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Abstract

Applications using traditional protocol stacks (for example, TCP/IP) from wired networks

do not function efficiently in mobile wireless scenarios. This is primarily due to the layered

architecture and implementation of protocol stacks.

Cross layer feedback is one of the mechanisms to improve the performance of a layered

stack in mobile wireless environments. For example, transport layer retransmissions could

be reduced by making it aware of network disconnections or hand-off events. One such

optimization is Receiver Window Control.

Since the protocol stack is an integral part of the operating system, any cross layer

modification to the stack should not impact its correctness, efficiency and maintainability.

An appropriate architecture would help ensure that cross layer modifications confirm to

these requirements.

We define the design goals for a cross layer architecture based on our study of the

pros and cons of existing approaches to cross layer feedback. We present our architec-

ture ECLAIR which addresses these design goals. In ECLAIR we exploit the fact that

stack behavior is determined by the values stored in various protocol data structures.

Our architecture facilitates easy manipulation of these values stored in the protocol data

structures. ECLAIR requires minimal or no modification to the existing protocol stack.

We validate and evaluate ECLAIR through a prototype implementation, of receiver

window control, and experiments. To evaluate a cross layer architecture we identify met-

rics for evaluation against each of the design goals. We identify time and space overhead,

user-kernel crossing, data path delay, number of changes to protocol stack and number of

changes to cross layer optimization as metrics for the design goals. Our results and anal-

yses show that ECLAIR is an efficient cross layer architecture and is easily maintainable.

To further enhance the efficiency of ECLAIR we propose a core sub-architecture.

Finally, we also present a design guide for cross layer optimizations using ECLAIR.
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Begin at the beginning and go on till you come to the end; then stop.

- Lewis Carroll

Chapter 1

Introduction

The TCP/IP (Transmission Control Protocol/Internet Protocol [70]) protocol stack

has been standardized for connecting to the Internet, using wireline devices (example

desktop PCs). This protocol stack is also being deployed on mobile wireless nodes (3G

and beyond [37, 76]), to ensure interoperability with the existing Internet. Figure 1.1

shows a typical mobile wireless setup. Wireless nodes in this setup are the base station

and the mobile wireless devices.

Wired network

Fixed host

Base station

Mobile device

Figure 1.1: Typical mobile wireless scenario

The architecture and implementation of a TCP/IP stack is layered [35]. Figure 1.2

shows a typical TCP/IP stack. In a layered stack, a layer does not share information

1
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about its state with any other layer. For example, layers such as TCP or IP are not aware

of disconnection or handoff at the lower layers. This leads to inefficient functioning of the

layered stack in mobile wireless environments [75, 85]. On a mobile device, this inefficient

functioning would lead to poor user experience, decreased throughput, decreased battery

life, etc. We highlight this inefficiency of a layered stack by using TCP as an example.

Application

Transport

Network

Data link / MAC

Physical

User programs, interface, higher layer protocols

Connection management, flow control, end−to−end layer

Error free transmission, medium access

Transmission of raw bits

Routing, addressing

Figure 1.2: TCP/IP protocol stack[74]

Example – TCP over wireless:

TCP is an end-to-end reliable transport protocol [61]. A TCP sender uses acknowledg-

ments from the receiver as a signal to send additional packets. A missing acknowledgment

is interpreted as an indication of packet loss due to congestion in the network. However,

in mobile wireless environments packet losses could occur due to poor wireless channel

conditions and disconnections. Since TCP is unaware of these channel conditions it in-

vokes its congestion and retransmission algorithms [52, 61]. This response of TCP is

inappropriate for mobile wireless networks [75], because it results in unnecessary reduc-

tion in TCP throughput. There are various mechanisms for improving protocol stack

performance over mobile wireless networks. Some examples for TCP are TCP-Jersey [84],

TCP k-SACK [18], I-TCP [6], Snoop [8], early fast retransmit [16], TCP-Casablanca [11]

and COPAS [24] (for ad hoc networks). A survey of various optimizations for TCP is

provided in the references [7, 58, 75].

Cross Layer Feedback:

Out of the various mechanisms for improving TCP, one method is cross layer feedback [30,

38, 43, 65]. If TCP is made aware of the wireless network conditions (information available

at lower layers), its behavior could be improved [16, 29]. For example, TCP’s congestion

algorithms could be adapted or the retransmissions could be controlled using information

from the network layer [16]. This information exchange between layers (network layer and

TCP in this example) is known as cross layer feedback. Using cross layer feedback the

performance of layers other than TCP can also be improved (see Chapter 2 for a survey).
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Improvements using cross layer feedback have been proposed earlier for wired networks

also in references [19, 20, 22].

Cross layer feedback optimizations may be implemented at the intermediate nodes

(base station, router, etc – see Figure 1.1) or mobile hosts(MH). Cross layer feedback

is not required at the fixed host, since it is not connected to a mobile wireless network.

Some of the proposals for cross layer feedback in the intermediate nodes are: snoop [8],

channel state dependent packet scheduling [10] and multi-service link layer [86]. Examples

of cross layer optimizations which are applicable to the mobile host are Mobile-IP handoff

optimization [82] and power management [44].

We focus on cross layer feedback on the mobile host. Our reason is as follows: if cross

layer feedback is implemented on an intermediate node (example, base station), then

that node would have to maintain the state for each of the connections passing through

it. Further, a base station supports a wide variety of devices (example, laptops, hand-

held mobile devices, etc.), each one having a different wireless environment and resource

characteristic. Thus, it would be difficult to implement adaptation suited to each device,

in an intermediate node. Hence, we believe that it would be appropriate to incorporate

cross layer optimizations in a mobile device. A mobile device has easy access to the state

of its resources, established connections and its wireless environment, as compared to an

intermediate node.

Thesis objective

The main objective of this thesis is to enable systematic cross layer interaction within the

protocol stack, by defining an appropriate cross layer architecture. We also validate and

evaluate the proposed architecture.

In the following sections we present an overview of cross layer feedback (section 1.1),

existing approaches to cross layer feedback implementation (Section 1.2), problem defini-

tion for this thesis (Section 1.4) and our contributions (Section 1.6).

1.1 Cross Layer Feedback

Cross layer feedback means interaction of a layer with any other layer in the protocol

stack. A layer may interact with layers above or below it. We list a few examples of cross

layer feedback for each layer:

• Physical: Channel condition (example, bit-error rate) status from the physical layer

can be used by the link layer to adapt the frame length [26]. Also, physical layer

transmit power can be tuned by Medium Access Control (MAC) layer to increase

the range of transmission [47].



4 CHAPTER 1. INTRODUCTION

• Link / MAC layer: The number of retransmissions at the link layer can serve as a

measure of channel condition. TCP may re-estimate its retransmission timers based

on this data. The link layer may adapt its error correction mechanism based on the

Quality-of-Service (QoS), that is, acceptable delay, packet losses, etc. requirements

of the application layer [86].

• Network: Mobile-IP hand-off begin/end information can be used at TCP to ma-

nipulate its retransmission timer [16]. Mobile-IP layer could use link layer hand-off

events to reduce its hand-off latency [67, 82].

• Transport: Packet loss data from TCP can help the application layer adapt its

sending rate. Link layer and TCP retransmission interference [25] can be reduced

by making the link layer adapt its error control mechanisms based on TCP retrans-

mission timer information.

• Application: An application could use information about channel conditions from

the physical layer to adapt its sending rate [49]. Also, an application could indicate

to the user the throughput it requires versus the available throughput.

• User: A user may define application priorities which can be to mapped to propor-

tional receiver window values within TCP [54, 66].

Besides the feedback between protocols at different layers, as indicated above, feed-

back could also be between protocols within the same layer. This would be required in

scenarios such as vertical hand-off [14], when a mobile device moves across heterogeneous

networks. In such scenarios, multiple interfaces and hence protocols within the same layer,

for example 802.11 [33] and GPRS [48] protocols within MAC and Physical layers, would

need to coordinate the hand-off.

As new wireless networks are deployed, various cross layer feedback optimizations

would be required to enhance the performance of the existing protocol stacks. These

cross layer optimizations would require easy integration with the existing stack. Thus

an appropriate architecture is required for implementing cross layer feedback. In the

following sections, we present an overview of existing approaches to cross layer feedback

implementation and list the proposed design goals for a cross layer architecture.

1.2 Cross Layer Feedback Implementation

1.2.1 Existing Approaches to Cross Layer Feedback

• Physical Media Independence [34] focuses on lower to upper layer feedback. Adap-

tation modules are created that propagate event information upwards layer by layer.
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• Sudame et al [73] use ICMP (Internet Control Message Protocol) messages for prop-

agating lower layer event information to a special handler at socket layer. The

adaptation is defined by the application layer.

• MobileMan [21] proposes creation of a new Network Status entity which is used

for sharing network information with all the protocol layers. Protocols need to be

changed to use this network information.

• Carneiro et al [17] propose a Cross Layer Manager which contains management al-

gorithms. This manager interacts with the protocol stack for cross layer adaptation.

• Cross LAyer Signaling Shortcuts (CLASS) [79] proposes direct interaction between

the layers for cross layer adaptation.

• Interlayer Signaling Pipe [81] uses the packet headers to pass adaptation information

to lower layers. The layers read the information in the header and adapt accordingly.

• Mehta et al [54] propose user-space implementation for Receiver Window Control.

The adaptation is done in user-space and operating system APIs are used for adapt-

ing the transport protocol.

Limitations of Existing Approaches

Efficiency would be lower in architectures such as ICMP Messages [73], PMI [34] and

ISP [81]. Communicating cross layer event information in ICMP messages would increase

the event communication overheads. In PMI [34], the event information propagates layer

by layer which would decrease the cross layer execution speed. In ISP [81] the overhead

of scanning each packet and adaptation would slow down the execution of the lower

layers and thus reduce throughput, while ICMP Messages [73] would add the overhead

of ICMP packet headers. In MobileMan [21], replacing the standard protocol with a

redesigned protocol would lead to increased implementation efforts, in case the protocol

needs to be changed. Further, the multiple protocols may need to be updated in case

Network Status component is enhanced. In CLASS [79] each protocol directly interacts

with another protocol. This would lead to decreased execution efficiency and portability

issues. Implementations based on MobileMan, CLASS, ISP or ICMP Messages would not

be easily portable or maintainable since they require modifications to the protocol stack.

Lastly, there is no provision for any-to-any layer event communication in either PMI [34],

ICMP Messages [73] or ISP [81]. We discuss existing approaches and their limitations in

Chapter 2.
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1.3 Cross Layer Feedback Architecture Design Goals

From the software engineering perspective cross layer feedback is essentially a modification

to the existing protocol stack. An architecture should enable efficient cross layer feedback

and also ease the development, deployment and maintenance of various cross layer opti-

mizations. We studied the existing cross layer feedback implementation approaches and

their pros and cons. We concluded that the ideal cross layer feedback architecture should

facilitate efficient cross layer feedback and enable easy maintainability of the cross layer

algorithms and the protocol stack. From our analysis we define the following design goals

for a cross layer feedback architecture:

• Efficiency – to ensure minimum execution overheads

• Minimum intrusion – to ensure minimum changes to the existing stack

• Rapid prototyping – to enable easy deployment of new cross layer feedback opti-

mizations

• Portability – to enable porting to multiple operating systems with minimum changes

• Any to any layer communication – to allow communication between a layer and any

other layer in the stack.

In the next section, we present the problem defined for this thesis.

1.4 Problem Definition

The objectives of this thesis are to

• Define a Cross Layer Architecture: As noted above, existing approaches to cross

layer feedback do not address all the design goals of a cross layer architecture.

Hence, our primary goal is to define an architecture that addresses all the design

goals.

• Implement and validate the architecture: Once the architecture is defined, our next

objective is to create a prototype and validate it to demonstrate that the architecture

can be used for cross layer feedback.

• Evaluate the architecture: Our final objective is to compare the proposed architec-

ture with existing approaches. For this, we shall define suitable metrics for each of

the design goals.
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1.5 Solution Outline

We make the following observations regarding adaptations using cross layer feedback. The

adaptation at a layer, when it receives cross layer feedback, may be

• synchronous – embedded within the protocol’s algorithm, or

• asynchronous – executed in parallel to the protocol’s execution.

Further, the adaptation may be required for

• each packet – protocol adapts behavior for each packet

• per flow – separate adaptation is done for each established connection, or

• across flows – common adaptation is done for all the established connections.

This defines the granularity of adaptation. Per packet is the finest granularity while

across flows is the coarsest. Hence, per packet adaptation can be used for per flow or

across flows adaptation also. However, per flow or across flows adaptation cannot be used

for per packet adaptation. We describe the types of adaptations in detail in Chapter 2,

Section 2.5.1.

In view of the architecture design goals and the types of adaptations, we feel that the

ideal architecture should be asynchronous and should not enforce per packet adaptation.

This is because per packet adaptation or synchronous adaptation would lead to decreased

stack performance. We propose our architecture ECLAIR which satisfies these conditions.

Figure 1.3 shows an overview ECLAIR. The main components are Optimizing Sub-

System (OSS) and Tuning Layers (TL). OSS contains many Protocol Optimizers (POs).

(e.g.
IP)

(e.g.
TCP)

(e.g.
802.11)

(e.g.
802.11)

User

Application

Network

MAC

PHY

ATL

TTL

MTL

PTL

TL = Tuning Layer

O
pt

im
iz

in
g 

S
ub

sy
st

em

UTL

NTL

Transport

Figure 1.3: ECLAIR architecture
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A PO contains a cross layer algorithm. TLs provide the necessary APIs to POs for

interacting with various layers and manipulating the protocol data structures.

POs receive event notifications from various TLs and decide the optimizing action for

a protocol. The optimizing action could be to reduce power consumption or reduce packet

losses, etc. Optimizing actions modify the protocol stack’s behavior. POs manipulate the

values stored in the protocol data structures so as to modify the protocol stack behavior

(Chapter 3, Section 3.2) .

1.6 Contributions of this Thesis

• Cross layer architecture design goals (chapter 2): We analyze the requirements of

cross layer feedback and identify design goals for a cross layer feedback architecture.

• ECLAIR: Efficient Cross Layer feedback Architecture (Chapter 3): we propose an

architecture – ECLAIR – for cross layer feedback. We show that ECLAIR satisfies

the design goals of a cross layer architecture.

• ECLAIR implementation and validation (chapter 4): We use Receiver Window Con-

trol (RWC) [54, 66, 69] (Section 4.1) as a running example throughout the thesis.

We use this to illustrate a prototype implementation of ECLAIR, in Linux. We use

this prototype to validate ECLAIR.

• Cross layer architecture evaluation metrics (Chapter 5): We define performance

metrics suitable for evaluation of a cross layer feedback architecture. We use these

metrics to compare ECLAIR and existing cross layer implementation approaches.

• ECLAIR evaluation (Chapter 5): We not only carry out a qualitative evaluation

of ECLAIR but also a quantitative evaluation, including overhead measurement.

We instrument the kernel with trace tools such as MAGNET [103] to show that

ECLAIR imposes minimal overheads on the protocol stack.

• ECLAIR sub-architecture (chapter 6): We propose a sub-architecture core for se-

lecting optimal cross layer data items for maximizing cross layer feedback benefit

and further reducing ECLAIR overhead.

• Cross layer design guide (chapter 7): We present a simple technique for selection

of the appropriate cross layer architecture, based on the adaptation requirements

and the cross layer implementation requirements. We also provide a Linux specific

design and implementation guide for appropriate use of ECLAIR for cross layer

feedback implementations.
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1.7 Organization of Thesis

In Chapter 2 we present the motivation for cross layer feedback architecture and discuss

related work. In Chapter 3 we present our architecture for cross layer feedback – ECLAIR.

We present ECLAIR implementation and validate the implementation in Chapter 4. We

use receiver window control as the running example. In Chapter 5 we define appropriate

performance metrics for cross layer feedback and use them for the evaluation of ECLAIR.

We compare ECLAIR with other cross layer mechanisms proposed in literature. We also

measure the overheads of ECLAIR using kernel trace tools such as MAGNET [103]. We

propose a sub-architecture for cross layer feedback in Chapter 6 which helps maximize

the benefits of cross layer feedback and further reduce ECLAIR overheads. We present

a design guide for using ECLAIR in Chapter 7. We summarize the thesis and present

future work in Chapter 8.
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Man is not born to solve the problem of the universe, but to find out what

he has to do; and to restrain himself within the limits of his comprehension

- Johann Wolfgang von Goethe

Chapter 2

Motivation and Related Work

In this chapter we motivate the need for cross layer feedback and cross layer feedback

architecture. We present a survey of cross layer feedback proposals. We also discuss

existing approaches to cross layer feedback implementation. We analyze their drawbacks

and propose design goals for a cross layer feedback architecture.

2.1 Introduction

In the previous chapter we presented the performance issues of a layered protocol stack

on mobile wireless networks [75, 85]. Since the layers do not interact with each other,

the stack functions inefficiently over mobile wireless networks. This leads to poor user

experience, throughput and battery life of the mobile device. Cross layer feedback is

one of the mechanisms to improve performance of a layered stack, in mobile wireless

environments [30, 38, 43, 65]. To improve the performance of the device, cross layer

feedback can be implemented within the base station (or router) [8, 10, 86] or the mobile

device [82, 44]. However, base stations would need to ensure separate adaptation for each

of the devices connected to it. Thus implementing cross layer feedback on the mobile

device would be a better option. Hence we focus on cross layer feedback within the

mobile device only.

Cross Layer Feedback Simulations:

Our simulations also confirm the benefits of cross layer feedback. This is discussed in

Chapter 4. In our experiment, the user defines application priorities which are mapped

11
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to TCP specific parameter, that is, receiver window [66]. When the receiver window

is decreased, the throughput of the low priority application decreases. This leads to

increased throughput for the high priority application.

In Section 2.2 we discuss the various cross layer feedback possibilities and potential

benefits. In Section 2.3 we discuss the existing approaches to cross layer feedback imple-

mentation and their limitations. In Section 2.5 we present the design goals for a cross

layer feedback architecture.

2.2 Cross Layer Feedback

Cross layer feedback means interaction among the layers of a protocol stack. As stated

earlier in Chapter 1, Section 1.1, cross layer feedback can be categorized as follows:

• Upper to lower layers: This is information flowing downward from a layer to any

layer below it.

Some examples are: application requirements (acceptable delay or acceptable packet

losses) communicated to the link layer to enable the link layer to adapt its error

correction mechanisms; user defined application priority communicated to TCP to

increase the receiver window of the application with a higher priority.

• Lower to upper layers: This is information flowing upward from a layer to any

layer above it. Some examples are: TCP packet loss information given to the

application layer so that the application can adapt its sending rate; physical layer

information about bit-error rate and current transmit power communicated to the

link/MAC layer which uses this information to adapt its error correction mechanisms

or manipulate physical layer transmit power.

Next, we present examples of cross layer feedback for each layer and its interactions

with upper and lower layers. We also discuss the benefits and indicate some of the

disadvantages.

2.2.1 Physical Layer

The function of physical layer is to transmit raw bits over a certain distance with minimum

bit errors, using a suitable power level.

The information available at the physical layer is: transmit power, bit-error rate 1 and

coding/modulation in use.

Interaction of Physical layer with upper layers:

1For explicit measurement of bit-error rate the receiver will have to provide feedback to the sender.
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Application or user: The application layer or the device user may tune the phys-

ical layer parameters to improve throughput or download software for another physical

layer [1]. (see Section 2.2.5 also). However, one disadvantage is that software downloading

itself could consume high amounts of power.

Network: The bit-error rate on an interface could be used as a guide by the network

layer to select the appropriate interface.

Link/MAC: Ebert and Wolisz [26] discuss protocol harmonization for MAC and phys-

ical layer for IEEE 802.11 [33]. They investigate the effects of packet length, transmit

power and bit-error rate. Their results show that minimum energy is consumed for trans-

mission if an optimal transmit power is used for a packet. Further, this optimal transmit

power is proportional to the packet length. Also, they show that varying the packet length

according to the BER also helps reduce energy consumption. They report that fragmen-

tation into packets of size 500 bytes for a BER > 10−5 leads to the largest reduction in

energy consumption. (also see Section 2.2.2).

Battery aware physical layer: The physical layer may also adapt its coding/modulation

depending on the battery status.

2.2.2 Link / MAC Layer

The functions of link/MAC layer are: improving link reliability through forward error

correction (FEC) and Automatic Repeat reQuest (ARQ); avoiding/reducing collisions;

fragmenting data into frames so as to ensure reliable transmission with minimal overhead.

The information available at the link/MAC layer is: current FEC scheme, number of

frames retransmitted, frame length, point in time when the wireless medium is available

for transmission and hand-off related events.

Interactions of link/MAC layer with upper layers:

User: Link throughput information can indicate to the user the kind of application

performance that should be expected. The user may then decide which applications can

be run.

Application: At the link/MAC layer the frames from different applications may be

treated differently. For example, frames of applications with a low delay requirement

may be transmitted on priority. Similarly, FEC/ARQ may be improved for applications

with a high reliability requirement. The above is based on the idea of a multi-service link

layer [86], for QoS (Quality of Service i.e. delay, loss, jitter requirements of applications)

in the Internet, which adapts the link layer services based on the traffic class. However,

such schemes may increase the processing overhead and hence power consumption.

Transport: When channel conditions are poor, retransmission at the link layer results

in delays which could lead to TCP retransmissions and thus reduced throughput [25]. To

avoid this, TCP and link layer could exchange retransmission information. In an IEEE
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802.11 [33] environment increasing MAC level retransmissions to avoid TCP retransmis-

sions, decreases the power consumption [55].

Network: Mobile-IP [59] is used for IP hand-off whenever the mobile device changes

sub-nets. Hand-off in Mobile-IP depends on the detection of a network change at the IP

layer. This information may not be available as quickly as the signal strength changes

monitored continually at the link layer. Thus, link layer hand-off information can be used

to reduce the hand-off latency for Mobile-IP [67, 82]. On similar lines, IP micro-mobility

protocol, Cellular-IP [77] uses signal strength of the base station beacons for hand-offs.

Interactions of link/MAC layer with lower layers:

Physical: Based on current channel conditions the error control mechanisms at the

link layer may be adapted to reduce the transmission errors [47, 50]. Lettieri and Srivas-

tava [47] show around 50% improvement in goodput and 20% improvement in transmission

range by using the optimal Maximum Transmission Unit (MTU) for a particular BER.

In a GSM case study, Ludwig et al [50] show that by increasing the frame length the

throughput can be increased by 18-25%, depending on the radio conditions.

Automatic transmission rate is useful to increase the application throughput by ex-

ploiting the functionality available in multi-rate devices. Kamerman and Monteban [39]

propose Automatic Rate Fallback (ARF). ARF is a rate adaptation algorithm, which uses

information about packet transmission successes to determine the transmission rate. Af-

ter one or two consecutive packet transmission failures, the transmission rate is decreased

and a timer is started. When the timer expires or ten successful acknowledgements are

received, the transmission rate is increased to the next higher level and the timer is reset.

Holland et al [32] propose Receiver Based Auto Rate (RBAR). In RBAR the sender and

receiver exchange (Request To Send/Clear To Send) RTS/CTS packets before transmis-

sion. The receiver determines the transmission rate based on a known channel model

and the signal-to-noise ratio for the received RTS. Adaptive ARF (AARF) is proposed in

reference [45]. For tuning physical layer power see Section 2.2.1.

Battery aware link/MAC layer: see Section 2.2.1 for optimization in collaboration

with physical layer.

From the examples in the previous sections, it can be seen that adaptation of error

control mechanisms at the link/MAC layer along with transmit power control at the

physical layer can help in substantial reduction in power consumption and improvement

in throughput.

2.2.3 Network Layer

Network layer functions are routing, addressing, selecting the network interface, and IP

hand-off [59] to maintain IP connectivity in foreign networks.
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The information available at the network layer is: Mobile-IP hand-off initiation/completion

events and the network interface currently in use.

