cross layer feedback on the MH
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Scope of Work

• Scope: How to do cross layer feedback; 
architectural aspects

• Out of scope
– Specific cross layer optimization

• Large body of literature exists on cross layer optimizations

– Issues specific to cross layer feedback
• Dependency cycles and conflicts



Cross Layer Feedback: “Punch hole” /

Ad hoc approach

• Ad-hoc approach

– Introduce additional code in 
layer for CLF



CLF: Punch Hole – Problems

• Each additional CLF code block 
can slow down data path (thruput) 
of layer

• Porting CLF will require rewriting 
for specific OS

• Difficult to disable/ remove code 
intertwined with regular layer code

• Difficult to do fast 
prototyping/additions since ad-hoc

• Multiple event monitors within a 
layer could slow down data path 
(thruput) of layer

• Difficult to control protocol’s 
correctness since updates by 
different CLF code blocks



Existing Approaches

• Physical Media Independence (Inouye et al, 1997)
– Adaptation modules for each layer
– Layer by layer propagation of events
– Operating System APIs for adaptation

• Interlayer Signaling Pipe (Gang et al, 1999)
– Information exchange through packet headers; layers need to be modified

• ICMP Messages (Sudame et al, 2001)
– Special ICMP messages and special handler at socket layer
– Adaptation for application and transport defined by each application 

separately; layers need to be modified

• CLASS (Wang et al, 2003)
– Direct interaction between layers; problems similar to ad hoc approach

• MobileMan (Conti et al, 2004)
– Add network status data structure; rewrite protocols to be network aware

• User-space (Mehra et al, 2003)
– All modules in user-space



Problem: CLF architecture

• CLF basically stack modification

– Multiple ad-hoc cross layer modifications can impact stack’s efficiency, 
maintainability, correctness

– Existing approaches do not address all of these issues
– Any to any layer interaction is not supported in all approches

• Problem: There is a need for an appropriate architecture for 
cross layer feedback
– Design goals for architecture

• Rapid prototyping: easy development / deployment of new CLF idea 
• Minimum intrusion: protect stack correctness; easy to extend / reverse CLF
• Portability: easy porting to different systems
• Efficiency: minimal overheads (e.g. cpu, memory, data path delay); 

enhanced performance
• Any-Any layer communication: Any layer can communicate with any other 

layer in the stack



Contributions

• ECLAIR: Architecture for CLF
– Definition, prototype implementation, validation(RWC)

• Core: Sub-architecture for reducing overheads

• Metrics for CLF architecture evaluation 

• Notation for layer and CLF implementation 
aspects

• Design guide for cross layer feedback
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ECLAIR Motivation

Based on the design goals

• Rapid prototyping

– Provide clean hooks to enable quick changes in cross layer algorithms, without 
disturbing existing stack

• Portability

– Provide APIs to reduce dependency on OS specifics

• Minimum intrusion

– Use a mechanism to change protocol behavior with minimum possible 
modifications to existing stack

• Efficiency

– Cross layer components should not impact the data path

• Any-to-any layer feedback

– Components should not restrict direction of cross layer feedback or be restricted 
to specific layers



ECLAIR overview

• Optimizing SubSystem: 
Protocol Optimizers (Cross 
layer feedback algorithms); 
receive layer events; decide 
other layers behavior

• Tuning Layer: Monitor layer 
events; provide API to 
protocol optimizer; access 
layer’s control data structure 
values to monitor and change 
behavior



ECLAIR 

details



ECLAIR – Implementation View



TL PO Interface

Protocol Optimizer for User TLProtocol Optimizer for User TL



Application TL Interfaces



ECLAIR Details – Tuning Layer

• Application and User Tuning Layers are in user-space
– Other TLs are in kernel space

• User TL (in user-space) interacts with system thru a special user-PO 
in kernel space (RWC example later)

• For portability
– TL is split into generic tuning layer and implementation dependent access 

sub-layer
– Generic API is used by PO; this invokes implementation specific API

• TL provides register and unregister functions for POs
– Multiple POs may register for an event
– Event means a change in some data structure of a protocol
– Event notification to PO is through a call-back function or event queue