Interactions of network layer with upper layers:

Application or user: An application could control its sending rate based on Mobile-IP

hand-off indications.

A device may have multiple wireless network interfaces that can provide different

levels of service. For example, a wireless LAN interface may provide lesser delays and

higher throughput as compared to a GPRS interface on the same device. Depending

on the application or user needs, the network layer could select an appropriate network

interface. However, continuing a session uninterrupted onto another interface is an open

research area.

Transport: Mobile-IP hand-off delay may lead to reduced throughput due to the TCP

retransmission time-out and back-off mechanism. TCP can be informed about the event

of Mobile-IP hand-off to reduce the retransmission latency. A fast retransmit [16] can be

initiated on the mobile host using this information. Depending on the hand-off conditions,

this helps in reducing TCP retransmission latency by upto 75% and improving throughput

by upto 25% [16].

Interactions of network layer with lower layers: Link/MAC: see Section 2.2.2;

Physical: see Section 2.2.1.

From the aforementioned, it seems that the Mobile-IP hand-off indications to the

application and TCP would be quite useful in conserving the battery and increasing

throughput.

2.2.4 Transport Layer

The transport layer is concerned with establishing end-to-end connections over the net-

work. Mobile networks are characterized by large delays, packet losses and high bit error

rates. Transport protocols like TCP interpret this as a congestion loss which reduces

its throughput [16]. Cross layer feedback may also be beneficial in case of protocols like

Universal Datagram Protocol (UDP) or Real-time Transport Protocol (RTP) , however

we restrict our discussion to TCP.

The information available with TCP is: round-trip time(RTT), retransmission time-

out(RTO), maximum transmission unit (MTU), receiver window, congestion window,

number of packets lost and actual throughput (or goodput).

Interaction of transport layer with upper layers:

User: A user may assign priorities to the running applications. In case the applica-

tions are downloading some data, this higher priority would indicate the need for higher

download bandwidth. To enhance user satisfaction, TCP may map the higher priority

of an application to a larger receive window [66, 64]. Further, a user could provide in-
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formation about an impending disconnection. This information can be used by TCP to

increase its RTO values (also see Section 2.2.6). Also, TCP may provide packet loss and

goodput information to the user. The user may shutdown some non-critical applications

based on this input, which would help improve user experience.

Application: Applications may indicate their QoS requirements to TCP. Based on this

information TCP may manipulate the receiver windows. On the other hand, TCP may

provide packet loss and goodput information to the application. The application can use

this input to adapt its sending rate.

Interaction of transport layer with lower layers: Network: see Section 2.2.3;

Link/MAC: see Section 2.2.2

2.2.5 Application Layer

The application layer is the interface to the user for running user tasks. For example:

web browsing, downloading a file using FTP, sending e-mail, watching a video clip, etc.

The existing applications were designed for wired networks and do not perform well in

wireless networks. Application adaptation based on information from lower layers would

be useful in improving application performance over wireless networks.

An application layer can communicate to other layers the application’s QoS needs

i.e. the delay tolerance, acceptable delay variation, required throughput and acceptable

packet loss rate.

Interaction of application layer with upper layers:

User: A user’s requirement can be captured by an application and communicated to

the lower layers. The mobile device could then be re-configured to satisfy user needs [1].

Interaction of application layer with lower layers:

Transport: see Section 2.2.4; Network: see Section 2.2.3; Link/MAC: see Section 2.2.2.

Physical: Multi-media applications like video, use various standard coding techniques

for video transmission. Information about channel conditions can be used to adapt the

coding. For example, if the bandwidth is low, a lower quality video coding may be used

which requires lesser bandwidth. Similarly, an email application could defer downloading

the file attachments in an email when the channel conditions are poor. Some of the

proposals for application adaptation are [3, 49, 56]

Power saving based on application information: If the application can tolerate

some delays, it may be possible to switch off the network interface card intermittently [44].

Information about the type of coding used by a video-application could be used to discard

some frames at the network interface to save power [2]. However, this will reduce the video

quality.

The discussion above indicates that information about channel conditions, from the

physical and link/MAC layers, would be useful in improving application performance.
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Also, tuning the link layer error control mechanisms based on the application QoS re-

quirements, seems to be essential in improving application throughput.

2.2.6 User

We believe that improving user satisfaction is the ultimate goal of improving application

performance on wireless devices. Cross layer feedback on a mobile device would help

in improving application performance and thus user satisfaction. However, to further

enhance user satisfaction it is essential to incorporate dynamic user requirements

We consider the user to be the uppermost layer of the protocol stack. We believe

that user requirements should be taken into account to enhance user perceived QoS. The

motivation for this is that the user decision could be contrary to the system decision but

it could lead to improved user satisfaction. For example: (1) for a user a FTP download

may be more important than a streaming video, (2) a user may know that a disconnection

is imminent in an approaching tunnel while the system will know it only after the signal

is affected, (3) the system may decide to conserve battery by not downloading some

information while the user may, at that instant, feel that the information (e.g. a stock

quote) is more important than saving battery.

The user will need information from the lower layers to use the mobile device effectively.

It seems that the most crucial one will be link throughput information from the link layer.

This will help the user decide about the applications that can be run and also indicate to

the user the kind of performance that should be expected.

Interaction of user with lower layers: Application: see Section 2.2.5; Transport: see

Section 2.2.4; Network: see Section 2.2.3; Link/MAC: see Section 2.2.2; Physical: see

Section 2.2.1

Battery status: Depending on the battery status, the user may instruct the system to

optimize power consumption sacrificing performance and vice versa.

Other surveys related to cross layer feedback are as follows: Jones, et al [38] present

a survey of work addressing energy efficient and low-power design within all layers of

the wireless network protocol stack. Zorzi, et al [89] discuss the impact of higher order

error statistics on the various layers of the protocol stack. Power aware protocols in ad

hoc networks are discussed in reference [30]. References therein provide insight into the

various power aware protocol proposals and design issues. Badrinath, et al [5] present

a conceptual framework for network and client adaptation. They survey the various

proposals for application adaptation and map it to the conceptual framework.

In this section we presented the different possibilities of cross layer feedback with a

discussion about the benefits. Our experiments with user feedback also confirm the ben-

efits of cross layer feedback [66]. Table 2.1 summarizes the cross layer research presented

above. Table 2.1 shows the various cross layer feedback possibilities. Layers which are
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information producers are shown in the left most column and layers which are informa-

tion consumers are shown in the top most row. The table cells contain the information

created by producers and used by consumers, along with relevant references. For ex-

ample, Physical layer (information producer) has information about channel conditions

and signal strength. This information can be consumed by the MAC layer to adapt the

packet frame length [50]. User and Battery/Power/Energy are shown in parenthesis to

distinguish them from protocol stack layers. In the next section we discuss the various

approaches to cross layer feedback.

2.3 Existing Approaches to Cross Layer Feedback

2.3.1 Physical Media Independence

One of the early proposals is the Physical Media Independence (PMI) [34] architecture,

by Inouye et al. The primary focus of this architecture is informing upper layers about

changes at the network interface. The aim is that the network configuration of a mobile

computer should adapt itself as the interfaces are disabled or enabled.

A set of device characteristics is defined. The characteristics are:

• Present: Device is physically attached

• Connected: Link-level connectivity

• NetNamed: Network name is bound to device

• Powered: Power is available

• Affordable: Cost of use is within budget

• Enabled: User has enabled the device

Together, the above characteristics determine whether a device is available or not.

Guard modules are used to monitor the device characteristics. There guard modules

are placed in the system in such a way that they can easily monitor the required charac-

teristic. For example, the guard for Connected is placed in the device driver. The guard

for Enabled is created by adding a event mechanism that is triggered whenever the user

invokes the operating system API for enabling or disabling the device. The information

from all the guard modules is delivered to the device manager.

Device related events are propagated to higher layers. This is achieved by adaptation

modules attached to each layer. The device information is propagated layer by layer.

A layer completes its adaptation and then allows the information propagation to higher
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Table 2.1: Cross layer feedback possibilities and relevant references
Consumers→
Producers ↓

(User) Application Transport (TCP) Network (IP) Link / MAC Physical

(User) - User QoS
require-
ments [1]

- Application prior-
ity [66]
- Impending discon-
nection

- Interface selection - User QoS re-
quirements [1]

Appli-
cation

- Good-
put

- QoS - QoS [3] - QoS [3], [86]
- Coding [2]

- QoS,
Bandwidth re-
quest [3]
- Power
control [3], [44]

Transport
(TCP)

- Packet
loss /
goodput

- Packet loss
/ goodput

- RTT/RTO infor-
mation

Network
(IP)

- Hand-off [16]
- Interface change
[34]

- QoS [46]

Link /
MAC

- Errors
[89]
- Good-
put

- Errors [56,
89]

- Errors [89]
- Interface queue
[53]
- Hand-off

- Errors [89]
- Channel condition [53]
- Route failure [63]
- Hand-off [67], [82]
- RTS/CTS [27]

- Errors [89]
- Power [26]

Physical - Bandwidth
available
[56]

- Capability [12]
- Bandwidth [60]
- Interface / card removed
[34]

- Channel con-
ditions / Signal
strength [14, 32, 39,
45, 46, 47, 50, 80]

(Battery/
Power/
Energy)

- Battery
status

[2, 30, 38,
56]

[30, 38] [30, 38] [26, 30, 38] [26, 30, 38]
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layers. For example, since the information propagates upwards through the stack, IP

layer will receive the information earlier than TCP. The information will propagate to

TCP only after IP has completed its adaptation.

Policies for adaptation are propagated from upper to lower layers through the adap-

tation modules.

PMI Limitations

In PMI [34] architecture, the focus is on cross layer feedback about device information to

upper layers, that is, lower to upper layers. The device related information is propagated

upwards layer by layer. A layer sends the information upwards only after completing its

adaptation. This decreases the speed of information propagation.

The architecture also requires modification to the operating system to track en-

able/disable of the device done by the user. Further, operating system calls are used

for interacting with the stack. This would increase the efforts required for maintenance of

the cross layer implementations. In addition, operating system calls increase execution

overheads since user kernel crossing is involved (see Chapter 5 for details).

2.3.2 ICMP Messages

Sudame and Badrinath present a cross layer feedback architecture based on Internet

Control Message Protocol (ICMP) messages [73]. The focus of the architecture is to make

the stack aware about changes in the network environment.

The network environment is determined by a set of parameters such as latency, band-

width, energy, cost, signal strength, etc. These parameters are represented as device

parameters. The device data structure in the operating system is modified to include

these parameters. An API is provided to the kernel and applications to get and set the

parameters of the device. Multiple watermarks are used to detect changes in the parame-

ters. A violation of a watermark constitutes an event. This event is propagated to higher

layers in the stack.

In this architecture, event propagation is achieved through Internet Control Message

Protocol (ICMP) messages. The ICMP message may be generated locally or by a remote

system. On the host, the message is generated by a daemon or some part of the kernel.

A new ICMP message ICMP STATUS is created. A handler is implemented for this

message. This handler invokes a function at the socket layer. This function in turn

notifies the interested applications and determines protocol specific adaptation actions

for the other layer, example, TCP.

Interested applications create a datagram socket for communication with the lower

layers. An API is provided to enable the applications to register for events of interest.
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The application receives events in this socket’s buffer. Applications can choose to receive

notification of message arrival through operating system signals. The application specified

events are stored in a table at the socket layer.

For transport layer protocol adaptation, the protocol provides a function (action)

to adapt the protocol-specific parameters. This parameter change is used to modify

protocol behavior. In case a new parameter is required, the protocol implementation is

suitably modified. The protocol implementation checks the values of these new parameters

also to determine protocol behavior. A protocol’s adaptation is restricted by this set of

actions provided by the protocol. Applications define the protocol adaptation using the

protocol actions. Each application determines the protocol adaptation for itself. Based

on the adaptation required by the application, an action table is attached to the transport

protocol socket being used, by using the operating system call setsockopt(). The handler

on receipt of the ICMP message, scans the action table and adapts the transport protocol

behavior. Subsequently, another table is scanned for interested applications and the events

are delivered to the applications.

ICMP Message Limitations

The primary focus of the ICMP messages architecture [73] is on application and transport

layer adaptation. While, the application defines the adaptation for transport layer, there

is no mechanism for feedback from other layers to lower layers. For example, transport

layer information cannot be communicated to the MAC layer. The architecture does not

enable any-to-any layer feedback in general. Further, the architecture does not provide a

mechanism for defining adaptation for layers below the transport layer.

The architecture requires modification to the protocol stack to introduce application

and transport action tables and a new ICMP message handler. Further, the protocol

layers need to be modified to introduce new APIs in the protocol stack to support adap-

tation. In addition, the architecture proposes introduction of new variables in the protocol

to allow modification of protocol behavior. These modifications would lead to difficulty in

ensuring protocol correctness and increased efforts for stack code maintenance. Further,

the execution overheads of a protocol layer will increase, since additional code will be

required for checking the status of new variables introduced in the protocol. The cross

layer feedback overhead is higher since the messages are encapsulated in ICMP messages.

Lastly, the adaptation of the transport layer is based on the actions defined by the appli-

cation, that is, the transport protocol is adapted for each application separately. There

is no mechanism to define a common adaptation for all the transport layer sessions.
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2.3.3 MobileMan

Conti et al propose the MobileMan [21] architecture. MobileMan is primarily intended for

ad hoc networks. In this architecture protocols belonging to different layers share network-

status information. The architecture has a core component called Network Status. This

component is a repository for all information collected by the network protocols in the

stack. Each protocol can access this repository and share information with other protocols.

The access to Network Status is standardized. MobileMan recommends replacing the

standard protocol layer with a redesigned network-status-oriented protocol, so that the

protocol can interact with Network Status. MobileMan has been deployed on experimental

testbeds for ad hoc networks.

MobileMan Limitations

MobileMan architecture requires creation of a Network Status component. The architec-

ture requires substantial modification to the protocol stack, since it proposes replacement

of the standard protocol with a network status aware protocol. This makes it difficult

to add new cross layer optimizations to the stack. Also, this introduces a dependency

between the protocol and the network status component. Whenever the network status

component is modified all the protocols using this component need to be modified. Fur-

ther, the stack processing overhead is increased since the protocol executes additional

code for monitoring the network status and determining appropriate action.

2.3.4 Cross Layer Manager

Carneiro et al [17] propose a framework using cross layer manager. The protocol layers

expose events and state variables to the cross layer manager. Management algorithms

are woken up by the events. The cross layer manager uses the state variables to query

/ set the protocol internal state. Four interlayer coordination planes are identified viz.

security, quality of service, mobility and wireless link adaptation. Internal details of this

architecture are not available.

Cross Layer Manager Limitations

The cross layer manager framework [17] requires that the layers generate events, which

are fed to the cross layer manager. This event generation within the layer would lead

to slow down of the layer execution. Further, the cross layer manager is dependent on

the protocol implementation since it reads and updates state variable information of a

protocol.
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2.3.5 Cross Layer Signaling Shortcuts

Wang and Abu-Rgheff [79] propose Cross LAyer Signaling Shortcuts (CLASS). CLASS

allows direct interaction between the layers e.g. Application layer can directly interact

with the Link layer. When a specific parameter changes within a layer, the layer generates

an event. A layer provides set and get APIs for its parameters. System calls are used to

read the message. Details of the mechanism have not been provided.

CLASS Limitations

Cross Layer Signaling Shortcuts [79] primarily aims at increasing the cross layer feedback

speed. However, since the cross layer adaptation is built into the layer, the layer needs

to be modified for each new cross layer algorithm. Further, a layer generates events for

informing other layers. Both of these modifications introduce a processing overhead on

the layer, which leads to reduction in the stack processing speed. Since the architecture

proposes direct interaction between the layers, it introduces a dependency between inter-

acting layers. This would lead to increased efforts in maintaining the cross layer feedback

implementation.

2.3.6 Interlayer Signaling Pipe

Wu et al [81] propose interlayer information exchange using the packet header. This is

suitable for cases where some adaptation may be required at lower layers for each packet

from higher layers. The information is encoded in the Wireless Extension Header (WEH)

of IPv6 packets, to pass the information to intermediate nodes, if required.

ISP Limitations

Interlayer Signaling Pipe [81] is basically for upper to lower layer feedback. Since the

information is passed in packet headers, the lower layer needs to be modified to read

and parse the packet. Further, the layer needs to take appropriate action based on the

information in the packet. This requires additional code execution in the lower layer,

which reduces the stack efficiency. In addition, the lower layer is dependent on cross layer

information format of the upper layer. This makes the lower layer dependent on the upper

layer. Any change in a upper layer’s cross layer information format will lead to changes

in all layers dependent on this layer. This mechanism cannot be used easily for lower to

upper layer feedback, since the packet headers are stripped as the packet moves upwards.

Further, modification to the packet header could lead to check-sum errors. Lastly, this

mechanism cannot be used for feedback from a layer to any other layer without passing

the message through the intermediate layers.



24 CHAPTER 2. MOTIVATION AND RELATED WORK

2.3.7 User-Space Implementation

Mehra et al [54] propose user-space implementation of a cross layer feedback optimiza-

tion (Receiver Window Control [54, 66]). The cross layer algorithm is implemented in

user-space. The read() system call in libc library is modified, so that the algorithm is

invoked for each read by an application. Operating system calls such as getsockopt()

and setsockopt() are used to modify protocol parameters.

User-Space Limitations

The protocol adaptation by a user-space implementation is constrained by the API pro-

vided by the operating system, that is, the system calls provided for protocol tuning. Thus

user-space implementations incur the overhead of user-kernel crossing, that is, some CPU

cycles are spent in triggering a soft-interrupt and sending the data from user to kernel-

space and vice-versa. If the adaptation code is placed within the path of the protocol

data unit, it decreases the stack execution speed.

2.3.8 GRACE

The above examples of cross layer feedback focus on improvements within the protocol

stack. The GRACE (Global Resource Adaptation through CoopEration) framework [88]

is aimed at cross layer adaptation across the hardware, software (OS) and application

layers. However, GRACE does not address adaptation of any the protocol stack layers.

Approaches such as ICMP Messages [73], MobileMan [21], CLASS [79] and ISP [81] re-

quire modifications to the protocol stack for implementing cross layer feedback. However,

modifying the protocol stack can lead to problems in execution efficiency and maintain-

ability of the cross layer system. In the next section, we summarize the problems that

arise due to modification of the protocol stack.

2.4 Problems with Modifying the Stack

• Each additional cross layer feedback code block in a protocol would slow down the

execution of that protocol. This would reduce the throughput of that protocol. If

a protocol interacts with many other protocols this would lead to a large reduction

in its throughput.

• The cross layer feedback code would have to be rewritten for porting to other oper-

ating systems.

• Multiple cross layer optimizations within a protocol could lead to conflicts [41] and

hence difficulty in ensuring correctness of the protocol’s algorithms.
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• Cross layer feedback code once added to a protocol would be difficult to update or

remove, since the code would be intertwined with regular protocol code.

• Trial (fast prototyping) of new cross layer feedback ideas would not be easy, since

the protocol code would need to be modified.

The above problems are compounded when multiple such cross layer optimizations are

implemented. Figure 2.1(a) shows a single cross layer optimization for TCP and MAC

interactions. Figure 2.1(b) shows multiple cross layer interactions introduced in the stack.
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Figure 2.1: Cross layer feedback: Modification to protocol stack

Above we discussed the various mechanisms for cross layer feedback and their limita-

tions. We also highlighted the problems associated with modifying the protocol stack for

implementing cross layer feedback. Based on the above discussion, we define the design

goals of a cross layer feedback architecture and define the objectives for this thesis.

2.5 Cross Layer Feedback Architecture Design Goals

From the software engineering perspective cross layer feedback is essentially a modification

to the existing protocol stack. The stack forms an important part of the kernel. Thus it

is important that any modification to the stack:

• imposes minimal overhead on the stack

• does not affect the correctness of the stack

• does not introduce any other errors in the stack
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• is easily extensible and reversible if required

• allows feedback from a layer to any other layer in the stack

The above points are explained below:

Imposes minimal overhead on the stack: Any cross layer feedback implementation would

entail execution overheads. This execution overhead should be minimal.

Does not affect the correctness of the stack: The correctness of each of the existing pro-

tocols in the stack is proven. Any modification to any of the protocols can impact the

correctness of the stack. Cross layer feedback aims at modifying the existing protocol

stack behavior. It is essential to ensure that cross layer feedback does not lead to incor-

rect stack behavior. For example, Medium Access and Control (MAC) layer has a certain

back-off behavior when a collision occurs. The MAC behavior should not be modified

such that the fairness of access to the medium is violated.

Does not introduce any errors in the stack: The stack is a critical part of the operating

system. An error in the stack can lead to a crash in the operating system. Errors in

the cross layer feedback implementation could lead to a system crash. The cross layer

implementation should be able to trap such errors to enable error free execution of the

stack.

Is easily extensible and reversible if required: Cross layer feedback implementations would

require some maintenance / enhancements in future. Some of the cross layer optimizations

may need to be removed or replaced with new optimizations. Thus it is essential that the

cross layer feedback implementation can be easily enhanced or removed.

Allows feedback from a layer to any other layer in the stack: To ensure maximum benefit

from cross layer feedback, the cross layer feedback mechanism should not restrict the

feedback in a particular direction. For example, upper to lower layers or lower to upper

lower layers only, or only between a set of layers.

The above requirements are restated in a concise form as the design goals for a cross

layer architecture:

• Efficiency: Enable efficient cross layer feedback. By efficient we mean cross layer

feedback which helps attain maximum performance improvement of the stack, with

minimal overheads.

• Rapid prototyping: Enable easy development and deployment of new cross layer

feedback algorithms, independent of existing stack.

• Minimum intrusion: Enable interfacing with existing stack without significant

changes in the existing stack. This would aid in easily extending or reversing the

optimization. This would also help in protecting the correctness of the stack.

• Portability: Enable easy porting to different systems.
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• Any to Any layer communication: Allow cross layer feedback from any layer

to any layer i.e. upper to lower layer or lower to upper layer.

The above design goals would help ensure that a cross layer architecture is designed

in such a way that it

• enables cross layer feedback with the minimum possible overheads on the system

• allows evolution and maintenance of the cross layer implementation with minimum

possible effort

This would help overcome the limitations of the existing approaches to cross layer feedback

implementation, as described in Section 2.3.

On receipt of cross layer feedback information, a protocol needs to adapt its behavior.

Below we present our observations about the types of adaptation.

2.5.1 Adaptations using Cross Layer Feedback

Asynchronous and Synchronous Adaptations

The adaptive action at a layer, based on cross layer feedback from another layer, may

be synchronous or asynchronous. In synchronous adaptation, whenever a layer receives

some cross layer information, it proceeds with its regular execution only after executing

the cross layer adaptation required. For example, assume there is network disconnection

event sent to TCP from the link layer. In the synchronous case, TCP’s regular execution

is stopped, appropriate adaptation is carried out in TCP and then regular TCP execution

proceeds. In the asynchronous case, the TCP adaptation would be done in parallel to

TCP execution. Further, synchronous or asynchronous adaptation may be required for

each packet or a flow.

Adaptations for Packets and Flows

A mobile device may have multiple data sessions with fixed hosts. When a device estab-

lishes a connection over the IP network, to some fixed host, a wireless interface is selected

and the connection is established over a set of routers. We call this a flow. For example,

one flow could be over GPRS and another flow could be over WLAN.

We describe cross layer feedback for these cases below:

• per flow: The flows, as described above, would have different QoS characteristics,

(that is, different delay, throughput and bit error rate). Protocol adaptations for a

flow may need to be specific to that flow. For example, TCP timers may need to

be set to different values when there is congestion on the network. We call this per

flow type of adaptation.
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Figure 2.2: Cross layer feedback classification

• across flows: On the other hand, the same adaptation may be applicable to all the

flows. For example, on disconnection, TCP retransmission timers for all flows may

need to be canceled or increased by a constant factor. We call this across flows type

of adaptation.

• per packet (similar to snoop [8]): Besides the above, specific adaptation may be

required for each packet. We call this per packet adaptation.

Per flow and across flows adaptation can be done in asynchronous or synchronous

manner depending on the optimization requirements. However, per packet is synchronous

since the adaptation needs to be done as the packet is being processed. Figure 2.2 sum-

marizes the cross layer feedback adaptation types.

2.5.2 Objectives of this Thesis

As stated in Section 1.4, the objective of this thesis is to define an architecture which

addresses the design goals stated above, validate the architecture and compare it with the

existing approaches.

In Chapter 1, Section 1.5, we presented an overview of ECLAIR, which satisfies the

architecture design goals stated above and enables asynchronous adaptation to ensure

higher efficiency. In the next chapter, we present the details of ECLAIR.
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2.6 Summary

In this chapter we presented a representative survey of existing research on cross layer

feedback optimizations. As new wireless networks are deployed, to enhance the perfor-

mance of the protocol stacks multiple cross layer feedback algorithms would be required.

These algorithms would need to be easily integrated with the existing stack.

Introduction of cross layer feedback should not impact the correctness, efficiency, and

maintainability of the existing protocol stack. We showed that existing approaches to

cross layer feedback implementation impact the runtime efficiency and have poor main-

tainability. The design goals for a cross layer feedback architecture are efficiency, rapid

prototyping, minimum intrusion, portability and any-to-any layer communication. Exist-

ing approaches to cross layer feedback do not address all the design goals.

In the next chapter we present our cross layer feedback architecture – ECLAIR, which

addresses the stated design goals.
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What’s in a name? That which we call a rose

By any other name would smell as sweet

- William Shakespeare

Chapter 3

ECLAIR: An Efficient Cross Layer

Architecture

3.1 Introduction

In Chapter 2 we presented a survey of existing mechanisms for cross layer feedback and

discussed their merits and demerits. We also identified the design goals for a cross layer

feedback architecture, namely: efficiency, minimum intrusion, rapid prototyping, porta-

bility and any-to-any layer communication.

In this chapter we present our cross layer feedback architecture – ECLAIR, which is

based on the above design goals. Below, we present the scope of ECLAIR architecture

specification.

3.1.1 Scope

We restrict the scope of this thesis to a discussion about the architectural aspects of cross

layer feedback. In this chapter,

• we describe the functionality and interface of each component of ECLAIR

• we describe typical generic (operating system independent) APIs 1

1Application Programming Interfaces

31
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• we present API examples specific to Linux [99]

However, the following are beyond the scope of this thesis:

• an exhaustive list of APIs specific to an operating system

• issues intrinsic to cross layer feedback such as dependency cycles (or adaptation

loops) and conflicts [41]. For example, a dependency cycle is formed if TCP reads

information about the interface queue at the MAC layer to adapt TCP retransmis-

sions, while the MAC layer reads TCP retransmission information to adapt MAC

retransmissions. Another issue intrinsic to cross layer feedback is adaptation con-

flict. For example, a conflict would occur if two cross layer adaptations try to change

physical layer transmit power at the same time.

In Chapter 4 we present implementation of a ECLAIR prototype on Linux [99], using

Receiver Window Control [66] as an example. Next, we present the acronyms used in this

chapter.

3.1.2 Acronyms

Table 3.1 lists the acronyms used in this chapter.

3.2 Background: Protocol Implementation Overview

Before presenting an overview of ECLAIR, we present an introduction to a protocol’s

implementation in an operating system. We use Linux [99] as an example. A protocol’s

implementation consists of protocol algorithms and data structures. A protocol’s data

structures have two major components – control data structures and data (or protocol data

unit) data structures. The control data structures determine the behavior of a protocol.

For example, control data structures are used for implementing the state machine of a

protocol. Some examples of control data structures are: timers controlling behavior of

MobileIP, retransmit timer in TCP, fragmentation threshold in 802.11 [33].

Example: TCP control data structures

We use TCP as an example to explain the concept of control data structures. In the exam-

ples below, the linux directory implies the directory where the Linux [101] source code is

installed. In Linux (IPV4), TCP algorithms are implemented in the

linux/net/ipv4/tcp*.c files. For example, TCP receive functions are implemented in

tcp input.c. TCP’s protocol data structures are implemented in linux/include/sock.h

and linux/include/tcp.h files. These data structures are accessed by the algorithms
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implemented in the tcp*.c files. One of the important control data structures for TCP

is tcp opt. This is implemented in linux/include/net/sock.h files.

Acronym Description
802.11 IEEE Standard for WLAN
ATL Application Tuning Layer
GPRS General Packet Radio Service
GSM Global System for Mobile communications
IP Internet Protocol
IPTL IP Tuning Layer
MAC Medium Access and Control layer
MTL MAC Tuning Layer
NTL Network Tuning Layer
OSS Optimizing SubSystem
PHY Physical layer
PO Protocol Optimizer
PTL PHY Tuning Layer
QoS Quality of Service
RTS Request to Send
CTS Clear to Send
TCP Transmission Control Protocol
TCPTL TCP Tuning Layer
TL Tuning Layer
TTL Transport Tuning Layer
UDP Universal Datagram Protocol
UDPTL UDP Tuning Layer
UTL User Tuning Layer
WLAN Wireless Local Area Network

Table 3.1: Table of acronyms

Some of the fields in tcp opt are retransmission time out rto, smoothed round trip

time srtt, maximal window to advertise window clamp and slow start threshold

snd ssthresh. These fields are read and written to at various points in the TCP code.

The values in these and other fields determines TCP behavior as TCP code executes. For

example, TCP retransmits packets when the retransmission timeout timer expires. The

value in tcp opt.rto is used for setting TCP’s retransmission time out. The value of

tcp opt.rto is updated at various points the TCP code and is used to set the retrans-

mit timer. The timer used for this is a kernel timer [13]. This kernel timer is accessible

through the variable tcp rto.retransmit timer. TCP retransmission behavior can be

changed by modifying this retransmit timer. Similarly, the values in the control data

structures of various layers can be changed to modify the behavior the protocols.
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Accessible control data structures

Accessible control data structures are the protocol’s control data structures which can

be accessed by kernel components. This accessibility is enabled during kernel compi-

lation. For example, in Linux, the access to network variables is enabled in the file

linux/net/netsyms.c, using the macro EXPORT SYMBOL. tcp hashinfo provides access

to the TCP socket hash tables.

ECLAIR uses these accessible control data structures to manipulate protocol stack

behavior. In the next section, we present an overview of ECLAIR.

3.3 ECLAIR Overview

3.3.1 Architectural Model

For the description of ECLAIR we use simple functional block diagrams. The blocks shown

in the architecture are functional blocks. The actual implementation may be as separate

modules or combined modules. We depict interfaces between the components by use of

arrows and lines. We explain the notation as we use it. In Chapter 5, Section 5.3.1, we

propose an notation which is useful for an overview of cross layer feedback implementation.

ECLAIR is not tied to any specific hardware. All components are primarily software

components. However, we do not mandate an implementation in software only. The

system developer may implement components in hardware, software or both.

The cross layer system designer may choose to introduce hardware or OS specific

constructs to enhance efficiency. We describe an ECLAIR sub-architecture to enhance the

efficiency of ECLAIR, in Chapter 6. The next section provides an overview of ECLAIR

components.

3.3.2 Component Overview

In this section we provide an overview of our architecture – ECLAIR. ECLAIR’s primary

characteristics are: (1) it is outside the existing stack, that is, minimal modifications, if

any, are required to the existing stack’s code and (2) it is almost entirely in kernel-space

i.e. most of the components of ECLAIR reside in the kernel and hence have access to

certain kernel data structures (see accessible data structures in Section 3.2).

ECLAIR consists of an Optimizing SubSystem which contains the cross layer feedback

algorithms and Tuning Layers which provide an interface to the existing protocol stack.

Figure 3.1 shows an overview of ECLAIR.
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Figure 3.1: ECLAIR architecture

3.3.3 Tuning Layer

ECLAIR provides one Tuning Layer (TL) for each layer of the stack (Figure 3.1). The

TLs do not interact with each other directly. A TL provides an interface to a protocol’s

control data structures (Section 3.2).

TLs are used by the Optimizing SubSystem (OSS). A TL monitors a protocol’s control

data structures for the current state of the protocol. The TL is aware of the implementa-

tion details (control data structures) of a protocol’s data structures. It is used by the OSS

to manipulate protocol behavior by effecting changes to the protocol’s accessible control

data structures.

The Tuning Layers for a typical protocol stack are: Physical Tuning Layer, MAC

Tuning Layer, Network Tuning Layer, Transport Tuning Layer and Application Tuning

Layer. ECLAIR also provides a User Tuning Layer for allowing user interaction with the

protocol stack. Each TL contains appropriate components for a protocol within the layer.

For example, MAC TL contains 802.11 TL for 802.11 [33] and GPRS TL for GPRS [48].

Similarly, Network TL contains IP and Mobile-IP TL; Transport TL contains TCPTL,

UDPTL, etc; Application TL contains application specific TLs.

Each TL is subdivided into a generic and implementation specific sublayer. This is

useful (we evaluate ECLAIR in Chapter 5), since the implementation of protocols is dif-

ferent across systems, even though they conform to the protocol standards. For example,

the TCP data structure names are different in NetBSD [104] and Linux [99]. The OSS

uses the generic API of TLs. The generic interface invokes the implementation specific

API for a particular OS. Next, we present an overview of the Optimizing SubSystem.
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3.3.4 Optimizing SubSystem

The OSS determines the cross layer optimizations. The OSS contains many protocol

optimizers (POs). A PO contains the algorithms and data structures for a specific cross

layer optimization. A PO registers with a TL for event information from a particular

protocol layer. Figure 3.2 depicts this registration as a dashed line with hollow arrow head.

The PO’s algorithm determines the cross layer optimizing action. The PO invokes the

appropriate TL’s generic API for modifying the control data structure, and consequently

the behavior, of the target protocol. Figure 3.2 depicts this optimizing action by a solid

line with a solid arrow head. An ellipsis next to a TL (example, UDPTL) represents

additional TLs at a layer. An ellipsis within the OSS represents additional POs. To

illustrate the working of ECLAIR we present a few examples in the next section.
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3.4 Cross Layer Feedback using ECLAIR: Examples

In this section we present three examples based on ECLAIR. The first two examples are

about cross layer feedback to TCP (1) from the user and (2) from the network layer

(Mobile-IP). The third example describes how ECLAIR supports seamless mobility.

3.4.1 User Feedback

Users can provide useful feedback to improve the performance of the stack or the user

experience[64, 66]. For example, a user may want one file download to get more bandwidth

than another.

Algorithm: One method of controlling the application’s bandwidth share is through

manipulation of the receiver window of its TCP connection [66]. The user assigns some

priority number to each application. An application’s priority number p is used to calcu-

late its receiver window, r = R×p/
∑

p [66], where R is the total available receive buffer.

Details of this algorithm are presented in Section 4.1.1.

Implementation: The use of ECLAIR for the above PO (Receiver Window Control

PO or RWC PO) is shown in Figure 3.3.

The explanation of the sequence shown in Figure 3.3 is as follows: (1) TCPTL gets

protocol block head information at system start. (2a),(2b) PO registers for user events.

User changes priorities for running applications. (3) Application and respective priority

information is passed to the RWC PO. (4a),(4b) Current receiver window/buffer infor-

mation is collected via TCPTL. This information is used to recalculate the new receiver

window values for the various applications. It is assumed that the application can be

identified by the sockets. (5a),(5b) The receiver window values are set for each applica-

tion.

In the Figure 3.3, the fine dotted line from the TCP data structures sock and tcp opt

represent pointers to other data structures. The ellipsis next to sock() represents other

sock() structures. The ellipsis within RWC PO represents the RWC cross layer algorithm.

3.4.2 Adapted TCP

TCP is known to perform poorly when there are disconnections since it misinterprets

disconnections as network congestion and decreases its sending rate [58, 75, 85]. TCP

performance can be improved through feedback from other layers.

Algorithm: Feedback from the network layer about disconnections can be used to

adapt TCP behavior. A number of such improvements are proposed in [68]. One of the

improvements suggested is: if disconnection occurs and if the congestion window(cwnd) is

open, then cancel TCP retransmission timer and do not reduce the cwnd. On reconnection,
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Figure 3.3: ECLAIR architecture: User feedback

use the earlier cwnd and set a new retransmission timer. This action results in improved

TCP throughput since unnecessary reduction in cwnd is avoided.

Implementation: The use of ECLAIR for the above PO (Adapted TCP PO or ATCP

PO) is shown in Figure 3.4. The explanation of the sequence shown in Figure 3.4 is as

follows: (1a),(1b) The data structure location information is acquired by TLs at system

startup. (2a),(2b)PO registers for disconnection(reconnection) event. MITL monitors

the network status for disconnection(reconnection). (3) Disconnection(reconnection) oc-

curs and ATCP PO is notified. (4a),(4b) Current state of TCP is queried via TCPTL

and the action is determined (for example, changing the value of the TCP retransmission

timer). (5a),(5b) The TCP retransmission timer is set to the new value determined in

step 4.

In the Figure 3.4, the ellipsis and fine dotted line notation is same as that described

in the previous RWC example. The looped arrow (2b) implies continual monitoring of

Network info.

3.4.3 Seamless Mobility

Seamless mobility means the continuation of a session on a mobile device even as it roams

across heterogeneous wireless networks [14]. The key requirement is that the session

should continue uninterrupted. We discuss an example PO for seamless mobility between

GPRS [48] and 802.11 [33] WLAN networks.
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Algorithm: For achieving seamless mobility MAC layers of the GPRS and 802.11

interfaces are monitored for vertical handoffs. When the wireless network changes the

corresponding wireless interface is made active in the IP layer.

Implementation: The use of ECLAIR for the above PO (Seamless Mobility PO or

SM PO) is shown in figure 3.5. The explanation of the sequence shown in Figure 3.5

is as follows: (1a),(1b) The data structure location information is acquired by the

TLs at system startup. (2a),(2b) PO registers for disconnection(reconnection) event.

MAC TL monitors the network status for disconnection(reconnection). (3) Disconnec-

tion(reconnection) occurs and SM PO is notified. (4a),(4b) Current state of interface in

IP is queried via IPTL and the action is determined (for example, changing the active

interface). (5a),(5b) The active interface in the IP layer is set to the interface determined

in step 4.

Note that, switching on an interface could be slow process, since it depends on the time

taken for the interface to switch on and register on the network. Thus, seamless mobility

may not be smooth in case one interface is switched off and then another is switched

on. To ensure fast switchover to the new interface, the new interface could be switched

on when the seamless mobility PO detects that the signal on the existing interface has

turned weak. Till the existing interface is switched off, packets could be sent on both
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the interfaces. For determing the exact instance when packets should be sent on multiple

interfaces, and when the handover should be completed, extensions to Stream Control

Transport Protocol (SCTP) [72], such as the Multi-path Transmission Algorithm [40]

could be used.

In the Figure 3.5, the fine dotted line and ellipsis notation are same as that described

for the RWC PO above. The looped arrow (2b) implies continual monitoring of 802.11

and GPRS interfaces.

Above, we presented an overview of ECLAIR and some examples of cross layer design

based on ECLAIR. Next, we present architectural details of ECLAIR components – Tun-

ing Layers and Protocol Optimizers. We also discuss the working of these components

and present their APIs.
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3.5 ECLAIR Details: Tuning Layer Specification

3.5.1 Introduction

A Tuning Layer provides an interface to the control data structures of a layer in the

protocol stack. Each TL contains appropriate components for each protocol in a layer. A

TL reads from/writes to the accessible (Section 3.2) control data structures of a protocol.

A TL is implemented in user or kernel-space depending on whether the layer to be tuned

is in the user or kernel-space. Next, we provide the details of TL interaction and interfaces

with other components of ECLAIR and the operating system.

3.5.2 Software Component View

Figure 3.6 shows the software component view of the Tuning Layers. The figure shows

an overview of the interaction of TLs with the other components of ECLAIR.

A TL has separate components for the each protocol in a layer, for example, MAC-TL

has 802.11-TL. Application and User Tuning Layers are in user-space while the rest of

the Tuning Layers are in kernel-space. We discuss the advantages of this approach in

Chapter 5.

User TL

Transport TL Phy TLMAC TLNetwork TL

Optimizing SubSystem

Application TL

Applications
User

Transport Network MAC Phy

Kernel Space

User Space

Figure 3.6: ECLAIR Tuning Layers - Software component view
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3.5.3 Tuning Layer Interface with other Components

Figure 3.7 depicts the interfaces of a TL with a PO. The TL provides the following APIs:

• register to enable POs to specify events which are to be monitored

• unregister to enable a PO to unregister

• get to enable a PO to read a control data structure of a protocol

• set to enable a PO to update the value of a control data structure of a protocol

To deliver events to a registered PO, a TL uses the PO’s callback function or a queue.

We provide some implementation guidelines in Chapter 7.

For get or set, the PO does not specify the data structure, it only specifies the action

using the TL API. The TL ensures that the appropriate data structure is located and

read or updated. For protocols having multiple flows, the API allows update to a specific

flow or across all flows (for cross layer feedback classification see Chapter 1, Section 2.5.1).

For example, an update may be applied to all TCP connections, while some update may

be applied to a single TCP session.

3.5.4 Tuning Layer API Sub-Layer

As stated in Section 2.5, portability is an essential design goal for cross layer architecture.

For the purpose of portability a TL is subdivided into a generic tuning sublayer and an

implementation dependent access sublayer. This separation is useful since the implemen-

tation of protocol stacks is different (for example, different data structure names may be

used) across systems, even though all of them may conform to the layered architecture

and protocol standards.

The generic tuning sublayer provides an implementation independent interface to the

PO for a specific protocol. Implementation independent means that the generic tuning

sublayer API is common for all implementations of a protocol, irrespective of the un-

derlying operating system. This generic API is used by the protocol optimizers (POs)

for effecting changes in a protocol’s behavior. The generic tuning sublayer in turn in-

vokes appropriate implementation dependent sublayer API, for operating system specific

actions.

The implementation dependent sublayer provides implementation specific interfaces

for a protocol. For example, separate interfaces are provided for each implementation of

TCP in Unix [106], NetBSD [104] and Linux [99].

Below we present an example of generic and implementation specific layers for Receiver

Window Control [66]. For tuning TCP receiver window, the generic tuning sublayer API

in TCPTL, is
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set_recv_win ( source_address, source_port,

destination_ipaddress, destination_port,

receiver_window_value);

The corresponding implementation specific API in TCPTL, for Linux is

linux_set_recv_win ( source_address, source_port,

destination_ipaddress, destination_port,

receiver_window_value);

The above API is used to set tcp opt.window clamp to receiver window value in Linux.

We describe TCP Receiver Window Control implementation using ECLAIR in Chapter 4.

The generic APIs would be bound to the appropriate implementation specific APIs

according to the compile time configuration. Next, we present the working of a Tuning

Layer.

3.5.5 Tuning Layer – Theory of Operation

Dependencies :

A TL needs to access the data structures of a protocol and hence the protocol data

structures should be accessible (Section 3.2). On system start-up the various protocol

data structures of the stack are instantiated and initialized. A TL for a protocol is

initialized after this, to enable it to access the protocol’s control data structures.

Initialization:

Initialization involves setting up the data structures of the TL. A TL exports (see reference

[13] and Section 3.2) some of its functions and data structures for use by the OSS.

PO registration:

Figure 3.7 shows the interface between a TL and PO. The TL provides a function for the

PO to register for information about a specific event. An event is the change in the value

of a data structure within a protocol. The PO specifies the event(s) of interest. The PO

may also specify a callback function for event notification. Multiple POs may register for

the same event. Also, a single PO may register for multiple events.

For protocols with multiple flows, a PO may specify a particular flow, within the

protocol, that needs to be monitored. For example, TCP may have multiple simultaneous

flows. In absence of flow specification, an event implies the event occurring in ANY of

the flows within the protocol. The TL also provides a function for the PO to unregister

from an event notification.

Event monitoring:

Using the registration information provided by the PO, the TL determines the protocol

data structure to be monitored. The TL monitors a protocol for events by monitoring
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Figure 3.7: ECLAIR Tuning Layers - Interfaces with PO

specific control data structures of the protocol. The frequency of monitoring is specified

by the PO. The TL monitors an event with the maximum specified frequency, from those

specified by the various POs interested in the event. Some of the interesting events at

various layers are:

• User: Change in application priorities

• Application: Change in applications quality of service requirements

• Transport(e.g. TCP): Retransmission timeout, change in round trip time

• Network(e.g. Mobile-IP): Handover initiation or completion

• Medium Access Layer: Collision occurrence

• Physical: Change in signal strength

Event notification:

When an event occurs, the TL notifies all the registered POs. The notification to a

PO is at the monitoring frequency specified by the PO while registering. The event

notification to the POs is in no particular order. This notification is either synchronous

or asynchronous. For synchronous notification, the callback function registered by the

PO is used. For asynchronous notification an event notification queue is used.

On receipt of event information from a TL, the PO determines appropriate cross layer

action and uses the TL API to effect a change in the behavior of the target layer. The

PO invokes a generic API which in turn invokes the appropriate implementation specific

API.

Changing protocol behavior:

The implementation specific function updates the appropriate data structure with the
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values provided by the PO to change the protocol behavior. The implementation specific

function implements efficient algorithms to locate the correct data structure within a

protocol.

Unload, cleanup:

A TL is unloaded when a fatal error occurs, during TL processing or on system shutdown.

For example, a pointer to some memory in the TL program, expected to have some value,

may be null. Unload means disabling the TL till the system is rebooted. When the TL

is unloaded:

• the POs registered with the TL are unregistered

• all the data structures allocated by the TL are de-allocated

• any data structure update in progress is aborted

• the TL logs the reason for unload

During system shutdown, the TL is unloaded before the protocol stack shutdown.

Error Handling:

The TL reports success or error message to the caller for each function call.

As stated earlier, certain issues which are intrinsic to cross layer feedback, for example,

dependency cycles and feedback conflict [41] are not handled by any specific component

within ECLAIR. Defining such a component is beyond the scope of this thesis. However,

ECLAIR TLs and POs can be used to handle such cross layer feedback problems (see

Chapter 7).

Logging / debugging:

This is primarily provided for debugging the cross layer system. In case debugging is on,

the TLs log to a file each PO’s call and the list of parameters with their values and the

final result (return code). During unload a TL logs the reason for unload to a log file,

even if debugging is off.

Above we described the working of a TL. In the following sections we describe the

APIs provided by the various TLs. This specifies the minimum APIs that should be

provided by a TL. However, the cross layer designer may choose to add or delete APIs

as required. For Transport, Network, MAC and Phy layers, we present the API for one

example protocol in the layer. For example, we provide the APIs of TCPTL in Transport

TL.

3.5.6 User TL

Figure 3.8 shows the interface between User TL and other components. User TL provides

an interface to the device user for interacting with the protocol stack. The device user
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can be a person using the mobile device or an external entity such as a component of a

distributed algorithm. UTL can be used to pass user requirements to the protocol stack.

These requirements are mapped to a protocol specific parameter within ECLAIR (for

example, see Receiver Window Control – RWC [66], in Section 4.1). Further, UTL can

be used to get or set the value of a specific parameter within the stack.

UTL interaction with PO:

Figure 3.8 shows UTL interface with a PO. A separate PO is created that handles UTL

interaction. This PO registers functions with the operating system for interaction with

UTL. Since the UTL is in user-space its interaction with the PO in kernel-space is through

operating system mechanisms. For example, in Linux, this PO can be a character driver

and would receive ioctl() commands for a special file created for interaction with user-

space (see Chapter 7). We use this technique for RWC in Chapter 4. We highlight the

benefit of ECLAIR UTL as compared to a standard system call in Chapter 5. Next, we

present the UTL APIs.