• If there is any fatal error during processing of a TL, the TL
– Unloads (till next reboot)
– Unregisters all its POs; aborts all its actions



ECLAIR Details – Optimizing SubSystem

• PO implements
– Cross layer procedure (cross layer algorithm)
– Event handler(s)
– Register/unregister procedure, error handler, log procedure

• On receipt of event
– Cross layer algorithm in PO determines values for updating data structures
– PO calls appropriate TL APIs

• On fatal error
– Unloads (unregisters from all TLs) until reboot

• Cross layer shutdown
– User-PO registers with all TLs
– On shutdown event from user, user-PO sends shutdown event to all TLs; 

thru TLs to all POs



ECLAIR TL API Examples

• User TL
– get_stack_paramter() / set_stack_parameter()
– crosslayer_shutdown()

• Transport TL
– get_receiver_window() / set_receiver_window()

• Network TL (IP)
– get_frag_assy_timer() / set_frag_assy_timer()

• MAC TL (802.11)
– get_contention_window() / set_contention_window()



ECLAIR Validation

Receiver Window Control: CLF example

• TCP congestion control: sender – congestion 
window; receiver – receiver / advertised window

• Manipulate receiver window to manipulate 
throughput of flows

• At receiver
– Flows with similar rtt and bandwidth on path get similar 

throughput, assuming no congestion
– Reduce advertised window of low priority flow to decrease 

throughput



Receiver Window Control – Algorithm



RWC Example
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ECLAIR Prototype: Linux

Receiver Window Control

1: Get TCP control 
data structures

2a: PO registers
2b: User event

3: App info, user 
inputs to PO

4a,b: PO reads 
receiver window 
values via TCPTL

5a,b: PO sets receiver 
window values via 
TCPTL



ECLAIR Prototype: Linux (contd..)

Receiver Window Control

• Source code search tools used
– CScope

• Source code indexing and search utility
– CBrowser

• Front end for cscope
– Linux Cross Reference web-site

• Source code indexer and viewer via web-browser

• Identified relevant TCP code and data structures 
– Receiver window control manipulation points 
– Relevant data structures/variables window_clamp, 

rcv_ssthresh



ECLAIR Prototype: Linux (contd..)

Receiver Window Control

No changes
to existing 
stack



RWC Code



RWC Code



RWC Code



ECLAIR Validation using RWC

Step1: RWC Simulation: ns-2

Step2: RWC Wireline Experiment

Step3: RWC Wireless Experiment (802.11)



RWC Simulation Results

No RWC

RWC
No pkt
loss

RWC

0.1%
pkt
loss



RWC Wireline Results

No RWC RWC, invoke time = 8sec



RWC Wireless Experiment

No RWC RWC; Window=2KB; at 5 sec



RWC Wireless Experiment- Mean/std dev table



ECLAIR Validation Results

• Wireline and wireless experiment results using 
RWC modules
– In-line with simulation results

• ECLAIR prototype works as expected

• Confirms ECLAIR prototype does not seem to 
introduce any new errors



Differences: Experiment v/s simulation

• Simulation ftp flows, stopped after 9 sec

• wget transfers in experiment

• WLAN no RWC

– First flow gets most of the bandwidth, due to WLAN 
characteristics

• In experiment, throughput of controlled flow remains low

– Receiver window value not reset

• Differences not significant

– Do not impact validation results
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Performance Metrics

• Design goals: rapid prototyping, minimum intrusion, portability,
efficiency, any-any layer communication

• We propose following metrics for evaluating cross layer 
architectures

• Efficiency metrics
– Time / space(runtime/footprint) overhead
– User-kernel crossing
– Data path delay

• Maintainability metrics
– Rapid Prototyping: Effort required to add or modify cross layer 

optimization
– Degree of intrusion: Impact points within the existing stack
– Portability: Impact points within the cross layer optimization

• Any-to-Any layer interaction: Subjective assessment



Protocol Stack Notation (data path)



Evaluation Approach

• Implementations of architectures not available

• Comparison through analysis

– ECLAIR and user-space RWC

• Quantitative comparison through simulations

– Data path delay
– User-kernel crossing
– Time/space overhead evaluation not possible without implementation