Event/Event data
(function call)

(Operating System call)
Event/Event data

Event/Event data
(function call)

(function call)

(Operating System call)

(function call)

get/set parameter

get/set parameter

get/set parameter

User space

Kernel space

User / Application

User Tuning Layer

Protocol Optimizer

Figure 3.8: User Tuning Layer Interfaces

•Name: get stack parameter()

Input Parameters: Identifier of parameter (for example, TX POWER for transmit

power),

Connection identifier (if applicable to a single session),

VAR RETURN: Address of variable for returning data
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Returns: Value of queried parameter in VAR RETURN (Number |

String),

Return Code (Number)

Description: Gets the value of specified stack parameter

•Name: set stack parameter()

Input Parameters: Identifier of parameter (for example, TX POWER for transmit

power),

Connection identifier (if setting applicable to a single session),

Value of parameter (Number | String)

Returns: Return Code (Number)

Description: Sets the specified stack parameter to the given value.

•Name: set application priority()

Input Parameters: Connection identifier(s) (for example, socket details – source

address & port, destination address & port)

Application priority (or priorities) (Number)

Returns: Return Code (Number)

Description: Sets priority for an application. Sets relative priority if multiple

applications specified.

•Name: handoff()

Input Parameters: New interface (String | Number),

Time delay (Number)

Returns: Return Code (Number)

Description: Initiates handoff to the specified interface after the specified time

delay

•Name: crosslayer shutdown()

Input Parameters: –

Returns: Return Code (Number)

Description: Sends shutdown event to user PO

Before presenting the APIs for the rest of the layers, we present two APIs which are

common to all the remaining TLs.
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3.5.7 Common TL APIs

The following APIs are common to the TLs of Application, Transport, Network, MAC

and Phy.

•Name: register()

Input Parameters: [ Call back function ],

Event name (String)

Returns: Return Code (Number)

Description: PO registers for event of interest. A callback function is reg-

istered for each event. If no callback function is specified, TL

returns a pointer to the event notification queue

•Name: unregister()

Input Parameters: Event name (String)

Returns: Return Code (Number)

Description: Unregister PO for specified event

3.5.8 Application TL

Application Tuning Layer allows applications to interact with the protocol stack. An

application can specify its QoS requirements using the Application TL. The ATL’s purpose

is to monitor application events and pass the event information to POs within the stack.

Further, the ATL provides APIs to tune applications.

ATL interaction with PO:

Figure 3.9 shows ATL interaction with a PO. Since the ATL is in user-space its interaction

with a PO in kernel-space is through operating system mechanisms. To receive an update

instruction from a PO in kernel-space, the application PO registers with a PO in kernel-

space. This kernel PO is created specifically for application interactions with the kernel-

space. This PO in turn interacts with other POs in the OSS. It serves as an agent for the

applications.

An application can register a call back function for specific events. Alternatively, a

PO can be created externally that registers on behalf of an application. This PO tunes

the application when an event occurs in the stack. Figure 3.9 shows the application TL’s

interface with a PO and an application. Some Application TL APIs are listed below.

•Name: app qos requirements()

Input Parameters: QoS parameters – Bandwidth (Number), Delay (Number),

Losses (Number)

Returns: Return Code (Number)
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Description: Pass application QoS (Quality of Service) requirements, that is,

bandwidth, delay, losses acceptable, to the cross layer POs.

•Name: get connection cost()

Input Parameters: Interface (String | Number) | Void

Returns: Cost per minute of connection (Number) | Return Code (Num-

ber)

Description: Fetches cost per minute of specified interface (current interface

if input parameter is void)

Applications or POs can use the APIs provided by UTL for accessing other parameters

of the stack. Next, we present the APIs for TCPTL as an example for Transport TL.

(Operating System call)
Register

Kernel space

User space

Protocol Optimizer

Application Tuning Layer

Register
(function call)

Signal
(Operating System call)

Application

Signal
(function call)

(function call)
Message

Figure 3.9: Application Tuning Layer Interfaces

3.5.9 Transport TL

Transport TL provides components for tuning the transport layer protocols. We present

some example APIs for TCP TL. TCP TL allows query and update of various control data

structures within TCP. The APIs can be used to query or update the values of a specific

TCP flow or all TCP flows. Additional APIs are listed in the Appendix, Section I-1.

For all the APIs, TL implementation ensures correct and fast location of the appro-

priate connection. The TL implements appropriate algorithms for fast location. In the

following, socket identifier means the 4-tuple source address & port, destination address

& port.

TCP TL APIs:
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•Name: get receiver window()

Input Parameters: socket identifier

Returns: Value of receiver window (Number) | Return Code (Number)

Description: Locates the socket and returns receiver window value

•Name: set receiver window()

Input Parameters: Socket identifier, value of receiver window (Number)

Returns: Return Code (Number)

Description: Locates the socket and updates the value of receiver window

•Name: get tcp state()

Input Parameters: socket identifier

Returns: State of TCP flow (Number) | Return Code (Number)

Description: Locates the socket and returns the state of TCP flow (from list

of standard TCP states)

•Name: set tcp state()

Input Parameters: Socket identifier, TCP state (Number)

Returns: Return Code (Number)

Description: Locates socket and updates TCP state

Next, we present the APIs for IPTL and Mobile-IP TL as examples for Network TL.

3.5.10 Network TL

Network TL provides components for network layer protocols. We present some example

APIs for IP.

IP TL

•Name: get active interface()

Input Parameters: [ Socket identifier ]

Returns: Active interface (String) | Return Code (Number)

Description: Returns the current active interface. Returns active interface

for a flow if socket specified

•Name: set active interface()

Input Parameters: New interface (String)

Returns: Return Code (Number)

Description: Changes the current active interface
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•Name: get frag assy timer()

Input Parameters: –

Returns: Current fragment reassembly timer (Number) | Return Code

(Number)

Description: Returns the value of fragmentation reassembly timer

•Name: set frag assy timer()

Input Parameters: Timer value (Number)

Returns: Return Code (Number)

Description: Updates the value of fragmentation reassembly timer

Mobile-IP TL The following APIs have been defined based on the study of Mobile-

IP RFC [59] and the code of Dynamics Mobile-IP implementation [97]. Additional APIs

are listed in the Appendix, Section I-2.

•Name: get registration lifetime()

Input Parameters: –

Returns: Duration (number) | Return Code (Number)

Description: Returns the registration lifetime

•Name: set registration lifetime()

Input Parameters: Duration (number)

Returns: Return Code (Number)

Description: Updates the registration lifetime

•Name: get solicitation rate()

Input Parameters: –

Returns: Rate (number) | Return Code (Number)

Description: Returns the solicitation rate

•Name: set solicitation rate()

Input Parameters: Rate (number)

Returns: Return Code (Number)

Description: Updates the solicitation rate



52 CHAPTER 3. ECLAIR: AN EFFICIENT CROSS LAYER ARCHITECTURE

Next, we present the APIs for 802.11-TL as an example for MACTL.

3.5.11 MAC TL

MAC TL provides components for tuning the transport layer protocols. We present some

example APIs for 802.11-MAC-TL. Additional APIs are listed in the Appendix, Section I-

3. Information about 802.11 is available in reference [33].

802.11 MAC TL

•Name: get contention window()

Input Parameters: –

Returns: Current contention window (Number) | Return Code (Number)

Description: Returns current contention window value

•Name: set contention window()

Input Parameters: Contention Window (Number)

Returns: Return Code (Number)

Description: Sets contention window to specified value

•Name: get rts cts threshold()

Input Parameters: –

Returns: Current RTS/CTS threshold (Number) | Return Code (Number)

Description: Returns current RTS/CTS threshold

•Name: set rts cts threshold()

Input Parameters: RTS/CTS threshold (Number)

Returns: Return Code (Number)

Description: Sets RTS/CTS threshold to specified value

3.5.12 Phy TL

MAC TL provides components for tuning the transport layer protocols. We present some

example APIs for 802.11-Phy-TL. Additional APIs are listed in the Appendix, Section I-4.

802.11 Phy TL

•Name: get transmit rate()

Input Parameters: –

Returns: Current transmit rate | Return Code (Number)

Description: Returns the current transmit rate of the active interface
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•Name: set transmit rate()

Input Parameters: Transmit rate (Number)

Returns: Return Code (Number)

Description: Sets the transmit rate of the active interface

•Name: get transmit power()

Input Parameters: –

Returns: Current transmit power () | Return Code (Number)

Description: Returns the current transmit power of the active interface

•Name: set transmit power()

Input Parameters: Transmit Power (Number)

Returns: Return Code (Number)

Description: Set the transmit power of the active interface

In this section we described the details about TLs. ECLAIR does not require that all

the TLs be implemented in a system. The cross layer designer can choose to implement

only the required TLs for a system. In the next section we present details about the

Optimizing SubSystem.

3.6 Optimizing SubSystem Specification

3.6.1 Introduction

The Optimizing SubSystem (OSS) contains cross layer feedback algorithms. It consists

of multiple Protocol Optimizers (POs). Each PO contains an algorithm for a cross layer

optimization. For example, a PO would contain the algorithm for modifying the transmit

power based on current wireless environment.

3.6.2 Software Component View

Figure 3.10 shows the software component view of the Optimizing SubSystem (OSS) and

the components with which it interacts.

A PO uses the APIs provided by the TLs to monitor the protocols for events and

modify the protocol behavior. A PO may interact with one or more POs. Further, POs

may interact with each other across the user-kernel boundary.
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Figure 3.10: ECLAIR Optimizing SubSystem - Software component view

3.6.3 Optimizing SubSystem – Theory of Operation

Dependencies:

A PO is dependent on the TL and operating system APIs.

Initialization:

POs are initialized by the operating system. Since POs are dependent on TL APIs they

are initialized after initialization of the protocol stack and TLs. On initialization, a PO

registers for one or more events with the TL and waits for event notification from the TL

(see Section 3.5).

Event notification:

The notification to PO could be synchronous or asynchronous. The PO provides a callback

function to the TL for synchronous notification. For asynchronous notification the TL

sends a message to the PO, in a message queue. The PO implements appropriate handler

to receive and process the message.

The event notification contains an event identifier and value of the protocol data

structure that caused the event.

Cross Layer algorithm:

Based on the cross layer event notification, appropriate cross layer algorithm is executed

within the event handler in the PO.
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The cross layer algorithm determines the layers that need to be adapted. Appropriate

TL API is invoked to read the control data structures of the protocols that are to be

adapted. The algorithm determines the new values for these control data structures.

Appropriate TL API is invoked to update the control data structures with the new values

so as to change the protocol behavior.

Using TL API:

The PO invokes the generic API of the target protocol’s TL for reading or updating

the target protocol’s data structures. The generic API in turn invokes the implementa-

tion specific API. This implementation specific function call locates the appropriate data

structure and reads and returns or updates the requisite protocol data structure.

For protocols with multiple flows, a PO may specify update to a specific flow, within

the protocol. An update specified without a flow specification, implies an update to all

the flows in the protocol.

Event processing :

The PO accepts and processes one event at a time. In case of asynchronous notification

while an event is being processed, the other events received are queued.

Error handling:

In case of error returned by the TL, if debug mode is on, the PO logs the error number

and the API invoked to the error log. In case fatal error is returned by the TL, the PO

unregisters from all TLs. The PO remains unregistered till the PO is reinitialized.

Unload, cleanup:

A PO is unloaded when a fatal error occurs or on system shutdown. Unload means that

the PO unregisters from all TLs and remains in that state till the system is rebooted.

When a PO is unloaded, it:

• unregisters from all the TLs

• deallocates all its data structures

• aborts any procedure in progress

• logs the reason for unload

Disabling Cross Layer:

In case of a cross layer shutdown event from the user, the PO unloads. The shutdown

event is generated by the user. The user PO registers with all the TLs at the time of OSS

initialization. The user PO sends this event to all the TLs. The TLs in turn send this

event to all the POs registered for any event. Subsequent to delivering the event to the

POs, the TLs also unload. The cross layer system can be enabled again by rebooting.

Above we described the working of a PO. Next, we specify the functions that a PO

must implement.
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3.6.4 Procedures within PO

A PO implements the following procedures:

• Cross layer feedback procedure: This procedure contains the algorithm that de-

termines adaptation of protocols. Its execution is triggered whenever an event is

delivered to the PO.

• Event handler: is invoked when an event is delivered to the PO. It is called by the

TL for delivering events to the PO, when registered as a callback function. The

event handler invokes the appropriate cross layer adaptation procedure. A single

event handler may handle multiple events.

• Register procedure: registers the event handler for each event, with the TL.

• Unregister procedure: unregisters the PO from the TL, for a particular event. The

function determines the event for which the PO should unregister. This procedure

is called from the error handler (see below).

• Log procedure: logs the TL API invoked and the error returned by the TL API.

This procedure is invoked only if debug is enabled on the system.

• Error handler: is invoked when the TL API returns an error. In case of fatal errors,

the error handler invokes the unregister function of the PO. In case debug is enabled,

the error handler also invokes the log procedure.

In the sections above, we presented the working of ECLAIR and the architectural

specifications for the components of ECLAIR. In the next section, we summarize the

salient features of ECLAIR.

3.7 ECLAIR Salient Features

The salient features of ECLAIR are as follows:

• User Tuning Layer : Besides the layer specific TLs, ECLAIR also provides a User

Tuning Layer (UTL). UTL allows a device user or an external entity, for example,

a distributed algorithm or a base station, to tune the device behavior.

• Event Notification: TLs provide APIs which are used by the POs to register for

interesting events at a layer. For example, TCP can register for handover completion

event at the Mobile-IP layer.
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• Cross layer shutdown: The POs and TLs are architected in such a way that in case

of severe errors, the problematic PO will not carry out any further adaptations.

Further, the user can disable the entire cross layer adaptation system, during run-

time.

• Support for seamless mobility : ECLAIR can be used to enable seamless mobility [14]

on the mobile devices. ECLAIR provides TLs for multiple protocols within a layer.

A PO can be created that monitors and controls multiple wireless interfaces. This

PO can adapt protocols as the device moves across heterogeneous networks and thus

enable seamless mobility across these networks.

3.8 Summary

In this chapter we presented our cross layer feedback architecture – ECLAIR. We also

illustrated the working of ECLAIR using some example POs. We presented the working,

internal details and architectural specification of ECLAIR components, that is, Tuning

Layers (TLs) and Optimizing Sub-System (OSS).

In the next chapter we describe an implementation (Receiver Window Control) using

ECLAIR and validate it through experiments over Ethernet and Wireless LAN.
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Action is eloquence

- William Shakespeare

Chapter 4

ECLAIR Validation

In the earlier chapters we presented the motivation for cross layer feedback, the need

for a cross layer feedback architecture, and presented our architecture – ECLAIR. In this

chapter we validate ECLAIR. We use Receiver Window Control (RWC) [69, 54, 66] as

a running example for explaining ECLAIR implementation and validation. In the next

chapter we also use this implementation for a quantitative comparison of ECLAIR RWC

performance with a user space implementation of RWC [54], and architectures proposing

modification to the protocol stack. Before presenting the implementation details, we

present an overview of RWC below.

4.1 Receiver Window Control

Users can provide useful feedback to improve the performance of the stack or the user

experience [64, 66]. For example, a user may want a file download to complete faster than

another simultaneous download on the device. One method of controlling an application’s

(which uses TCP) bandwidth share, on a receiving device, is through manipulation of

the receiver window of its TCP connection. This approach is called Receiver Window

Control [54, 66].

TCP uses congestion and flow control mechanisms to avoid swamping the network or

the receiver [52, 61, 70]. The receiver reflects its receive buffer status in the advertised

window field in the acknowledgments to the sender. When the sender is not congestion

window limited, the receiver can control the transmission rate of the sender through the

advertised window.

59
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We note that throughput for a TCP connection is decided by the receiver window

setting and the corresponding bandwidth-delay product [70]. In case of multiple flows,

each having a different bandwidth-delay product, each of the flows will have a different

optimum receiver window or advertised window(awnd). This property of awnd’s relation

to the bandwidth-delay product can be exploited to intentionally make some of the TCP

sessions get lower throughput, and thus dynamically control the application throughput.

We call this approach Receiver Window Control(RWC). This assumes that total actual

receiver buffer space is large enough to allow manipulation(increase or decrease) of the

awnd values for the different sessions.

The current TCP implementations have fixed receive buffer sizes for all applications.

Application level APIs are available, that allow an application to set its receiver buffer at

the start of a connection [78]. However, once set it cannot be modified to reflect changes

in application priorities.

The intuitive benefit of RWC can be seen from the following example: A user is

running multiple downloads on a wireless device. The user increases the priority of one

of the downloads. Through RWC, this higher priority is mapped to an increased awnd for

the higher priority download . On the other hand, the awnd of the lower priority download

is decreased. This would increase the throughput of the higher priority download. This

control is dynamic and is invoked whenever the user changes application priorities. We

now present the RWC algorithm [66].

4.1.1 RWC Algorithm

Let, n be the number of applications.

B = Bandwidth available to MH on the bottleneck link. B is shared among the n

applications running on the MH. B is assumed to be constant.

R = rtt for all the applications on the MH and is assumed to be constant.

The RWC algorithm is presented in Figure 4.1. The application priority number xi

is used for relative ordering of the applications and actual numbers have no significance.

The ratio of the priority numbers is used in the algorithm.

We explain the RWC algorithm through an example. Consider three applications. Let,

A = 30, x1 = 1, x2 = 1, x3 = 1. Thus (from Figure 4.1) initially awnd1 = 10, awnd2 =

10, awnd3 = 10. After user feedback, let x1 = 2 (x1, x2 are not changed i.e. x2 = 1 and

x3 = 1). Now, from Figure 4.1, awnd1 = round(2

4
∗ 30) = 15 awnd2 = round(1

4
∗ 30) = 8,

awnd3 = 30 − (15 + 8) = 7. Thus, it can be seen that RWC increases awnd for higher

priority applications and decreases awnd for lower priority applications.

As the next step for validating ECLAIR we conducted some simulations of RWC using

ns-2 [57]. These simulations help us determine the benchmarks for RWC using ECLAIR.
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Events

UserFeedback: User changes priority of applications

Initialization

n = number of applications

B = available bandwidth // constant
R = rtt // constant
A = B × R

awndi = default advertised window // initially all equal
xi = 1 // application priority; initially all equal

Function Calls
ReceiverWindowControl()

cum awnd = 0;
// User changes priority of applications; xi is changed
for i = 0 to i < n − 1 do

awndi = round( xi∑ n−1

j=0
xj

∗ A)

cum awnd = cum awnd + awndi

end for
awndn−1 = A − cum awnd

Figure 4.1: Receiver Window Control

4.2 RWC Simulations

Fixed Host (FH)

2 Mbps, 60ms

N1 100 Mbps, 4ms

100 Mbps, 4msN2

N3 N4

Fixed Host (FH)

Mobile Host (MH)

Figure 4.2: RWC: Simulation setup

The simulation setup is shown in Figure 4.2. Two ftp1 flows, f1 and f2, were run from

the two fixed hosts, N1 and N2 respectively. The mobile host (MH) is the receiver. User

feedback was simulated by setting the window (window underscore) parameter of the

TCP senders on N1 and N2, 5 seconds after start of simulation. The initial priorities were

assumed to be: x1 = 1 and x2 = 1. For the simulation set-up A = 32 packets. Thus from

Figure 4.1, awnd1 = 16 and awnd2 = 16. After feedback, let x1 = 2 and x2 = 1. Hence,

from Figure 4.1, awnd1 = 11 and awnd2 = 21. The window parameter of the senders on

N1 and N2 were set to these values, respectively.

One set of simulations was done assuming no losses on the links. A second set was

done, assuming a loss of 0.1% on the link N3-N4. Each simulation run was of 9 seconds

duration.

1File Transfer Protocol
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4.2.1 RWC Simulation Observations

• Scenario 1: No loss with no RWC – (Figure 4.3(a)). As expected the throughput

of both f1 and f2 is equal, each ≈ 1 Mbps.

• Scenario 2: No loss with RWC – (Figure 4.3(b)) the throughput for f1 increases to

≈ 1.31 Mbps (increase by 31%) and that for f2 decreases to ≈ 0.69 Mbps (decrease

by 31%).
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Figure 4.3: RWC: Simulation results

• Scenario 3: 0.1% loss with no RWC – (Figure 4.3(c)) shows the throughput of both

the applications under lossy link conditions. The variations in throughput are due

to the random losses. However, the throughput of both the flows is approximately

equal.

• Scenario 4: 0.1% loss with RWC – (Figure 4.3(d)) user feedback has the effect of

increasing the throughput for f1, even though there are some packet losses.

In the previous sections, we discussed the RWC algorithm, RWC simulations and

observations. We now describe the prototype implementation of RWC using ECLAIR.
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4.3 Receiver Window Control Implementation using

ECLAIR/Linux

The high level design of RWC using ECLAIR is presented in Chapter 3, Section 3.4.1

(Figure 3.3). Next we present the implementation details.

4.3.1 Receiver Window Control Implementation Details

First we present some of the internal details of the Linux TCP/IP kernel which are relevant

for Receiver Window Control implementation using ECLAIR. We chose Linux since its

source code is freely available and modifiable.

Figure 4.4 shows the relevant data structures in sock.h. The numbers on the left

identify the relevant code. tcp opt (line number 1) is TCP’s control data structure. sock

1 struct tcp_opt {

.

.

/* Maximal window to advertise */

2 __u32 window_clamp;

/* Current window clamp */

3 __u32 rcv_ssthresh;

.

}

4 struct sock {

.

.

5 union {

6 struct tcp_opt af_tcp;

.

.

}

}

Figure 4.4: /usr/src/linux-2.4/include/net/sock.h source code snippet

(line number 4) is the socket data structure. Line numbers 2 and 3 show window clamp

and rcv ssthresh which are used for controlling the advertised window in TCP. We

identified these data structures by studying the TCP implementation in Linux kernel

2.4.x [101]. For browsing the Linux kernel code, we used source code browsing tools such

as cscope [94], cbrowser [92] and the Linux Cross Reference website [93].

Figure 4.5 shows the call flow of our implementation using ECLAIR. The current

implementation has largely TL functionality only. In this prototype the RWC calculation
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tcp_opt{}

sock{}

Input parameters
from command prompt:

<Receive_window_value>
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USER space
KERNEL space

ioctl(<characterdevice>,
      <param>,rwc_struct);

read params into rwc_struct;

RWCIOctl {
receive rwc_struct from user space;

ch
ar
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te
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de

vi
cercvwin = input receiver window value;

<socket 4−tuple>

}

}

linux_set_rcv_win {
// tcp socket list head from tcp.h

rcv_ssthresh
window_clamp

// write to socket struct fields
tp−>window_clamp = rcvwin;
tp−>rcv_ssthresh = rcvwin;

locate specific socket;
// use tcp socket hash function

Figure 4.5: Call flow: RWC using ECLAIR

is done by the user. The user runs a program in user-space with the parameters: socket 4-

tuple (sender port and address, destination port and address, to identify the application)

and the receiver window value. These parameters are passed to the TL, in rwc struct via

ioctl, to change the control parameters (receiver window) in the socket. The socket 4-

tuple parameter is used to identify the application’s TCP socket within which the receiver

window value is to be changed. We implemented the receiver window control TL as a

Linux kernel loadable module [23]. No modification was required to the TCP code in the

kernel.

Figure 4.6 shows relevant code of the module. Line 1 shows the character device

major number. Line 2 shows the ioctl number code. This is used by the ioctl function

for invoking the RWC module. The upper half of the figure, above the dotted line, is the

PO. In lines 11-12, the PO registers for user events, as a character device with the name

ioctl-rwcDriver. The user process writes to this character device using ioctl. In the

lines 9,10, in the structure ioctlFops, the function (character device driver) RWCIOctl

is declared. This function will be invoked in the module, when ioctl calls this module.

The function RWCIOctl is defined in the lines 3-8. At line 3, switch checks the ioctl

parameter passed from the ioctl function. We have only shown the relevant case. At line

5, the parameters passed by the user, from the command line, are readinto a structure

rwc ioctl param. The structure rwc info struct is defined in a separate header file and

is used for holding the parameters to be passed from the user space to kernel space. At line



4.3. RECEIVER WINDOW CONTROL IMPLEMENTATION USING ECLAIR/LINUX65

1 #define IOCTL_MAJOR 250

2 #define IOCTL_GETVALUE 0x0001

...

3 static int RWCIOctl(...)

{

...

switch( cmd ) {

4 case IOCTL_GETVALUE:

5 rwc_ioctl_param = (struct rwc_info_struct *) arg;

// copy socket 4-tuple to socket_info

6 socket_info.s_addr =

rwc_ioctl_param->in_ip_addr.s_addr;

...

7 rwc_window = rwc_ioctl_param->rwc_window;

// TCP TL function

8 linux_set_recv_win (socket_info, rwc_window);

...

}

9 static struct file_operations ioctlFops = {

...

10 ioctl: RWCIOctl, /* ioctl */

};

11 static int __init IoctlRWCInit(void)

{

printk(KERN_ERR "TCP RWC func load.\n");

12 if(register_chrdev(IOCTL_MAJOR,

"ioctl-rwcDriver", &ioctlFops) == 0) {

...

};

printk("ioctl: unable to get major %d\n",IOCTL_MAJOR);

return( -EIO );

}

----------------------------------------------------------------

13 linux_set_recv_win (socket_info, rwc_window)

{

14 // locate socket using socket_info and copy of tcp_hashfn

15 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);

16 lock_sock(sk);

17 tp->window_clamp = rwc_window;

18 tp->rcv_ssthresh = rwc_window;

19 release_sock(sk);

}

Figure 4.6: rwc user.c source code snippet. RWC PO and TL
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8, the parameters socket 4-tuple (sender address and port, destination address and port),

and receiver window value are passed to the TCP TL function linux set recv win. The

function linux set recv win is defined from lines 13-19. At line 14, the relevant socket

is located using tcp hashfn. Code for this function is available in the Linux kernel source

code file /usr/src/linux-2.4/net/ipv4/tcp ipv4.c. At line 15, the tcp information

structure is extracted from the socket structure. From lines 16-19, the socket located

above is locked for writing, tcp structure’s window clamp and rcv ssthresh is updated

to set the receiver window value and finally the socket lock is released.

Next, we present the details of the RWC-ECLAIR experiments over wireline and

WLAN. A detailed evaluation of ECLAIR overheads is presented in Chapter 5.

4.4 RWC Experiments

4.4.1 Experiments over Ethernet LAN

The first set of experiments were done on Ethernet LAN to rule out any variations due

to the wirelss connection. The aim of these experiments was to do a basic test that the

RWC implementation is functioning correctly. Figure 4.7 shows the experimental setup.

All the machines were on the IIT Bombay campus LAN. The link N3-N4 bandwidth is 1

Mbps. Two flows Flow 1 and Flow 2 were started from N1 (cygnus) and N2 (gitanjali),

respectively, to N4 (sarus). The flows were started simultaneously in the background

using wget on N4. A file of appox. 9MB was transfered from both N1 and N2 using http.

Receiver Window Control was implemented on the node N4.

Figure 4.8(a) shows the results when RWC was not invoked. Both the flows had

almost equal throughput. The variations are due to competing traffic on the network.

Figure 4.8(b) shows the results when RWC was manually invoked at about 8 seconds. We

invoked RWC with a receiver window size of 1450 bytes, on Flow 1. Figure 4.8(b) shows

that the throughput of Flow 1 decreases while that of Flow 2 increases. The throughput

of Flow 1 increases slightly after the file transfer of Flow 2 ends.

The results are as expected and validate our implementation of Receiver Window

Control. Subsequent to the Ethernet LAN experiments we carried out experiments over a

802.11 wireless network. The wireless experiment setup and results are presented below.

4.4.2 Experiments over 802.11 Wireless Connection

Figure 4.9 shows the experimental setup. For our experiments we used a Air Premier D-

Link Enterprise 2.4GHz Wireless Access Point – DWL-1000AP+ (managed mode), and

D-link 520+ Wireless PCI Adapter (2.4 GHz) [96] on the desktop (Intel Pentium4 CPU,
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N1

N2

N3 N4
1 Mbps

Fixed Host (FH)

Fixed Host (FH)
gitanjali.cse.iitb.ac.in

Mobile Host (MH)
sarus.cse.iitb.ac.in

100 Mbps

1 Mbps

cygnus.it.iitb.ac.in

Figure 4.7: RWC: Experiment setup
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Figure 4.8: Receiver Window Control experiments over wireline (Ethernet)

1.90GHz, 256 MB RAM, 256KB cache) which had the RWC implementation. To match

the environment characteristics, we set the sensitivity of the WLAN card to 60 using the

script available with the driver package [90, 91]. Sensitivity is the lowest signal level for

which the hardware will consider received packets usable. Sensitivity is the threshold set

for Received Signal Strength Indicator (RSSI). This is set based on the average noise level

to avoid reception of noise. The card sensitivity was set to 60 on a scale of 255 (maximum

value). We used the default MTU2 of 1500. For our experiments:

• We ran two wget 3 http 4 sessions from MH to FH1 and FH2. The file size down-

loaded was 2MB each.

• We invoked RWC from the command prompt during the http transfer, with different

receive window values.

2Maximum Transmission Unit
3Wget is a network utility to retrieve files from the Web using http and ftp
4Hyper Text Transfer Protocol
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Fixed host 1 (FH1)

Fixed host 2 (FH2)

KReSIT department LAN
100 Mbps

WLAN 802.11b

Desktop with WLAN card
with RWC implementation

(MH)

RTT ~ 3 ms

(typical ~ 8Mbps)

Access point
Managed mode

Figure 4.9: RWC: Experiment setup

• We carried out four experiments. Each experiment was repeated 3 times.

– In the first experiment, RWC was not invoked.

– In the other three experiments, RWC was invoked with receiver window values

of 2KB, 1KB and 0.5KB. For each receiver window value, RWC was invoked

at 1, 2 and 5 seconds.

We have shown representative results in Figure 4.10. The graphs of the other runs are

similar. We have not taken averages of the results, since there were wide fluctuations in

throughput due to the wireless medium.

Table 4.1 shows the mean and standard deviation of the throughput for Flows 1 and

2 across various runs.

RWC Experiment Observations

For the experimental setup the approximate bandwidth-delay product is 3KB. (8000/8

KBps * 3/1000 sec, see Figure 4.9). Thus to throttle a sender the receiver window should

be less than 3KB. Since network packet losses are expected in a WLAN, we started with

a receiver window of 2KB.
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Figure 4.10: Receiver Window Control experiments over WLAN (802.11)
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Table 4.1: Mean and standard deviation of Flow 1 and 2 throughput
Flow 1 Flow 1 Flow 2 Flow 2

RWC Receiver
invoked
at (sec-
onds after
start)

Window
Size
(bytes)

X̄ σ X̄ σ

kbytes/s kbytes/s kbytes/s kbytes/s
Not in-
voked

– 304·06 23·77 383·64 23·20

1 2048 543·42 15·76 243·36 3·96
2 2048 488·58 35·14 252·82 1·75
5 2048 347·93 4·98 277·98 6·03
1 1024 547·37 20·21 8·30 ·37
2 1024 521·23 29·13 8·95 ·64
5 1024 379·13 18·92 21·44 8·18
1 512 580·60 19·57 4·03 ·034
2 512 541·45 26·40 4·44 ·36
5 512 413·89 20·91 8·18 1·61

• Scenario 1 - No RWC (figure 4.10(a)): The default bandwidth available to the flows

is shared unequally. The flow that starts first gets most of the bandwidth.

• Scenario 2 - RWC : We reduced the receive window of one of the flows. The default

(system) receive window is 64KB (default in Linux). This is much larger than the

bandwidth-delay product, hence we did not increase the receive window of the other

flow.

– Receive Window 2KB (figures 4.10(b) - 4.10(d)): As expected, in each of the

cases Flow-2 is throttled due to the reduced receive window.

– Receive Window 1KB/0.5KB (figures 4.10(e) - 4.10(f)): Due to further reduc-

tion in the receive window, the bandwidth available to Flow-2 is reduced much

more as compared to the previous scenario.

Analysis of Experimental Results

ECLAIR validated:

The RWC experimental results are in-line with the simulation results presented in Sec-

tion 4.2. Thus, the experimental results show that the ECLAIR implementation works as

expected. The throughput reduces for the flow that is controlled through RWC and that

of the other flow increases, even in the presence of packet losses on the wireless medium.

This validates the ECLAIR implementation.
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Differences between experimental and simulation results:

There are some differences between the experimental and simulation results. The differ-

ences and the reason for the difference is as follows: (1) In case of simulation, we had run

a continuous transfer using ftp and stopped the simulation after 9 seconds. In case of

the experiment, we transferred a file using wget and stopped the experiment after both

the transfers (Flow-1 and Flow-2) had completed. (2) When RWC is not invoked, the

simulation shows an equal distribution of bandwidth between the two flows. In case of

the experiment on WLAN, due to the characteristics of the wireless interface and environ-

ment, the flow that starts first gets most of the bandwidth. (3) In the experiment, after

RWC is invoked, throughput of the controlled flow remains low even after the uncontrolled

flow completes the file transfer. This is because of the way we have implemented RWC –

we do not reset the value of the receiver window to the default of 64KB. It can be seen

that the differences between experimental and simulation results are not significant and

hence do not impact the validation result, stated above.

4.5 Summary

In this chapter we presented our prototype ECLAIR implementation for receiver window

control. We explained the details of the implementation using code snippets. We validated

the prototype implementation by experiments over a WLAN.

The RWC prototype is sufficient to validate ECLAIR, due to the following: (1) It

shows that a protocol’s (TCP’s) behavior can be modified by manipulating the control

data structure. Similarly, the modification of protocol behavior can be done for protocols

of other layers also. (2) Although, the input in this prototype is from the user, the input

can easily be provided by any other PO that needs to modify TCP behavior.

In the next chapter we evaluate ECLAIR.
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There is nothing either good or bad, but thinking makes it so

- William Shakespeare

Chapter 5

ECLAIR Evaluation

In the previous chapter we discussed the implementation of ECLAIR and its vali-

dation through an illustrative example – RWC. This chapter has four parts – metrics

definition, qualitative evaluation, quantitative evaluation and overhead measurement. In

Section 5.1, we identify a set of metrics for evaluating a cross layer architecture against

the design goals defined in Chapter 2. In Section 5.2, we use these metrics to qualitatively

compare ECLAIR with the other cross layer feedback approaches which were presented

in Chapter 2. In Section 5.3, we quantitatively compare ECLAIR and user-space [54] im-

plementations of Receiver Window Control (RWC). In Section 5.4, we measure ECLAIR

overheads by instrumenting the Linux kernel, and compare it with user-space architecture

and architectures which propose modification to the protocol stack.

5.1 Evaluation Metrics

In Section 2.5 we stated that the design goals for a cross layer architecture are efficiency,

maintainability, minimum intrusion, portability and any to any layer communication.

Metrics are essential to evaluate a cross layer architecture against these goals. Below

we propose metrics for each of these design goals. The metrics are classified into two

categories – efficiency and maintainability.

For any-any layer communication, a subjective evaluation is sufficient to determine

whether an architecture supports it or not. Hence, no specific metric is required for this

design goal.

73
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5.1.1 Efficiency Metrics

We define efficiency as runtime and static efficiency. An architecture A1 has more run-time

efficiency than an architecture A2, if A1 requires lesser computing resources at run-time as

compared to A2. Similarly, architecture A1 has more static efficiency than an architecture

A2, if it requires lesser static resources as compared to A2.

Cross layer feedback is essentially a modification to the protocol stack. The intent is

to enhance performance of the stack by reading information from a layer, interpret that

information and effect a change at another layer. However, effecting cross layer feedback

entails the overhead of running additional instructions or programs, in the kernel or user-

space. In light of this, we define the following as the primary performance measures for

efficiency:

• Time overhead: This is the CPU cycles or execution time required

• Space overhead: This has two components: (1) the run-time memory required by

the cross layer algorithm because of the architecture, and (2) the static footprint of

the cross layer implementation.

• User-kernel crossing: This is the number of times user-kernel boundary needs to be

crossed during execution.

User-kernel crossing could contribute significantly to the run-time overhead of cross

layer feedback. Hence, we also consider the number of user-kernel crossings as an

important efficiency metric. User-kernel crossing is an important metric since it

requires a significant number of CPU cycles for switching from user to kernel mode.

Any system call requires switching from user to kernel mode. This typically requires

the system call library wrapper function to issue a software-interrupt. Subsequent

to this copying of data from user-space to kernel-space is required for parameter

passing. Similarly, copying from kernel to user-space is required for passing values

to the user-space. System call processing is explained in detail in reference [13].

• Data path delay: This is the delay introduced in the data path of the stack, due to

cross layer feedback.

Data path is the sequence of functions within the protocol stack which are concerned

only with sending and/or receiving packets. Data path delay means the time delay

on the data path. Data path delay would include a whole or part of time overhead

and user-kernel crossing overhead of a cross layer feedback mechanism. However,

since it directly impacts the throughput of the stack, we list it as an independent

efficiency metric.
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5.1.2 Maintainability Metrics

Maintainability is a measure of the ease with which a system can be changed or en-

hanced [62]. There is no direct means of measuring maintainability. One of the indi-

rect measures is the time taken to change a system. However, this can be done only

when the system has been deployed. For predicting maintainability at the architecture

level, architecture evaluation techniques such as Architecture-level Modifiability Analysis

(ALMA) [9] or Software Architecture Analysis Method for Evolution and Reusability [51]

can be used. Both these methods propose a scenario based analysis of the architectures for

maintainability. A scenario describes a change that may be required to the system. The

changes required to the various components for implementing the scenario are determined.

The overall impact is assessed to determine the architecture’s maintainability.

For a cross layer feedback architecture maintainability can determined by assessing

the capability of the architecture to support rapid prototyping, minimum intrusion and

portability (Section 2.5).

Rapid Prototyping Metric

Rapid prototyping, as the name implies, should allow introduction of new cross layer feed-

back algorithms or changes to the existing cross layer algorithms with minimal changes

to the system. The effort required to add or modify a cross layer optimization, that is,

number of changes required to the protocol stack and number of changes required to the

cross layer system serve as a measure for rapid prototyping.

Degree of Intrusion Metric

Degree of intrusion can be measured by the number of changes required within the existing

protocol stack, to implement a cross layer optimization.

Assume, x changes are required to the existing stack to implement a cross layer op-

timization for architecture A1 while y changes are required for the same optimization if

architecture A2 is used. If the changes x and y are of similar nature, then if y < x, A2 has

lesser intrusion than A1. For example, if Receiver Window Control is implemented using

CLASS [79], then the number of changes required to the protocol stack will be higher as

compared to the case when ECLAIR is used. Thus, the degree of intrusion of ECLAIR is

less than that of CLASS.

Portability Metric

Portability can be measured by the number of changes required within a cross layer

implementation to port it to another operating system. Portability is high if porting

requires minimum changes to the cross layer optimization.
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We believe that the above metrics are sufficient to evaluate any cross layer architecture.

We use these metrics to evaluate ECLAIR. In the next section, we carry out a qualitative

comparison of ECLAIR with the other cross layer feedback mechanisms.

5.2 Qualitative Evaluation

In this section we do a qualitative comparison of ECLAIR with the other cross layer

feedback approaches. Details about the cross layer approaches have been presented in

Chapter 2. We exclude Cross Layer Manager [17] from the evaluation since sufficient

details about the architecture are not available. For each of the approaches we discuss

the features which are relevant for a particular metric. We then rank each approach.

Ranking order: Rank 1 for an approach means that approach is the best as compared to

others, for a particular metric.

5.2.1 Efficiency Evaluation

Recall that the metrics for efficiency are: time overhead, space overhead, user-kernel

crossing and data-path delay (Section 5.1.1).

Time Overhead Evaluation

Here we analyze the time overhead that a cross layer approach would place on the system.

Metric:

As stated in Section 5.1.1, time overhead means the CPU cycles or execution time required.

Analysis:

We analyze the mechanism for event notification and the protocol adaptation technique.

We assume that the time taken by the adaptation algorithm, that is, determination of the

actual adaptation for a protocol would be similar for all the approaches. Hence we do not

include this for the evaluation. Table 5.1 shows the time overhead evaluation. Each row

shows an architecture, factors contributing to time overhead in that architecture, and a

relative rank for the architecture.

Key observations:

ISP [81] has the least time overhead. Since, it passes event information in the packet

header and it does not require much processing time for event creation and cross layer

feedback. Further, cross layer event processing is tightly integrated with the packet pro-

cessing.

ECLAIR rank is 3, since it needs CPU cycles to monitor a protocol, deliver the event

and process the event separate from the stack processing.
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Table 5.1: Time overhead comparison
Cross
Layer
Approach

Time overhead factors Rank

PMI [34] (1) Guard modules monitor devices; generate events. (2) Events
delivered to device manager. (3) From device manager, event prop-
agates layer by layer, through each adaptation module. (4) Oper-
ating system call modified to trap user inputs to devices. This adds
to overhead.

4

ICMP
Messages
[73]

(1) Monitoring and generation of events by a module. (2) Event
propagation using ICMP messages. (3) Within message handler:
message parsing, scanning of application and transport layer action
tables, message delivery to application layers. (4) Adaptation by
transport layer and application.

5

MobileMan
[21]

Actions within each modified protocol:
(1) Updating and reading network information from Network Sta-
tus using its APIs. (2) Parsing of information read and adaptation.

2

CLASS
[79]

Actions within each modified protocol:
(1) Invoking APIs of other layers’ protocols to pass its require-
ments. (2) Generating event; passing event information to other
layers’ protocols by invoking their APIs. (3) Adaptation on receipt
of event.

2

ISP [81] Actions within a protocol:
(1) Embedding cross layer information within a packet. (2) Parsing
packet (at all layers’ protocols) for cross layer information from
upper layer. (3) Adaptation based on information in packet.

1

User-space
[54]

(1) Monitoring of stack in kernel-space by a module. (2) Generation
of event; delivering to user-space modules. (3) Adaptation by user-
space modules using operating system APIs.

2

ECLAIR (1) Monitoring of protocol in a layer by Tuning Layer (TL).
(2) Generation of event by TL; delivery to all registered Proto-
col Optimizers (PO) within kernel; delivery of event to POs in
user-space (if any). (3) Adaptation by POs; adaptation executed
by invoking generic TL APIs which in turn invoke implementation
specific APIs.

3

Space Overhead Evaluation

We now analyze the space overhead of a cross layer implementation.

Metric:

As stated in Section 5.1.1, the space overhead is a measure of the run-time memory

required and static footprint of the cross layer implementation.

Analysis:

We estimate the space required for the various components (binary files). We also estimate

the space required by the various data structures during runtime. The binary files would

also add to the runtime space overhead, while executing.
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Table 5.2: Space overhead comparison
Cross
Layer
Approach

Space overhead factors Rank

PMI [34] Runtime: State machine maintained for each device.
Static: (1) Guard modules for monitoring interfaces, costs, network
connection. Modification to operating system call for user events.
(2) Device manager for receiving events and passing to adaptation
modules. (3) Adaptation modules.

3

ICMP
Messages
[73]

Runtime: (1) Socket created by each application for event infor-
mation. (2) ICMP messages carrying events. (3) Action tables for
application and transport layer adaptation. (4) Modified device
data structure.
Static: (1) Device event monitors. (2) ICMP message generator;
ICMP message handler at socket layer. (3) Adaptation code within
each layers’ protocols

5

MobileMan
[21]

Runtime: Event information stored in Network Status component.
Static: (1) Network status component. (2) Code added to a requi-
site protocols for event reading and writing from Network Status.
(3) Adaptation code within a protocol at a layer.

2

CLASS
[79]

Runtime: Event information passed between the layers.
Static: Within a layer’s protocol (1) Adaptation code. (2) Code
for parameter reading and setting. (3) Event generating code.
(4) APIs added enable interaction with other layers’ protocols.

2

ISP [81] Runtime: Cross layer information embedded within a packet.
Static: Within a protocol at a layer (1) Code for parsing the infor-
mation embedded in packet. (2) Adaptation code.

1

User-space
[54]

Runtime: (1) Data structure for list of registered applications.
(2) Memory required for user-kernel, and kernel-user, message pass-
ing.
Static: (1) Adaptation modules. (2) Modules for receiving events
from kernel-space

3

ECLAIR Runtime: (1) Data structure within each TL for list of registered
Protocol Optimizers. (2) Event information passed from TL to
PO. (3) Memory required for user-kernel, and kernel-user, message
passing. This is for interaction with user and application TLs/POs
which may be in user space.
Static: (1) Code for monitoring and generating events, within TL
(2) Code for generic and implementation specific APIs, within TL.
(3) Adaptation code within the POs.

4

We assume that the space required by the adaptation algorithm, that is, algorithm that

determines the actual adaptation for a protocol, would be similar for all the approaches.

Table 5.2 shows the space overhead evaluation. Each row shows an architecture, factors

contributing to space overhead (runtime and static) in that architecture, and a relative

rank for the architecture.
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Key observations:

ISP [81] has the least run-time overhead since all the event information is embedded

within the header. Further, no memory is required for maintaining a list of interested

layers. Also, no separate modules are created for adaptation, the adaptation code is

embedded within the protocol stack.

ECLAIR rank is 4. This because during run-time each TL needs to maintain lists of

POs which are interested in events. Further, the static footprint of ECLAIR is also higher

since it requires creation of multiple TL and PO modules. Also, extra code is required

for generic and implementation specific interfaces.

User-Kernel Crossing Evaluation

We now analyze the user-kernel crossing overhead of a cross layer implementation.

Metric:

Recall from Section 5.1.1, that user-kernel crossing metric is the number of times the

user-kernel boundary is crossed during execution.

Analysis:

Here we estimate the number of user-kernel crossings which would occur, during runtime,

if a particular cross layer approach is used. Table 5.3 shows the user-kernel crossing evalu-

ation. The table shows the factors contributing to user-kernel crossing for an architecture

and the relative rank for an architecture.

Key observations:

ISP [81] ranks the best. It requires no separate user-kernel crossing, since the cross layer

information is embedded within the packet header.

ECLAIR rank is 2. This is because ECLAIR requires some amount of user-kernel

crossing for communicating information from user and applications to kernel and vice-

versa.

Data Path Delay Evaluation

We now analyze the data path delay overhead of a cross layer implementation.

Metric:

As stated in Section 5.1.1, data path delay is measured by the delay introduced in the

data path of the stack due to cross layer feedback.

Analysis:

We assume that the adaptation algorithms are same for all the approaches. We highlight

the processing tasks that would impact the data path. Table 5.4 shows the data path

delay evaluation. The table shows factors contributing to data path delay and relative

ranking of the architectures. For architectures such as MobileMan [21], CLASS [79] and
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Table 5.3: User-kernel crossing comparison
Cross
Layer
Approach

User-Kernel crossing factors Rank

PMI [34] User-kernel crossing depends on placement of device manager. Pro-
totype shows device manager implemented in user-space. Factors:
(1) Passing device guard information to device manager (kernel
to user-space). (2) Checking status of each device at regular in-
tervals (user to kernel). (3) Passing adaptation information from
device manager to kernel using operating system APIs (user to
kernel). (4) Information passing to/from application adaptation
module (user-kernel and vice versa).
If device manager is in kernel, the user-kernel crossing will reduce.
However, point number (4) will still be applicable.