• Simulation of 

– Modification to protocol stack (archs like MobileMan, ISP, CLASS, 
ICMP, User-space on data-path)

– User space implementation (user-kernel crossing impact)
– ECLAIR

• Qualitative comparison

– All metrics



ECLAIR v/s User-space



RWC Structure Charts

• User-space RWC

• ECLAIR RWC



RWC Sequence Diagrams

ECLAIR:
RWC not on
data path

User-space:
RWC on
data path



ECLAIR v/s User-space comparison

O(n x m)--Data path 
delay

ECLAIR: using ioctl()

User-space: getsockopt(), 
setsockopt()

O(n x m)O(1)User-kernel 
crossing

Space complexity: space for 
app information

O(n)O(n)Space 
overhead

n = number of applications

t = no. invocations of RWC 
(ECLAIR)

m = no. invocations of RWC 
(User-space), once for each 
receive

O(n x m)O(t x n)Time 
overhead 
(complexity)

DescriptionUser-spaceECLAIREvaluation 
metric



Relative Overhead Measurement

Kernel Instrumentation

• Tools evaluated: MAGNET (Monitoring Apparatus for Generic kerNel Event Tracing), LTT (Linux 
Trace Toolkit), OProfile

• MAGNET
– Traces packet movement 

within stack
– hooks placed in link, IP, TCP
– Uses CPU cycle counter

• LTT
– Cannot trace packet movement
– Allows creation of user defined 

events

• OProfile
– Continuous overhead profiler
– Regularly samples CPU registers
– Statistical reports about programs executed
– Cannot trace packet movement



Kernel Instrumentation

• Kernel 2.4.19 used; initial experiments done with

– MAGNET and LTT (both patches applied)
• Resulted in extremely large variations in packet movement time; 

discarded

– Only OProfile patch
• Not useful; discarded

– Only MAGNET patch
• Results were reasonably consistent

• Data path delay: MAGNET used for tracing packet movement within 
kernel

• User-kernel crossing: for sub-µsec measurements – get_cycles() 
used within application and kernel



Design of Experiments

• Stack activity

– Single download initiated from web, using wget
– Two sites – low throughput, high throughput (increased stack 

activity)

• Cross layer overhead simulated by empty loop

– 2, 5, 10, 15, 20 ( x 105 cycles)

• ECLAIR overhead

– Empty loops (dummy for loop) within RWC module
– Kernel module loaded, loop executed within module – multiple times, 

module unloaded
– Loop invoked at different frequencies, 10 to 100 times per second



Design of Experiments

• Protocol modification
– Empty loops within TCP (load on data path)
– tcp_v4_rcv() in TCP receive path modified
– Loops executed within function i.e. for each packet

• User-kernel crossing with TCP socket search
– User-space architecture

• Operating system API used – setsockopt()
– ECLAIR RWC

• RWC module with tcp_hashfn() used to reduce search time
– TCP socket hash collisions created to measure impact of 

change in bucket depth
– CPU cache invalidated to rule out savings due to cache



Data Path Delay 
(Low packet rate)



Data Path Delay 
(High packet rate)



Data Path Delay – Mean / std dev tables

Low packet arrival rate High packet arrival rate



User-Kernel Crossing + search

CPU caching allowed
Array used

CPU cache invalidated
Array used



User-kernel crossing Mean/std dev  tables

ioctl(), NO array, CPU caching setsockopt, NO array, CPU caching

ioctl(), NO array, CPU cache invalidated setsockopt(), NO array, CPU cache
invalidated



User-kernel crossing Mean/std dev  tables

ioctl(), Array, CPU caching setsockopt, Array, CPU caching

ioctl(), Array, CPU cache invalidated setsockopt(), Array, CPU cache
invalidated



Results

• Modification to protocol stack can significantly increase 
data path delay

– Applies to architectures such ISP, MobileMan, CLASS, ICMP 
Messages

• ECLAIR impact on data path is much lower, compared to 
protocol stack modification

– At a load of 10 x 105 , invoke frequency of 100 times per second
• ECLAIR : ~3 times of No CLF