3

ICMP
Messages
[73]

(1) Definition of transport adaptation action, by each application
(user to kernel). (2) Delivering events to interested applications
(kernel to user).

2

MobileMan
[21]

Application’s read or write to Network Status component (user to
kernel).

2

CLASS
[79]

(1) Each application passing its QoS requirements to lower layers
(user to kernel-space). (2) Events and other information from lower
layers delivered to applications (kernel to user-space).

2

ISP [81] No additional user-kernel crossing since information is embedded
within the packet headers.

1

User-space
[54]

(1) Adaptation of protocols using operating system APIs (user to
kernel). (2) Passing event information to user-space modules (ker-
nel to user).

3

ECLAIR (1) Passing information from user or application to kernel space
(user to kernel). (2) Passing event information to application or
application PO in user-space (kernel to user).

2

ISP [81], since the cross layer implementation is entirely within the protocol stack, the

data path delay factors are the same as those for time overhead, stated in Table 5.1.

Key observations:

ECLAIR rank is 1, because ECLAIR components (TLs and POs) are not embedded within

the stack.

ISP [81] is at rank 4. This is because, a layer needs to modify the packet header, for

passing cross layer information. Further, all layers below need to parse this packet and

carry out adaptation if required. All this, decreases the stack execution speed and hence

leads to increased data path delay.

Above we evaluated efficiency of various cross layer feedback approaches. Next, we

evaluate maintainability of the cross layer approaches.



5.2. QUALITATIVE EVALUATION 81

Table 5.4: Data path delay comparison
Cross
Layer
Approach

Data path delay factors Rank

PMI [34] No data path delay, since all adaptation is from outside the stack. 1
ICMP
Messages
[73]

Adaptation code is introduced within the existing protocol imple-
mentation. Additional protocol variables are introduced. (1) Pro-
tocol execution slows down since additional variables need to be
checked. (2) Appropriate adaptation needs to be done within the
protocol. (3) Event delivery through special ICMP messages. IP
and TCP protocols will have to handle these additional packets,
impacting speed of processing application data packets.

2

MobileMan
[21]

Same as that for time overhead (Table 5.1). Within each modi-
fied protocol: interaction with the Network Status component and
protocol adaptation.

3

CLASS
[79]

Same as that for time overhead (Table 5.1). Within each modified
protocol, interaction with other protocols, event generation and
event passing and protocol adaptation.

3

ISP [81] Same as that for time overhead (Table 5.1). Within each modi-
fied protocol – encoding information in packet, parsing packet and
protocol adaptation.

4

User-space
[54]

Depends on implementation of adaptation modules. If event moni-
toring, delivery and adaptation is built into the application or some
system library on data path, then data path delay is high. An ex-
ample is, RWC implementation as specified in reference [54].
If the adaptation modules are not on the data path then the delay
could be low.

3

ECLAIR No data path delay, since all adaptation is from outside the stack. 1

5.2.2 Maintainability Evaluation

Rapid prototyping and Degree of Intrusion metrics have similar characteristics. Both mea-

sure the number of changes required to the system for implementing cross layer feedback.

In light of this, we combine the analysis of these two metrics.

Rapid Prototyping Evaluation

In Section 5.1.2, we defined rapid prototyping as the ease with which a cross layer opti-

mization can be added, deleted or changed.

Metric:

The number of changes required to the protocol stack and the number of changes required

to a protocol optimization algorithm, is an indicator of the ease of rapid prototyping.
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Degree of Intrusion Evaluation

Degree of intrusion can be estimated by the modifications needed to the protocol stack

for introducing a cross layer feedback optimization.

Analysis:

We assume that some cross layer algorithm needs to be implemented or changed. For this

cross layer algorithm, we then estimate the number of changes that would be required

to the protocol stack or the cross layer system. Table 5.5 shows the rapid prototyping

and degree of intrusion evaluation. The table presents the factors which determine rapid

prototyping and degree of intrusion of an architecture.

Key observations:

User-space [54] ranks 1 for both rapid prototyping and degree of intrusion. This is because

all the modules are implemented in user-space and the system calls provided by the

operating system are used for interacting with the protocol stack. Thus, no changes

are required to the protocol stack. Also, due to these reasons changes can be easily

implemented.

ECLAIR rank is 2 for rapid prototyping and 2 for degree of intrusion. This is because,

a large part of ECLAIR needs to be implemented in the kernel. Further, some changes

may be required to the protocol stack for enabling access to some protocol control data

structures. See Chapter 3, Section 3.2 for an overview of accessibility to protocol stack

data structures.

Portability Evaluation

Metric:

As stated in Section 5.1.2, portability is measured by the number of changes required to

a cross layer implementation, for porting it to another operating system.

Analysis:

We estimate the number of changes required to the cross layer modules, to port it to a new

operating system. For architectures in which the cross layer algorithm is implemented

within a layer, the layer would need to be modified. Table 5.6 shows the portability

evaluation.

Key observations:

ECLAIR rank is 1. This is because ECLAIR provides a generic API which is exported by

the TL to the PO. This generic API invokes the implementation specific API. For porting

to a new operating system, only the implementation specific API needs to be added.

Architectures such as MobileMan [21] and CLASS [79], require modifications to the

protocol stack and hence rank lower than ECLAIR.
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Table 5.5: Rapid Prototyping capability and Degree of Intrusion comparison
Cross

Layer

Ap-

proach

Rapid Prototyping (RP) and
Degree of Intrusion (DoI) analysis

RP

Rank

DoI

Rank

PMI
[34]

Changes to protocol stack : None. Changes to existing modules:
(1) Adaptation Layers to enable new adaptation. (2) Guard mod-
ules for adding new events.

2 1

ICMP
Mes-
sages
[73]

Changes to protocol stack: (1) Protocol for (a) addition of new
parameters, (b) addition of adaptation code.
Changes to existing modules: (1) All applications to enable defi-
nition of new adaptations for protocols. (2) ICMP message gen-
erator to create new events. (3) ICMP message handler, in the
socket layer to update new variables defined for the protocols.

4 3

Mobile-
Man
[21]

Changes to protocol stack: (1) Protocol for introducing new op-
timization or event. For new events: (2) Network Status compo-
nent. (3) All the protocols which would use the new event.
Changes to existing modules: As above, since all the modules are
within the protocol stack. Further, changes may be required to
applications to handle the new or modified event.

4 4

CLASS
[79]

Changes to protocol stack: (1) Protocol changed to introduce new
optimization or event. (2) If any API of a protocol p is modified
or a new API or event is introduced, changes are required to all
protocols interacting with p.
Changes to existing modules: As above, since all the modules are
within the protocol stack. Changes may be required to applica-
tions to handle the new or changed event.

5 4

ISP [81] Changes to protocol stack: If new adaptation information added
in packet header, modification required to (1) Protocol to embed
new information in the packet. (2) All lower layer protocols that
intend to use the new (or changed) information. This is required
to enable parsing of the packet and subsequent adaptation.
Changes to existing modules: As above, since all the modules are
within the protocol stack.

3 4

User-
space
[54]

Changes to protocol stack: None. Changes to existing modules:
Addition of appropriate modules or modification to existing mod-
ules, in user-space.

1 1

ECLAIR Changes to protocol stack: Protocol stack may require modifica-
tion if the required data item is not accessible, as discussed in
Chapter 3, Section 3.2.
Changes to existing modules: For new optimization, (1) new Pro-
tocol Optimizer is added (PO) or existing PO is modified. For
new event, changes required to – (2) Tuning Layer (TL) . (3) POs
which would be interested in the new event.

2 2
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Table 5.6: Portability comparison
Cross
Layer
Approach

Portability Analysis Rank

PMI [34] Adaptation layers use the operating system APIs. Similarly, guard
modules directly monitor data structures within the operating sys-
tem or use the operating system APIs. For porting to another oper-
ating system: (1) Adaptation modules and guard modules will need
to be updated to use the new operating system APIs. (2) Guard
modules will require modifications to allow it to directly monitor
the new operating system data structures.

2

ICMP
Messages
[73]

The protocol implementation is modified by introducing new con-
trol variables and the protocol algorithm is modified for adaptation.
For porting to another operating system, the new stack will require
modifications: (1) Protocol modifications will need to re-written
from scratch. (2) Applications may need modifications if the oper-
ating system API for the application changes. (3) ICMP message
handler checks the socket data structure. Thus it would need to be
re-written since the socket data structure implementation would be
different in the new operating system.

3

MobileMan
[21]

The protocols are replaced with new Network Status aware proto-
cols. For the new operating system, the protocol implementations
will have to re-written from scratch.

3

CLASS
[79]

Protocol implementations are modified to allow interaction with
other protocols in other layers. For the new operating system, the
protocol implementations will have to re-written from scratch.

3

ISP [81] Protocol implementations are modified to enable embedding of
cross layer information in packet headers, parsing such information
and adaptations. For the new operating system, implementations
will need to be re-written from scratch.

3

User-space
[54]

User-space modules would require modifications to the extent of
change in the operating system APIs.

2

ECLAIR Tuning Layers (TLs) provide generic and implementation specific
APIs. For the new operating system, additional implementation
specific APIs need to be added to the TL. Thus, only Tuning Layer
needs to be updated to allow interaction with the new operating
system.

1

Above we qualitatively evaluated the efficiency and maintainability of ECLAIR as

compared to other cross layer feedback approaches. Next, we present a summary of the

qualitative evaluation.
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5.2.3 Qualitative Evaluation Summary

The summary is shown in Table 5.7. The table also includes information whether an

architecture supports any-to-any layer communication.

Key observations:

The results shows that ECLAIR is useful when a balance between efficiency and main-

tainability is required. The qualitative evaluation shows that ECLAIR trades-off efficiency

for enhancing maintainability. Since ECLAIR components are outside the stack, its ef-

ficiency is lower as compared to architectures (example ISP [81]) which implement cross

layer feedback within the protocol stack. However, due to this ECLAIR maintainability

is higher. Table 5.8 presents a summary of the key advantages and limitations of the

various cross layer approaches.

Appropriateness of an architecture would depend on the requirements for cross layer

feedback. In Chapter 7 we present a simple technique for cross layer architecture selection

based on the deployment requirements.

Table 5.7: Comparison of cross layer architectures: Summary

Architecture
Efficiency Maintainability Any-
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PMI [34] 4 3 3 1 2 1 2 No
ICMP
Messages[73]

5 5 2 2 4 3 3 No

MobileMan
[21]

2 2 2 3 4 4 3 Yes

CLASS [79] 2 2 2 3 5 4 3 Yes
ISP [81] 1 1 1 4 3 4 3 No
User-space
[54]

2 3 3 3 1 1 2 No

ECLAIR 3 4 2 1 2 2 1 Yes
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Table 5.8: Cross Layer Architectures: Summary observations
Cross
Layer
Approach

Key Advantages Key Limitations

PMI [34] Adaptation is from outside the
stack. Hence it has low data path
delay and low degree of intrusion.

Event propagates through each
adaptation module at a layer.
Hence time overhead is high.

ICMP
Messages
[73]

The cross layer adaptation modules
are within the kernel. Hence user
kernel crossing overhead is low.

Cross layer optimizations are built
into the protocol stack. This leads
to high time and space overheads.

MobileMan
[21]

All the network event information is
available in a single Network Status
component. Thus time overhead is
low.

Existing protocols have to be re-
placed to make them Network Sta-
tus aware. Thus results in poor
maintainability and high data path
delay.

CLASS
[79]

Protocols directly interact with
other protocols for cross layer feed-
back. Due to this, the time over-
head is low.

The protocol stack is modified to
enable protocol interactions. Thus,
the maintainability is poor and data
path delay is high.

ISP [81] Cross layer information is embed-
ded with the packet header. Proto-
col adaptation is built into the pro-
tocol. Hence, the time overhead is
low.

Protocol stack has to be modified
to introduce adaptations and feed-
back. This results in poor main-
tainability and high data path de-
lay.

User-space
[54]

All adaptation modules are imple-
mented in user-space. Operating
system APIs are used for adapta-
tion. Thus, maintainability is high.

Event and adaptation information
has to repeatedly cross the user-
kernel boundary. Hence, the effi-
ciency is low.

ECLAIR Adaptation is from outside the
stack. Generic and implementation
specific APIs are provided for pro-
tocol adaptation. Due to this, the
portability is high.

Multiple modules are created for
monitoring and adaptation which
interact through APIs. This results
in high time overhead.

In the next section, we use Receiver Window Control (RWC) (see Section 4.1) as

an illustrative example, for a quantitative evaluation of the efficiency of ECLAIR. We

compare the ECLAIR and user-space implementations of RWC.

5.3 Quantitative Efficiency Evaluation for RWC

To understand the RWC implementation clearly we first carry out the functional analysis

of the ECLAIR (Chapter 4) and user-space [54] implementations. We use the standard

software engineering design techniques like structure chart and sequence diagram [36] for

our analysis. Besides structure chart and sequence diagrams, for ease of understanding
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cross layer feedback implementation aspects, we propose a notation for the protocol stack

and cross layer feedback below.

5.3.1 Cross Layer Feedback Notation

Figure 5.1 depicts our notation for a protocol and a protocol stack. Figure 5.1(a) shows

the notation for a protocol implementation within a layer. Each protocol is made up of

algorithms (for example, congestion control algorithm, etc in TCP), control data structures

(that is, data structures which contain information about the state of the layer), protocol

data unit (PDU) buffers (that is, the data which is worked upon by the layer). Data

path is the sequence of functions within the protocol stack which are concerned only with

sending and/or receiving packets. In Figure 5.1, notation for a protocol is as follows:

• Protocol’s set of algorithms is denoted by a circle.

• Control data structure (cds) is denoted by a rectangle with rounded corners. Control

data structures used by an algorithm are shown attached to the algorithm by a fine

dotted line.

• Protocol data unit buffer (pbuf) is denoted by an open rectangle with sharp corners.

For the stack:

• Stack processing path or data path is shown by a solid line from the algorithms at

a layer to algorithms at an adjacent layer (see figure 5.1(b)). The data path passes

through a protocol data unit buffer.

Figure 5.1(b) shows the protocol stack made up of multiple stacked protocols. User-

space implies the memory which is accessible to user programs and kernel-space is the

memory for the kernel.

Cross Layer Notation Limitations: Our notation for cross layer feedback only provides an

overview of the implementation. The notation does not show the exact data structures of a

protocol. Also, the notation does not depict the mechanism for interaction of components

within the kernel or across user-kernel space.

5.3.2 ECLAIR and User-space: RWC Comparison

Figure 5.2 shows the implementation approach for RWC and ECLAIR. The dotted line

with a hollow arrow head represents a read of values from a data structure or another

module. The solid line with a solid arrow head represents a write or update of values

in a data structure. Read arrows which cross the user-kernel line represent data passing

between user and kernel space.
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Figure 5.1: Protocol stack schematic

RWC Implementation Overview

Figure 5.2(a) depicts the implementation overview for the approach proposed in refer-

ence [54]. It can be seen that, the user-space RWC module is on the data path. Further,

user-kernel crossing would be required for updating TCP control data structures.

Figure 5.2(b) shows the ECLAIR implementation. It can be seen that in case of

ECLAIR, the RWC module is not on the data path. Further, user-kernel crossing is

required only when the application information is to be passed to the RWC module.

Functional Analysis

User-space implementation:

Figure 5.3 shows the structure chart for the user-space implementation of RWC. The

arced arrow shows that the RWC module is invoked repeatedly. In the user-space imple-

mentation [54] applications register with the RWC module. This RWC module is invoked

on every read() by the registered applications. To modify the receiver window values,

the operating system function calls getsockopt() and setsockopt() are invoked within

read(). This is implemented by overriding standard C library (libc) functions read()

and connect(), through a new user defined library [54].

ECLAIR:

Figure 5.4 shows the structure chart for the ECLAIR implementation of RWC. The arced

arrow shows that the RWC module is invoked repeatedly. In the ECLAIR implementation,
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Figure 5.2: Receiver Window Control implementation

the application registers for RWC and passes the required parameters to the RWC module.

This is the only time when user-kernel crossing occurs. RWC is invoked at regular intervals

by a timer within the kernel. The tuning layer has access to the TCP data structures and

updates the receiver window values directly.

Time overhead

From Figure 5.3 it can be deduced that, time overhead for the user-space implementa-

tion [54] is

O(m × n) (5.1)

where n is the number of applications and m is the number of read() calls per application.

Besides the execution time of the RWC module, the time overhead may increase further

due to the operating system calls that are invoked e.g. getsockopt(), tcp getsockopt(),

etc. This increase would depend on the implementation of these system calls in the

operating system.

In case of ECLAIR, the time overhead is

O(t × n) (5.2)

where n is the number of applications and t is the number of times the RWC algorithm

is invoked by the timer.
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Space overhead

The runtime space overhead of user-space implementation [54] is

O(n) (5.3)

This is the memory required for storing information about the registered applications.

The runtime space overhead for the ECLAIR implementation is the same as that of

user-space, that is

O(n) (5.4)

This is the space required for registering application information.
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User Kernel Crossing

In case of user-space implementation [54], since the RWC module is invoked on each read

from user-space, it is evident from Figure 5.3 and 5.2(a) that the user-kernel crossing is

O(m × n) (5.5)

where, n is the number of applications and m is the number of reads per application.

In case of ECLAIR, all the application information can be passed to the RWC module

in a single user-kernel crossing. Thus from Figure 5.4 and Figure 5.2(b) we can deduce

that the user-kernel crossing for ECLAIR is:

O(1) (5.6)

We assume that the number of modules in the structure chart is a measure of the

static memory footprint. Based on this measure, the static memory footprint of ECLAIR

seems to be higher than that for user-space implementation[54]. This is because the TLs

also need to be implemented. Whereas in the case of user-space implementation, existing

operating system function calls are used.

To gain an insight into the data path delay, we present sequence diagrams of the

implementations in the next section.

Data-path Delay

Data send and receive in protocol stack:

To understand the concept of data path delay, we first present the sequence diagram of

send and receive data paths of an unmodified protocol stack in Figure 5.5. The sequence

diagram shows the sequence of function calls between the various entities in the protocol

stack. Figure 5.5 shows how an application sends and receives data, using TCP/IP. For

sending, the application invokes send() on the socket. In turn the send() of TCP then

IP is invoked. Finally, the packet is sent out on the network. While receiving the data, the

application issues a read() call on the socket, which issues a read() on TCP. Whenever

data is received from IP, it is delivered to the application. This is shown as data over the

dotted arrows.

Data send and receive: user-space RWC

In case of user-space implementation [54], RWC is built into the read() of the application.

Figure 5.6(a) shows the modified data path for the user-space implementation. The

data-a return shows the actual return path if read() was not modified. It can be seen

from the figure that the data return from the modified read() is delayed till the RWC

algorithm completes its run. This is the data path delay. Considering all the registered
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applications together, excluding other overheads, the overall data path delay (Figure 5.3)

is

O(m × n) (5.7)

Data send and receive: ECLAIR RWC

Figure 5.6(b) shows the data path for the ECLAIR implementation of receiver window

control. The ECLAIR implementation is not on the data path and hence does not impact

the data path of the application.

Other limitations of user-space mechanism

Most operating systems provide APIs for applications, such as getsockopt() and setsockopt(),

to read and update the socket parameters. However, the manipulation of protocol pa-

rameters is restricted to what is permitted by the operating system. For example,

setsockopt(), which internally calls tcp setsockopt(), allows changes to a limited set of

TCP parameters. tcp setsockopt() allows update to window clamp in the TCP control

data structure. However, in case of Receiver Window Control, the value of rcv ssthresh

was also to be updated. This was not possible through setsockopt(). Further, our trails

show that reducing window clamp does not have an effect on an active session. This

has also been stated in reference [78]. Similarly, getsockopt() cannot read the values

of certain TCP parameters individually. For example, for reading the state of a TCP

connection, an info structure (which has many other parameters also) is used.

In summary, some of the operating system APIs, that enable interaction with the

stack, may not provide the flexibility required for implementing a cross layer feedback

system. Moreover, the APIs restrict the usage to user level programs, which would impact

the efficiency of a cross layer implementation. There would be an additional efficiency

penalty due to repeated user-kernel crossing. See Section 5.1.1 for user-kernel crossing

metric.

In this section we compared the user-space and ECLAIR implementations of RWC.

Through analysis we showed that ECLAIR is an efficient architecture for RWC type of

cross layer feedback.

5.3.3 Quantitative Evaluation Summary

Table 5.9 shows the quantitative evaluation summary of ECLAIR and user-space imple-

mentations of receiver window control. (see equations (5.1) - (5.7)). Both have similar

level of maintainability and minimum intrusion. Portability of the ECLAIR implementa-

tion is higher, because of the TLs. In the next section we measure ECLAIR overheads.
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Table 5.9: ECLAIR and user-space quantitative comparison summary

Evaluation
metric

ECLAIR user-space Description

Time over-
head (com-
plexity)

O(t × n) O(n × m) n = number of applications
t = number of invoca-
tions of RWC (ECLAIR)
m = number of invocations of
RWC per application (user-space)

Space over-
head (com-
plexity,
footprint)

complexity:
O(n), foot-
print:
higher
initially

complexity:
O(n), footprint:
lower

Space complexity: Space
required for information
about registered applications
footprint: static space required for
executables

User-kernel
crossing

O(1) O(n × m) ECLAIR: time required
for passing user parame-
ters to kernel using ioctl()

user-space: time required
for getsockopt() and
tcp getsockopt()

Data path de-
lay

- O(n × m) (same as above)

n is the number of applications,

m is the number of reads per application in user-space case,

t is the number of times the RWC algorithm is invoked in ECLAIR

5.4 ECLAIR Overhead Measurement

The broad aim of the profiling experiments is to verify that ECLAIR imposes minimal

overhead on the operating system. Due to non-availability of the implementation code of

existing cross layer approaches (discussed in Section 5.2), profiling of these approaches is

not feasible. Hence we compare ECLAIR with the following:

• Modifying the protocol for cross layer feedback: This would enable comparison of

ECLAIR with all architectures where the cross layer algorithm is built into the data

path.

• Using operating system APIs for cross layer feedback: This would enable compar-

ison of ECLAIR with architectures which are implemented in user-space and use

operating system APIs. Since, ECLAIR is outside the stack, it needs to locate the

data structure that is to be monitored or updated. This adds to the time overhead.

Hence, we also compare ECLAIR efficiency in searching data structures within the

protocol stack, to the operating system API efficiency. We use RWC as the example.
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• No modifications to the stack: This comparison would give us an estimate of ECLAIR

impact on data path delay with reference to the case when no cross layer feedback

is implemented.

In section 5.1.1 we identified time overhead, space overhead, data path delay and user

kernel crossing as the metrics for efficiency. The above stated experiments would give

us an estimate of ECLAIR performance for user-kernel crossing and data path delay

metrics, relative to other approaches. Determining time and space overhead requires

implementation of a full cross layer optimization. Hence, we do not focus on the time and

space overhead. Next, we describe the profiling tools we experimented with.

5.4.1 Profiling Tools

In Chapter 4, Section 4.1 we presented the design and implementation of Receiver Window

Control using ECLAIR. We use that prototype implementation with modifications for

profiling ECLAIR.

To measure the data-path delay overhead, measurement of the impact on the time

taken for packet movement between the network interface and the socket layer is re-

quired. For user-kernel crossing time measurement time-stamps in user and kernel space

are required. For data structure search time, a facility for time-stamp before and after

search is required. This type of profiling requires a lightweight (imposes minimal run-time

overheads on the operating system) profiling tool which can be easily integrated with the

operating system’s protocol stack.

The following open source tools are suitable for the above measurements, in Linux [99]:

• MAGNET (Monitoring Apparatus for Generic kerNel Event Tracing) [28, 103].

MAGNET was earlier known as MAGNeT (Monitor for Application Generated Net-

work Traffic). This tool is available for download from [103].

• LTT (Linux Trace Toolkit) [87]. This tool is available for download from [102].

MAGNET

MAGNET [28, 103] is a tool that traces packets as they move through the protocol

stack. Both packet receipt and packet send are traced. MAGNET requires modification

to the operating system stack. Hooks (function calls) are placed in the protocol stack.

The hooks are placed in link, IP and TCP layers. These hooks call a MAGNET data

recording procedure. This recorded data can be accessed by user-space applications.

Figure 5.7 [28] shows on overview of the operation of MAGNET. The application

issues send() or recv() calls for sending or receiving data. Inside the protocol stack,

TCP, IP and other protocols are used for data send and receive. magnet add() is called
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from within the protocol stack to trace packet movement. magnet read() is used to copy

the trace from the kernel buffer to a disk file. MAGNET uses the CPU cycle counter for

generating high-resolution time-stamps.

Figure 5.7: MAGNET details [28]

LTT

Linux Trace Toolkit [87, 102] has the following components: kernel patch which logs events

to be traced, kernel module which stores events and interacts with trace daemon, trace

daemon which reads kernel module’s output and stores it on disk, data decoder which is

used for analysis and converting the trace to human readable form [102]. Figure 5.8 shows

LTT architecture.

Figure 5.8: LTT details [87]
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OProfile

Another tool that we considered was Oprofile [105]. OProfile is a low overhead continuous

profiler. It regularly samples the CPU registers. It converts this sampled information into

a statistical report about which program was executed how often. We experimented with

this tool also (by patching the kernel, recompiling and running a few tests). The tool

could provide information about which code segment occupied the CPU for what fraction

of time. However, there was no facility to measure the time for packet movement within

the stack. Hence, we did not use this tool.

5.4.2 Instrumenting the Linux kernel

Both the profiling tools MAGNET [28, 103] and LTT [87, 102] provide Linux kernel

patches for updating the kernel source code, to enable kernel profiling. Hence we patched

the Linux 2.4.19 kernel with both the tools. We used the 2.4.19 kernel since this was

supported by both the tools. The kernel source code is available at the Linux kernel

source site [101] and the IIT-Bombay mirror site [100]. The patch installation required

some manual editing of kernel source files. This was required since the patches of both

the tools updated some common files at similar locations. Hence, the patch which was

installed second failed at some points.

Only MAGNET used: We intended to use both the profiling tools since we required

features of both the tools. For data-path delay profiling we required the facility to trace

packet movement within the stack. We also wanted to trace the start and end of RWC

invocation.

MAGNET provides the feature of tracing packet movement within the stack and LTT

allows creation of user defined events in kernel modules and user programs. However, LTT

cannot trace a packet’s movement within the stack, although it provides events related

to packets crossing the network and socket layers. This combination would have enabled

us to do the required tracing. However, during our experiments we noticed that the LTT

overheads significantly skewed the readings for data-path delay. We noticed this because

of the occasional but extremely large values of data-path delay. We confirmed this by

measuring data-path delay with and without LTT. We ran our full set of experiments,

discussed in Section 5.4.4. Finally, we decided to use MAGNET only for the purpose of

profiling. Due to this it was not possible to trace RWC start and end. However, this

would not affect the quality of the results, since the primary aim was to study the effect

of ECLAIR on data-path delay.

Instrumenting for user-kernel crossing: MAGNET does not provide a facility for

creating and tracing events within an application. For user-kernel crossing we needed a

time-stamp before invocation of a system call in user-space, and after completion of the
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call in kernel-space. For this instrumentation we manually modified the kernel. Initially,

we placed the system call do gettimeofday() in TCP to get and print the time-stamp.

During the initial set of runs we noticed that the time measurement granularity (microsec-

onds) available in kernel 2.4.x was not sufficient since the operations that we intended to

measure (data structure search), were taking less than 1 µsec. Hence, for higher accuracy,

we captured the CPU cycles. We used the function get cycles() available in the kernel

include file asm/timex.h. To get the CPU cycles in user-space, we used get cycles()

in the test-application and compiled it with the kernel include file asm/timex.h. Its

prototype is

#include <linux/timex.h>

cycles_t get_cycles(void);

The Linux get cycles() function is used to get timestamps with very low overhead.

CONFIG X86 TSC has to be defined during kernel compilation time, else get cycles()

returns 0. Internally, get cycles uses the function rdtsc (Read Timestamp Counter) for

reading the timestamp counter (TSC). The time for reading of TSC is extremely small

(ten instruction times) compared to the time interval being measured (thousands). Hence,

we have not done any corrections to the measured time, to account for cycles taken to

read the values from the register.

5.4.3 Design of Experiments

The aim of the experiments was to compare ECLAIR overheads with that of other ap-

proaches. We conducted two sets of experiments to

• measure the impact on data path delay

• measure the data structure search time and user-kernel crossing time

For data path delay measurement, simulation of cross layer overhead was required

during some stack activity. For the stack activity we initiated a download from a website.

Overhead simulation

To simulate cross layer feedback execution we executed an empty loop within the kernel.

To simulate an increased load we increased the number of loop executions. While exe-

cuting the download, we ran the empty loop for 2 × 105, 5 × 105, 10 × 105, 15 × 105 and

20 × 105 cycles.
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ECLAIR overhead simulation

In case of ECLAIR we executed the empty loop within the RWC PO. When the PO

received an input from the user, it executed the empty loop. A kernel timer [13] within

the PO controlled the repetition of the loop at regular intervals. We varied this interval

to simulate the effect of repeated execution of ECLAIR. The PO module was removed

from the kernel on completion of an experiment run. This stopped the loop executions.

Protocol modification simulation

To simulate this we modified the tcp v4 rcv() function in TCP (tcp ipv4.c). We in-

troduced an empty loop in this TCP function. This simulated a load on the data path.

Whenever a packet was received this loop was executed in the tcp v4 rcv() function.

Next, we present the experiment setup and results.

5.4.4 Experiment Setup and Results

We ran the experiments on a desktop with the configuration - Intel Pentium4 CPU,

1.90GHz, 256 MB RAM, 256KB cache.

Custom kernels for experimentation:

We compiled separate kernels patched with MAGNET to measure the impact on data

path delay. In one of the kernels we modified TCP to introduce the empty loop. We refer

to this as the TCP-MAGNET kernel. In the other kernel we did not modify TCP. We

used this kernel for ECLAIR measurements and measurement of packet movement when

no cross layer feedback is implemented. We refer to this kernel as the MAGNET-only

kernel.

Experiment 1: Impact on data path delay

In this experiment we measured the time taken by a packet to traverse up the stack (from

network interface to the socket layer). This is the data path time, when any data is being

downloaded onto the device. We also measured the time taken by the acknowledgments

generated at TCP layer to traverse from TCP to the network interface layer. This is the

data path time for packets being sent out from the device.

We ran wget [107] to download a file from a remote website (www.kernel.org) [101].

A single connection was created. magnet read [28, 103] was started in the background,

to trace packet movement through the stack.

• We ran this experiment on both the TCP-MAGNET and MAGNET-only kernels.

– In the MAGNET-only kernel we ran ECLAIR to simulate cross layer load. We

invoked ECLAIR at different frequencies of 10, 13, 20, 33 and 100 times per
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second. 100 per second is the maximum possible invoke frequency using kernel

timers in a 2.4.x kernel.

– In case of TCP-MAGNET kernel, the load was built into TCP layer, as ex-

plained above.

• We also used the MAGNET-only kernel to get a measurement of the packet move-

ment within the stack, when no cross layer feedback is running.

• We repeated each experiment 10 times

– for each load, on the TCP-MAGNET kernel

– for each load and for each invoke frequency – for ECLAIR measurements, in

the MAGNET-only kernel

– without any load to get a measurement for no cross layer feedback, in the

MAGNET-only kernel.

• To check the impact of packet arrival rate also on the data path delay, we selected

two kernel source mirrors for file download, one offering a high throughput and

another lower and repeated the above experiments for each packet rate.

Analysis of Experiment 1

Figure 5.9(a) shows the results for low packet rate. Figure 5.9(b) shows the result for

high packet rate.

Tables 5.10 and 5.11 show the mean and standard deviation values for low and high

packet rate, respectively.

TCP-MAGNET kernel : for this case, since the cross layer load (empty loop) is executed

for every packet, the data path delay is high. Further, the data path delay increases almost

linearly with the increase in cross layer load. Compared to no cross layer feedback, the

data path delay in case of TCP-MAGNET kernel is higher by approximately 49% for low

load (2 × 105) and approximately 30 times higher at high load (10 × 105).

MAGNET-only with ECLAIR kernel : for this case, the load execution is controlled by a

timer. Compared to no cross layer feedback, the data path delay in case of ECLAIR is

higher by approximately 19% in case of low load (2 × 105) and low invocation frequency

(10 times per second). In case of high load (20 × 105) and high invoke frequency (100

times per second), the data path delay is approximately 6 times higher.

Result: This above results show that, ECLAIR’s impact on data path is much lower

than the case of implementing cross layer feedback within the protocol itself.
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102 CHAPTER 5. ECLAIR EVALUATION

Table 5.10: Data path delay: Mean and standard deviation for low packet rate

Invoke Load ×105 X̄ × 10−5 σ × 10−5

frequency
(per second) (seconds) (seconds)

No CLF 4.810 ± 1.171 19·847
10 2 4.903 ± 1.859 30·417

5 4.411 ± 1.103 18·507
10 4.506 ± 0.689 11·674
15 12.161 ± 8.625 143·541
20 7.884 ± 3.245 49·442

13 2 6.756 ± 3.076 51·198
5 3.440 ± 0.175 2·956
10 5.249 ± 1.684 28·147
15 5.354 ± 0.854 14·326
20 6.023 ± 1.634 26·828

20 2 3.489 ± 0.129 2·146
5 3.882 ± 0.749 12·543
10 6.093 ± 1.849 30·815
15 7.038 ± 1.994 33·394
20 9.630 ± 3.044 50·453

33 2 3.845 ± 1.067 16·908
5 5.878 ± 3.053 47·806
10 7.478 ± 2.384 40·349
15 11.056 ± 3.320 54·697
20 10.585 ± 1.916 31·925

100 2 4.905 ± 2.494 41·821
5 6.179 ± 1.541 25·148
10 11.309 ± 1.757 29·629
15 18.495 ± 2.676 44·471
20 28.501 ± 3.417 56·278

Synchronous (in TCP) 0.2 7.164 ± 2.853 48·296
2 61.179 ± 39.668 699·929
5 74.501 ± 4.334 72·778
10 158.373 ± 6.292 105·015
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Table 5.11: Data path delay: Mean and standard deviation for high packet rate

Invoke Load ×105 X̄ × 10−5 σ × 10−5

frequency
(per second) (seconds) (seconds)

No CLF 9.549 ± 4.406 152·759
10 2 7.486 ± 3.939 118·642

5 11.542 ± 5.181 168·092
10 44.305 ± 18.059 579·235
15 38.024 ± 19.379 625·805
20 28.674 ± 10.518 345·489

13 2 18.468 ± 8.868 285·295
5 18.436 ± 8.301 265·439
10 16.443 ± 6.980 225·76
15 18.798 ± 7.506 242·977
20 32.203 ± 15.980 523·711

20 2 12.966 ± 5.132 164·567
5 24.851 ± 11.472 367·199
10 18.599 ± 10.680 343·186
15 17.993 ± 8.038 259·836
20 36.171 ± 16.270 537·46

33 2 13.912 ± 6.766 219·902
5 17.429 ± 8.934 287·137
10 37.503 ± 17.780 571·269
15 50.871 ± 21.883 731·215
20 24.931 ± 11.905 399·365

100 2 29.779 ± 12.380 336·842
5 32.297 ± 13.281 428·941
10 23.471 ± 8.824 282·737
15 44.926 ± 18.624 601·483
20 39.796 ± 9.016 299·111

Synchronous (in TCP) 0.2 15.792 ± 10.137 318·303
2 75.832 ± 13.294 501·423
5 125.026 ± 9.725 338·057
10 217.152 ± 10.074 351·64
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Experiment 2: Data structure search time and user-kernel crossing

In this experiment, we measure the time take by the RWC PO to search for TCP sockets.

This includes the time for user kernel crossing. We compare this with the time taken by

an operating system API to locate the data structure. We used setsockopt() system

call to update the TCP data structure.

Operating system API search:

The start of the search time is captured just before the API call. In case of TCP sockets,

the setsockopt() system call flow terminates at the function tcp setsockopt(). We

added code within this function to measure the elapsed CPU cycles when this function is

entered. This is the end time of search.

ECLAIR search:

In case of ECLAIR, we captured the CPU cycles before the user invoked RWC and after

the socket was located by the RWC PO. The RWC PO does not use any system calls for

locating the PO. For efficient search we implemented the tcp hashfn(), from tcp ipv4.c

file, in the RWC PO. This function was used to located the TCP hash bucket in which

the socket is located. Once the hash bucket was located, the exact socket was located by

traversing the socket linked list. Since a linked list traversal was involved, we also studied

the impact of the length of the list, that is, the depth of the hash bucket. As discussed

in Section 5.3, in ECLAIR the user parameters can be passed to the RWC PO in a single

user-kernel crossing. We used an array to pass the socket information to the PO and

measured the impact on socket search.

Creating sockets:

We used a modified version of a socket client from the book – Unix Network Program-

ming [71]. For controlling the depth of the TCP hash bucket, we created an array of port

numbers which would hash into the same bucket. For this, we created a script which first

tested the port numbers which hash into the same bucket. The server side port number

and address were fixed (our department’s web server). The client side address was fixed,

that is, our test machine. The test program used these parameters – server address, server

port and client address. The client port was varied to determine the colliding ports. These

port numbers were captured into a two-dimensional array. Each array row had 8 port

numbers which hashed into the same hash bucket.

For the script that ran the experiment, the first parameter was the number of sockets

required per bucket (1 to 8). The next parameter was a multiplier (1 to 5). Thus, when

sockets per bucket was 1, the total sockets created were 1 to 5. When the sockets per

bucket were 2, the sockets created were 2, 4, 6, 8, 10. Finally, the sockets created were a

multiple of 8, that is, from 8 to 40. Each run was repeated 10 times. The results show

values averaged across the runs.
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Effect of CPU cache:

During the experiments we noted that the CPU cache affected the search time, as the

number of sockets were increased. Thus, to study the impact of caching on search time

we carried out two sets of experiments. One with caching allowed and another with the

cache invalidated. We were unable to disable the cache through the BIOS settings, hence

we invalidated the cache by updating the values in a large int array (size 500,000) , using

a for loop. This loop was called before each run in the application before invoking the

operating system API and inside the ECLAIR PO.

Analysis of Experiment 2

The experiment results are shown in Figures 5.10(a) to 5.10(d). The mean and standard

deviation values are shown in Tables 5.12 to 5.15.

1. Scenario 1 (Figure 5.10(a)): No array used; CPU caching allowed:

• setsockopt: The search time per socket decreases as the hash bucket depth

increases. This decrease can be attributed to the CPU cache.

• ECLAIR: The search time per socket increases as the socket depth increases.

This is because the RWC PO needs to travel the linked list of sockets in the

hash bucket. An increased depth means a longer linked list and hence more

time is needed by ECLAIR. The time taken by ECLAIR is approximately 7

times higher than setsockopt when the bucket depth is 8.

2. Scenario 2 (Figure 5.10(b)): No array used; CPU cache invalidated: The cache was

invalidated by processing a large array as explained above.

• setsockopt: The search time increases as compared as the bucket depth in-

creases.

• ECLAIR: The search time increases as in the earlier case. In this case the time

taken by ECLAIR is approximately 2 times the time taken by setsockopt, for

a bucket depth of 8.

3. Scenario 3 (Figure 5.10(c)): Array used; CPU caching allowed:

• setsockopt: The array cannot be used for setsockopt, since the system call

allows processing of one socket at a time. The result of scenario 1 is repeated

here, that is, search time per socket decreases as hash bucket depth increases

due to CPU cache.

• ECLAIR: The array leads to a substantial reduction in the time taken for

search per socket. This is due to the reduction in the user-kernel crossings.
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Figure 5.10: User-kernel crossing + socket search time: ECLAIR v/s setsockopt()

For example, if there are 5 sockets, then in case no array is used, the user

kernel crossing occurs 5 times. While in the case when array is used, the user

kernel crossing overhead occurs only once. The time taken by ECLAIR is

approximately 11% higher than setsockopt when the bucket depth is 1. How-

ever, the time taken by ECLAIR is approximately 71% lower when the bucket

depth is 8. This is because the user-kernel crossing occurs only once in case of

ECLAIR, since an array is used. Note that the values shown for each bucket

depth are averaged across a number of sockets. Recall that for each bucket

depth multiplying factors of 1, 2, 3, 4 and 5 are used. For example, in case of

bucket depth 1, the values are averaged across the number of sockets created,

that is, 1, 2, 3, 4 and 5. Similarly, in case the bucket depth is 2, the sockets

created are 2, 4, 6, 8, 10. It can be seen that, as the number of sockets increase,

due to the use of array the average user-kernel crossing time decreases. Hence,

overall time (user-kernel crossing + search) for a bucket depth decreases as the

bucket depth increases.



5.4. ECLAIR OVERHEAD MEASUREMENT 107

Table 5.12: Mean and standard deviation: No array used; CPU caching allowed

ECLAIR:ioctl+search setsockopt
(CPU cycles) (CPU cycles)

Sockets
per bucket X̄ σ X̄ σ

1 10655 ± 82 512 2898 ± 289 1809
2 10850 ± 62 549 2242 ± 165 1460
3 11107 ± 58 635 2032 ± 116 1262
4 11285 ± 113 1422 1918 ± 87 1090
5 11426 ± 55 776 1834 ± 70 981
6 11642 ± 51 780 1789 ± 59 910
7 11815 ± 98 1628 1753 ± 50 839
8 11823 ± 52 921 1729 ± 44 791

Table 5.13: Mean and standard deviation: No array used; CPU cache invalidated

ECLAIR:ioctl+search setsockopt
(CPU cycles) (CPU cycles)

Sockets
per bucket X̄ σ X̄ σ

1 10158 ± 86 537 4633 ± 159 996
2 10456 ± 65 577 5019 ± 93 826
3 10538 ± 58 633 5168 ± 71 773
4 10700 ± 53 667 5156 ± 56 711
5 10946 ± 124 1734 5225 ± 52 732
6 11196 ± 52 799 5268 ± 49 753
7 11315 ± 103 1718 5332 ± 93 1542
8 11525 ± 73 1290 5278 ± 38 680

4. Scenario 4 (figure 5.10(d)): Array used; CPU cache invalidated:

The scenario is similar to the previous one. However, since there is no caching, the

time taken for socket search tends to increase as compared to the case with array

and cache. In this case the time taken by ECLAIR is 14% lower than setsockopt

when the bucket depth is 1 and it is about 37% lower when the bucket depth is 8.

In case of ECLAIR, the time required increases after a depth of 5. This is probably

due to the increase in time required for traveling the socket linked list at higher

bucket depths.

Result: The above experiments show that as the number of sockets increase, by using

appropriate design (array for passing information to PO in kernel), ECLAIR architecture

shows higher savings in case of user kernel crossing. Further, as the hash bucket depth
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Table 5.14: Mean and standard deviation: Array used; CPU caching allowed

ECLAIR:ioctl+search setsockopt
(CPU cycles) (CPU cycles)

Sockets
per bucket X̄ σ X̄ σ

1 2535 ± 549 3434 2274 ± 181 1133
2 1365 ± 310 2744 2014 ± 121 1069
3 952 ± 212 2296 1824 ± 81 877
4 767 ± 168 2039 1772 ± 66 801
5 656 ± 136 1901 1738 ± 52 736
6 570 ± 112 1726 1702 ± 44 677
7 522 ± 98 1635 1685 ± 39 658
8 486 ± 88 1539 1654 ± 33 583

Table 5.15: Mean and standard deviation: Array used; CPU cache invalidated

ECLAIR:ioctl+search setsockopt
(CPU cycles) (CPU cycles)

Sockets
per bucket X̄ σ X̄ σ

1 3735 ± 424 2654 4345 ± 145 906
2 2902 ± 247 2184 4922 ± 90 801
3 2713 ± 170 1841 5092 ± 68 745
4 2712 ± 130 1630 5135 ± 61 768
5 2828 ± 106 1487 5277 ± 186 2608
6 2980 ± 94 1440 5173 ± 42 648
7 3153 ± 85 1408 5213 ± 39 649
8 3286 ± 82 1456 5254 ± 41 726

increases beyond 2, ECLAIR shows better performance irrespective of whether caching is

enabled or disabled.

5.4.5 ECLAIR Overheads Summary

The key observations from ECLAIR overhead evaluation are as follows:

• ECLAIR has negligible impact on the data path as compared to implementation of

cross layer feedback within the protocol stack

• By proper design of ECLAIR modules:

– ECLAIR’s user-kernel crossing time is minimized
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– ECLAIR’s data structure search time is:

∗ better than an operating system API when the TCP hash-bucket depth is

high

∗ comparable to using an operating system API when the TCP hash-bucket

depth is low

In this section we presented the experiments for measuring ECLAIR overheads. The

analysis in earlier sections and the experiments show that ECLAIR is an efficient and

easily maintainable cross layer architecture. However, ECLAIR has some limitations

which we present in the next section.

5.5 ECLAIR Limitations

The following are some of the limitations of ECLAIR:

• It requires modification to the stack if some data structure is not accessible (see

Chapter 3, Section 3.2).

• A Protocol Optimizer (PO) does not directly access a protocol’s data structure. A

PO uses a Tuning Layer’s (TL) API for this. A PO invokes a TL’s generic API

which in turn invokes the implementation specific API. Thus, execution overheads

are increased due to multiple function calls as compared to direct access to protocol

data structures by the PO.

• ECLAIR modules are not embedded within the existing protocol stack code. Thus,

ECLAIR cannot support per packet adaptation. This is discussed further in Chap-

ter 7. See Chapter 2, Section 2.5.1 for a discussion on adaptation types.

• It does not provide a direct solution to solve cross layer feedback conflicts and

dependency cycles [41].

• It does not provide a direct solution to ensure protocol correctness in presence of

cross layer feedback.

• ECLAIR requires super user privileges for implementation.

However, these are not major limitations. This is due to the following: (1) only minor

modifications are required to the stack to enable access to data structures. (2) The func-

tion call overheads are not significant since, they would form a small fraction of the total

overheads of the cross layer system. (3) ECLAIR does not restrict introduction of addi-

tional mechanisms for per packet adaptation. Thus other architectures can co-exist with



110 CHAPTER 5. ECLAIR EVALUATION

ECLAIR to enable per packet adaptation. (4) Issues such as impact on protocol correct-

ness, cross layer feedback conflict and dependency cycles [41] are intrinsic to cross layer

feedback. These issues would thus exist, irrespective of the architecture used. Although

ECLAIR does not provide a direct solution to these issues, its components (TLs and POs)

can be extended to address these issues. (5) Cross layer system implementers would have

access to the operating system internals and would have super users privileges. Further,

the super user constraint restricts uncontrolled cross layer modifications to the protocol

stack. Next, we discuss some security issues which could be applicable to ECLAIR.

5.6 Security Issues

ECLAIR requires super user privileges for implementation, since ECLAIR components

reside in the kernel. However, introducing these additional components may make the

kernel vulnerable to malicious attacks. Thus, kernel protection is essential. Reference [83]

provides details on how to prevent malicious code attacks launched through loadable

kernel modules. Below we present examples of the security mechanisms which may be

required.

If ECLAIR on the device allows interaction with other components in the network,

it may be possible to send data to the device with the intent of decreasing the device

performance or throughput. Thus, an authentication mechanism may be required between

ECLAIR components within the device and those on the network.

In addition, it may be possible to replace ECLAIR components with malicious compo-

nents, which may impact the device behaviour. Thus a certification or signing mechanism

may be required to ensure that only signed and certified components are installed on the

device. The details about the security mechanisms to ensure device safety is beyond the

scope of this thesis.