• Modification to protocol: ~30 times of No CLF

• Appropriate design using ECLAIR can help reduce user-
kernel crossing overhead



Qualitative Evaluation

Key Architectural Features and Impact

• Any-to-any layer cross layer feedback supported by 
ECLAIR, CLASS, MobileMan

User-space. 
Certain extent 
PMI, ICMP, 
ECLAIR

HighLow-high data path delay

High user-kernel crossing

Components 
in user-space

MobileMan, 
ISP, CLASS, 
ICMP 
Messages

LowHigh data path delay

Low time/space overhead

Integrated 
within stack

PMI, ICMP 
Messages, 
ECLAIR

HighLow data path delay

High time/space overhead

Components 
outside 
stack/within 
kernel

ArchitecturesMaintainabilityEfficiencyFeature



ECLAIR Optimization

• To maximize benefit from cross layer feedback
– Identify critical data items
– Minimize overhead

• Critical data items
– Provide high utility – improvement in stack efficiency

• Partition critical data items into two sets
– Partition based on cost of cross layer feedback
– Cost of cross layer feedback would reduce when an item is 

placed in core



ECLAIR Optimization: Core

• Core: Set of data 
items picked from 
layers; separately 
cached to reduce 
ECLAIR overhead

• Data item 
selection: Choose 
data items offering 
high utility; 
consider cost of 
read/write from/to 
core v/s non-core



Core Item Selection

• Item suitable for core, if core potential score i.e. 
increase in efficiency > 0
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Identifying Critical Data Items

• Utility of data item
– Frequency of access by layers other than layer generating 

cross layer item
– di at layer j. ωi = sum of frequency of access by layers i ≠ j

• Order items by ω, select items above threshold
}:{ vdD ii >= ω



Core: Cost of Data Item

• Cost related to data item

– Writing into core 
– Reading from core 
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Core: Costs

• Core interaction cost 

• Total utility of core

• Item suitable for core, if 
core potential score i.e. 
increase in efficiency > 0
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Core Item Selection

• Sort items on their Core 
Potential Score 
(descending)

• Select items till utility of 
core less cost of core is 
higher than specified 
design threshold

for end

if end  

break     

else  
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 then- if  

do  allfor 
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Cross Layer Feedback Types

Flow is a connection established over a path over the nodes in network

Layer adapts before
proceeding

Adaptation in 
parallel to 
regular execution



Architecture Selection

• Impact on efficiency

– Synchronous architecture for asynchronous requirement leads to 
increased data path delay

• Impact on correctness

– Asynchronous architecture for synchronous requirement
• Difficult to synchronize cross layer system with stack execution

• If synchronized, could lead to increased data path delay, since not 
well integrated with stack

• ECLAIR suited for synchronous cross layer feedback, 
since outside stack



ECLAIR Limitations

• May require modification to stack, if some data structure 
not accessible

• Per packet adaptation not built-in

– However can be provided

• Direct solution to problems intrinsic to cross layer 
feedback not provided

– Cross layer conflict
– Protocol correctness
– However, components can be used for addressing this



Security Issues

• If ECLAIR allows interaction with the network, 
authentication mechanism may be required

• Certification/signing may be required to protect ECLAIR 
components from malicious attacks



Contributions

• ECLAIR: Architecture for CLF
– Definition, prototype implementation, validation(RWC)

• Core: Sub-architecture for reducing overheads

• Metrics for CLF architecture evaluation

• Notation for layer and CLF implementation 
aspects

• Design guide for cross layer feedback



Directions for Future Work

• Improve synchronous cross layer feedback efficiency of ECLAIR
– Optimizations to reduce data path delay

• Enhance ECLAIR sub-architecture
– Determine exact read/write costs and models to determine utility

• Extend ECLAIR for base-station and other nodes
– Components for device specific adaptation and identification of 

connections
– Scaling to large number of connections

• Extend ECLAIR for seamless mobility
– Network node component to interact with device and aid seamless 

mobility

• Enhance ECLAIR to resolve conflicts and dependency cycles
– Special PO to collect information from TLs and detect cycles
– Extend TLs to permit TL behavior change on the fly
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