5.7 Summary

In this chapter we selected the performance metrics for evaluating any cross layer feedback

architecture. We identified the following metrics: (1) time overhead, space overhead, user

kernel crossing and data-path delay for efficiency (2) rapid prototyping effort (changes re-

quired to the stack and cross layer optimization for adding a new cross layer optimization),

degree of intrusion (changes required to the stack for introducing cross layer feedback) and

portability effort (changes required to the cross layer optimization for porting to another

system) for maintainability.

We compared ECLAIR with other cross layer feedback mechanisms. The comparison

highlights the efficiency and maintainability benefits of ECLAIR. We also compared the
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ECLAIR and user-space implementations of receiver window control. Our evaluation

shows the benefits of using ECLAIR for asynchronous type of protocol optimizations.

Our experimental results verify and the highlight the benefits of ECLAIR.

We present a detailed design guide for ECLAIR in Chapter 7. In the next chapter we

propose improvements to ECLAIR, which would help maximize the benefits of cross layer

feedback using ECLAIR.
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If you optimize everything, you will always be unhappy

- Donald Knuth

Chapter 6

ECLAIR Optimizations

In the earlier chapters we presented our architecture for cross layer feedback – ECLAIR.

Although ECLAIR imposes low overhead, to maximize the benefit from cross layer feed-

back a well-defined methodology is required for (a) identifying critical cross layer data

items and (b) minimizing overhead for cross layer feedback. A cross layer data item is

information that is available at a layer which can be used for cross layer feedback to other

layers. For example, bit-error-rate information at the physical layer can be considered to

be a data item.

In this chapter we present

• a method for quantifying the utility of a data item and using this to identify the

critical data items and

• a sub-architecture for cross layer feedback which complements ECLAIR.

Our method of identifying critical data items is explained in Section 6.1. It involves

evaluating the utility of a data item. This utility is determined by the efficiency im-

provement of the protocol stack. This efficiency improvement could be in measured by

the decrease in time or space overhead requirement or decrease in the data path delay.

These efficiency metrics have been identified in Chapter 5 for evaluation of cross layer

architectures. Here these metrics are used for measuring the improvement in protocol

stack efficiency. The data items with high utility are considered to be critical.

Our sub-architecture, explained in Section 6.2, proposes partitioning the set of critical

data items into two sub-sets. One of these subsets is called the core. The partitioning is

based on the cost for cross layer feedback of a data item. This cost could be the power

113
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required for reading a data item from another layer and the power required to make a

data item available to other layers. A data item is placed in core if the cost of cross layer

feedback for the data item is lower when it is placed in the core. Our sub-architecture

would aid in further increasing the benefit achieved through cross layer feedback, by

decreasing the cost of cross layer feedback of the core items.

6.1 Identifying Critical Data Items

To quantify the utility of a data item the exact saving achieved by using the data item

needs to be found. This saving could be determined either by precise models, simulations

or actual measurements. At the design stage, we believe that the estimated frequency of

use of the data item, for cross layer feedback, can serve as an indicator of its utility.

Let, di be a data item at a layer j. i is an index of the set of data items available for

cross layer feedback throughout the stack. For example, some data items are: number of

retransmissions (d1) at the link layer, application priority defined by user (see Receiver

Window Control (d2), Chapter 4) and bit-error rate information at physical layer (d3).

The total number of times, ωi, the data item is accessed by various layers, other than j,

is an indicator of the utility of the data item. Critical data items are the ones for which

ωi is high. The designer may choose to define a threshold or cutoff value for ωi. Now, if

ω3 > ω1 > ω2 then the items ordered by their criticality are d3, d1 and d2.

After the critical data items have been identified the next step is defining the sub-

architecture for cross layer feedback, within ECLAIR.

6.2 Sub-architecture for Cross Layer Feedback

The highlight of our sub-architecture is the creation of a special subset of data items from

the critical data items. We call this subset the core. A data item is placed in the core if

the cost of cross layer feedback for the data item is lower when it is placed in the core.

Figure 6.1 illustrates the concept of core.

6.2.1 Core

Let the critical set of data items available for cross layer feedback be D = {di : ωi > υ},

where υ is a threshold on utility for identifying the critical data items.

Costs related to a data item di:

Let,
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Figure 6.1: ECLAIR with Core

• the cost of writing the data item into the core:

φ′

i = cw × ω′

i (6.1)

where,

cw = cost of a single write of the value of the data item into the core. Assumed to

be constant for all data items

ω′

i = estimated frequency of writing the value of the data item into the core

• the cost of reading a data item from the core:

φi = cr × ωi (6.2)

where,

cr = cost of a single read of the data item if it is in core. Assumed constant for all

data items

ωi = sum of estimated frequency of access of the data item by all layers, other than

the layer generating the data item value.

• c̄r = cost of a single read of the data item if it is not in core. Assumed constant for

all data items

Def. 6.2.1 (Core Interaction Cost (CIC)) CIC (Υi) of a data item di is defined as

sum of the cost of writing and reading the data item from the core. From equations (6.1)

and (6.2)

Υi = φ′

i + φi (6.3)

The total cost of core Ψ of core C is the sum CIC of all elements in C

Ψ =
∑

Υi for all di ∈ C (6.4)
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Similarly, the total utility of core Θ is the sum of the utilities of all the data items in

C

Θ =
∑

ωi for all di ∈ C (6.5)

Next, it is to be decided whether an item is suitable for the core or not. For this, the

efficiency improvement obtained by putting an item in core needs to be evaluated.

Def. 6.2.2 (Core Potential Score (CPS)) CPS (κi) of a data item di is defined as

the increase in efficiency by placing the item in core.

κi = (c̄r × ωi) − Υi (6.6)

An item di is suitable for the core C only if κi > 0.

Rearranging the terms of equation (6.6) and from equations (6.1), (6.2), (6.3), we get

κi > 0, if and only if

1 −
cr

c̄r

−
cw

c̄r

×
ω′

i

ωi

> 0 (6.7)

Since all the terms in equation (6.7) are positive, it can be seen that:

1. If cr ≥ c̄r then κi < 0 i.e. the data item is not suitable for core

2. If cr ≪ c̄r, cw ≪ c̄r and ω′

i ≪ ωi then κi ≫ 0 i.e. the data item is most suitable for

core

3. If cr ≪ c̄r, cw ≪ c̄r and ω′

i ≈ ωi then κi > 0

4. If cr ≪ c̄r, cw ≈ c̄r and ω′

i ≪ ωi then κi > 0

In the above two cases also the data item is suitable for the core

5. If cr ≪ c̄r, cw ≈ c̄r and ω′

i ≈ ωi then κi ≈ 0 i.e. the data item is not suitable for

core.

6.2.2 Algorithm for Selecting the Elements for Core

Initially C is empty.

Let τ be some threshold for the core. The ordering of the data items ensures that

first the high utility data items are picked for the core. The algorithm is presented in

Figure 6.2.
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1.
Sort the elements in D based on their CPS’ i.e. the element(s)
with the maximum saving is first in the set. Let, D

′ be the
sorted set of data items.
2.
{Check each element}
for all di ∈ D

′ do
{Check net utility if item in core}
if Θ − Ψ < τ then

C = C ∪ {di}
else

break
end if

end for

Figure 6.2: Core algorithm

6.3 Example Usage Scenario

In this section we show the use of our sub-architecture, (Section 6.2) through an example.

We use an example, since the exact costs for read and write for data items outside core

or within core cannot be readily determined. Further, the actual data items can be deter-

mined after working with an actual system. In light of this, implementing functionality

of core within the ECLAIR prototype is beyond the the scope of this thesis. We assume

certain cross layer feedback items (see [65] for a survey on cross layer feedback).

Our example assumes the following c̄r = 1, cr = 0.5, cw = 0.5.

Cross layer data items:

For the sake of simplicity, we consider only four data items:

• d1 = Retransmission information at link layer

• d2 = Losses acceptable to an application (application layer)

• d3 = User defined application priority (see Receiver Window Control in chapter 4,

Section 4.1)

• d4 = Wireless channel bit-error rate

Next, we assume some frequency of write and access for the data items.

• d1: Write frequency ω′

1
= 50 per second. The layers that could use this information

are (1) TCP, for adapting its retransmission timeout value and (2) application layer

to get an estimate of the channel condition and adapt its sending rate. We assume

TCP uses this 10 times per sec, while the application uses this information once per

second. Thus, ω1 = 10 + 1 = 11 per second.
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• d2: Write frequency: ω′

2
= 1/600 per second (i.e. application may change its

requirements once in ten minutes). The layers that may read this information

are link layer and IP layer. Link layer could use this information to adapt its error

control mechanisms according to application requirements and channel conditions.

IP layer would read this information to determine the interface on which to send

the packets. We assume that link layer reads this information 50 times per sec and

IP layer reads this information 10 times per second. Thus ω2 = 50 + 10 = 60 per

second.

• d3: Write frequency: ω′

3
= 1/600 per second (i.e. user may update application

priority once in ten minutes). This information may be used by RWC (see chapter

4, Section 4.1) to manipulate the receiver window for current applications. We

assume that RWC reads this once every ten minutes. Thus ω3 = 1/600 per second.

• d4: Write frequency: ω′

4
= 10 per second (bit-error information from physical layer).

MAC, IP, TCP, and application layers may read this information for adaptation.

We assume each reads this information 10 times per second. Thus ω4 = 40 per

second.

Based on ωi the critical data items can be determined. If the cut-off for ωi was 10,

then d1, d2 and d4 would be the critical data items.

Core:

Using this information and the equations (6.1),(6.2),(6.6) we get:

κ1 = 11 × 1 − (50 × 0.5 + 11 × 0.5) = −19.5

κ2 = 60 × 1 − ( 1

600
× 0.5 + 60 × 0.5) ≈ 30

κ4 = 40 × 1 − (10 × 0.5 + 40 × 0.5) = 15

From the values of κi we can see that d1 is not suitable for the core since κ1 < 0.

Using the core algorithm in Figure 6.2, if τ = 35 then d2 will be in the core.

6.4 Summary

In this chapter we presented a method to identify data items which are useful for cross

layer feedback. We also presented our sub-architecture which complements ECLAIR for

an efficient implementation of cross layer feedback. This sub-architecture is general and

not tied to any specific layer to layer interaction.

The sub-architecture uses information like benefit of using a data item for cross layer

feedback, system specific costs for implementing cross layer feedback, and estimated usage

frequency of a data item to suggest an efficient implementation strategy. Through a

example usage scenario we discussed the use of our sub-architecture.



6.4. SUMMARY 119

6.4.1 Limitations of Core Optimization Approach

The sub-architecture proposed in this chapter assumes that costs and frequencies for a

data item i are known. It is assumed that the following are known: c̄r – cost of single read

of a data item if it is not in core, cr – cost of single read of the data item if it is in core, cw

– cost of single write to the data item into the core, ω′

i – estimated frequency of writing

to the data item in core and ωi – sum of estimated frequency of access of the data item

by all layers. We are not aware of a technique of finding these costs for a device on which

cross layer feedback is to be implemented. Further, we have assumed that the costs are

identical for each data item. This assumption may not hold in a real system. However,

determining the exact costs is beyond the scope of this thesis and does not impact the

sub-architecture design.
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To err is human, to forgive design

- Andrew Dillon

Chapter 7

Cross Layer Design and Implementation

Guide

In this chapter we present an implementation guide for cross layer optimizations. We

first discuss the types of cross layer feedback. We present a guideline for selecting the

right architecture based on the type of cross layer feedback. We also provide guidelines

for cross layer feedback implementation using ECLAIR.

7.1 Selecting Cross Layer Architecture

To ensure correct and efficient cross layer feedback, architecture selection should be based

on the type of cross layer feedback. Recall from Chapter 2, Section 2.5.1 that the two

different types of protocol adaptations are asynchronous – adaptation occurs in parallel

to protocol execution and synchronous – protocol execution proceeds after adaptation.

Further, the adaptation required could be per flow – separate adaptation for each flow,

across flows – common adaptation for all flows or per packet – protocol adaptation for

each packet.

Per flow and across flows cross layer feedback can be done in asynchronous or syn-

chronous manner depending on the optimization requirements. However, per packet is

essentially synchronous, since adaptation needs to be done as the packet is being pro-

cessed.
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7.1.1 Architecture Selection Criterion: Feedback Type

We believe that the primary criterion for selecting a cross layer feedback architecture is

the sync-type (asynchronous or synchronous) of adaptation. Incorrect selection would

lead to an impact on the correctness and efficiency.

Impact on correctness

The cross layer feedback behavior would be incorrect, if an architecture suitable for asyn-

chronous adaptation is used for synchronous adaptation. For example, cross layer feedback

adaptation which is to be triggered by information contained in each packet would fail if

an asynchronous architecture like ECLAIR is used.

For per packet (synchronous) cross layer feedback, ISP [81] or CLASS [79] are better

candidates (see Chapter 4 for comparison of the various architectures), since both these

architectures enable direct interaction between layers and the cross layer algorithm is

executed every time the layer code is executed. This is shown in Figure 7.1(a). However,
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Figure 7.1: Cross layer feedback per packet1

in case of ECLAIR, the cross layer algorithm is outside the protocol stack and hence cannot

be invoked synchronously for each packet. To use ECLAIR for per packet adaptation, the

data path would have to be modified. This is shown in Figure 7.1(b). The figure notation

was described earlier in Chapter 5, Section 5.3.1. Recall that, for a protocol, its set of

1Refer to Chapter 5, Figure 5.1 for figure notation details
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algorithms (A) is denoted by a circle, control data structure (cds) is denoted by a rectangle

with rounded corners, protocol data structure (pds) is denoted by an open rectangle with

sharp corners, and for the stack the data path is denoted by a solid line between algorithms

at adjacent layers. Aclf denotes the cross layer optimization algorithms.

Impact on efficiency

As an example, we consider Receiver Window Control (RWC) explained earlier (Sec-

tion 4.1). In this case, the primary requirement is to apportion application bandwidth

such that the bandwidth of each application is in proportion to the user defined priority. It

is not essential to tune application bandwidth synchronously. For example, reference [54]

proposes tuning application bandwidth with each read() of an application. Figure 7.2(a)

shows the implementation of per and across flows cross layer feedback using a synchronous

architecture. Figure 5.2(a) (Chapter 5) shows the implementation specific to RWC (see

Chapter 5, Section 5.3.1 for the cross layer notation). Thus, a synchronous architecture

such as user-space [54] or ISP [81] would lead to reduction in application throughput (see

Chapter 5, Section 5.2 for a comparison of various architectures). However, if an asyn-

chronous architecture, such as ECLAIR is used (Figure 5.2(b)), then the data path delay

and hence application throughput is not reduced. Figures 7.2(b)– 7.2(c) show per and

across flows cross layer feedback using ECLAIR. As can be seen above, the cross layer

feedback implementation would be inefficient if the architecture is not selected as per the

sync-type.

Above, we discussed the impact of architecture selection on correctness and efficiency

of cross layer feedback. Next, we discuss architecture selection based on cross layer im-

plementation requirements.

7.1.2 Architecture Selection Criterion: Implementation Require-

ments

Another important criterion for architecture selection is the implementation requirements.

The cross layer architecture evaluation metrics (Chapter 5, Section 5.1), that is, efficiency

and maintainability metrics are useful for this.

Metric Weightage: Since there are multiple metrics, weights could be used to help

prioritize the metrics. These weights are multiplied with the ranks shown in Table 5.7

(Chapter 5). The sum of the weighted ranks is used to select the appropriate architecture.

Example: We compare the architectures PMI [34], MobileMan [21] and ECLAIR, in

tables 7.1 and 7.2. In the first example, the weights are assigned assuming that efficiency

is more important that maintainability. The weighted rank of PMI is 79, for MobileMan it

is 72 and that of ECLAIR is 74. For the given weights, MobileMan is a better option. This
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Figure 7.2: Cross layer feedback per flow/across flows2

2Refer to Chapter 5, Figure 5.1 for figure notation details
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is shown in Table 7.1. However, as shown in Table 7.2, if the weightage of maintainability

is also increased (weight of portability and degree of intrusion is increased to 3 each),

then the weighted rank of PMI is 82, for MobileMan it is 79, while that of ECLAIR is 77.

With the new weights, ECLAIR is a better option.

Table 7.1: Architecture Selection: Weighted Rank - Example 1
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Time overhead 8 4 32 2 16 3 24
Efficiency Space overhead 7 3 21 2 14 4 28

User-kernel crossing 4 3 12 2 8 2 8
Data path delay 4 1 4 3 12 1 4
Rapid prototyping 2 2 4 4 8 2 4

Maintain- Degree of intrusion 2 1 2 4 8 2 4
ability Portability 2 2 4 3 6 1 2

Weighted Rank – – 79 – 72 – 74

Table 7.2: Architecture Selection: Weighted Rank - Example 2
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Time overhead 8 4 32 2 16 3 24
Efficiency Space overhead 7 3 21 2 14 4 28

User-kernel crossing 4 3 12 2 8 2 8
Data path delay 4 1 4 3 12 1 4
Rapid prototyping 2 2 4 4 8 2 4

Maintain- Degree of intrusion 3 1 3 4 12 2 6
ability Portability 3 2 6 3 9 1 3

Weighted Rank – – 82 – 79 – 77

ECLAIR suitability for Cross Layer Feedback

The above analysis shows that the appropriateness of an architecture is dependent on the

priority of the design goals, which can be translated to the metric weights. ECLAIR is

suitable when a balance of efficiency and maintainability is required.
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In the following sections we present an implementation guide for ECLAIR. Since

ECLAIR is suitable for asynchronous type of adaptation, we restrict the discussion to

asynchronous adaptation.

7.2 ECLAIR Design Guide

In this section we present some design guidelines for cross layer implementation using

ECLAIR. Cross layer feedback implementations may have single or multiple optimizations.

Accordingly, appropriate trade-offs are required between the design goals.

7.2.1 Single Cross Layer Optimization

In ECLAIR, separating the Protocol Optimizers and Tuning Layers into a separate cross

layer system, outside the stack, introduces the overhead of additional function calls.

Hence, in case only a single cross layer optimization is planned and the cross layer system

is not to be ported / deployed on multiple operating systems then it is better to combine

and incorporate the protocol optimizer (PO) and tuning layers (TLs) within the existing

stack itself. This would reduce the overhead of multiple calls between PO and TL and

hence would increase the efficiency of the implementation. However, this would negatively

impact the other cross layer architecture design goals, that is, rapid prototyping, portabil-

ity and minimum intrusion. Hence, if additional cross layer feedback optimizations are to

be introduced later, OSS/PO and TL should be implemented as separate modules. This

is to avoid the maintainability and portability issues later.

7.2.2 Multiple Cross Layer Optimizations

In case of multiple asynchronous type of cross layer optimizations, POs and TLs should

be implemented as indicated in the ECLAIR architecture. This would help achieve the

design goals (Chapter 2). The use of TLs and OSS/POs helps ensure rapid prototyping,

minimum intrusion, portability, efficiency and any to any layer communication.

If multiple cross layer optimizations or POs directly access the layers, then the depen-

dency of the POs is high on the layer’s code. Any change to the layer code will lead to

a change in all the POs interacting with that layer. Reducing such dependency is useful

for ease of maintenance and evolution of the cross layer system. Introduction of a tuning

layer, leads to reduction in the coupling between the layer code and POs. Further, core

should be introduced for reducing the cross layer overheads.

ECLAIR also enables cross layer optimization deployments on mobile devices which

have a separate modem. For example, for a laptop which uses a modem for wireless access,
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the TLs of MAC and physical layers can be deployed on the modem. These TLs interact

with the OSS/POs on the laptop.

7.2.3 Enabling per Flow Adaptation in ECLAIR

In ECLAIR, their is no specific mechanism to enable per flow cross layer feedback. For per

flow cross layer feedback, the ECLAIR TL needs to locate the flow that is to be monitored

and adapted. For example, in case of TCP at transport layer, the socket identifier (sender

port, address and destination port, address) can be used.

7.2.4 Handling Dependency Cycles and Conflicts

A TL does not have any specific components for handling certain issues which are intrinsic

to cross layer feedback. For example, dependency cycles and feedback conflict [41] are not

handled by any specific component within ECLAIR. Defining such a component is beyond

the scope of ECLAIR. However, ECLAIR components can be used or extended to handle

such cross layer feedback problems.

Dependency cycles: Cross layer feedback can lead to adaptation loops involving mul-

tiple protocols [41]. Kawadia and Kumar [41] propose creation of dependency graphs for

the entire stack. This dependency graph can be used to handle the cross layer feedback

cycles. In ECLAIR, a PO registers with multiple TLs. A new PO can be created that

registers with all the TLs. This PO can collect information from all TLs and create a de-

pendency graph. If cycles are detected, then appropriate TL’s behavior could be changed

using this PO. Details about the exact action on detecting dependency cycles is beyond

the scope of this thesis.

Cross layer feedback conflict: Cross layer conflict [41] occurs when two or more POs

try to update the same data item. A TL can ensure that updates to a data item are

spaced out by some time interval.

7.2.5 Filtering Events at TL

A TL monitors the control data structures of a protocol for changes. A change in the

value of a data structure is an event which is delivered to a PO. However, raw information

about the value of the data structure may not be useful for a PO. Thus, a mapping must

be defined for the information about events.This reduces the granularity of event data.

For example, the bit error rate information may be mapped to some pre-defined levels. A

level would contain a range of values. An event occurs when the bit-error rate changes to

a different level. This level is sent to the PO within the event notification.
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7.2.6 Event Queues for POs

Events which are delivered asynchronously to the PO should be stored in priority queues,

by the POs. This would enable a PO to address high priority events first. For example,

disconnection event may be of higher priority than other events. This event priority could

be defined at a system level.

Before processing an event, a PO may scan the queue to determine protocol adaptation

based on the one or more events in the queue. The events which have been processed are

removed from the queue. This could result in reduced execution overheads in case multiple

events occur in a short time. However, queue scanning would increase the execution

overhead.

In this section we presented some design guidelines for ECLAIR. In the next section

we present some implementation guidelines for ECLAIR.

7.3 ECLAIR Implementation Guide

Kernel module background: A kernel module is a binary which can be used to extend

kernel functionality. The module can be compiled separately and loaded into or unloaded

from the kernel at run-time without the need for rebooting the system. A loaded kernel

module can access the kernel data structures like any other part of the kernel.

7.3.1 Tuning Layer Implementation

A TL can be developed as a separate kernel module or built into the kernel. In either

of the cases, TL functions which need to be accessed by POs should be exported (see

Chapter 3, Section 3.2).

TL as loadable kernel module: This is possible if the required control data structures

of the protocol are accessible (see Chapter 3, Section 3.2) without any modification to the

existing protocol implementation code. Then the protocol data structures can be read or

updated by the TL after loading.

TL built into the kernel: In case the TL is built into the kernel, control data structures

of a protocol can be made accessible by following appropriate rules of the C programming

language [42]. In this case, the TL should be compiled with appropriate modules in the

kernel. For example, TCP TL should be compiled with the network modules. This is to

ensure that the TL has access to the protocol data structures.



7.3. ECLAIR IMPLEMENTATION GUIDE 129

7.3.2 Protocol Optimizer Implementation

Similar to a TL, a PO also can be built into the kernel or developed as a separate

module. TLs and POs in user-space are application programs. Each PO and TL can be

implemented as a separate module. This provides the flexibility of loading and unloading

individual modules as required. However, this increases the function call overheads, if

a module calls a function in another module. To reduce the function call overheads, an

alternative is to combine related modules into a single module.

7.3.3 Event Notification within the Kernel

For event notification from TL to PO one of the following mechanisms could be used.

These mechanisms are for intra-kernel communication.

Synchronous event delivery – Notifier chains:

Notifier chain is a linux kernel mechanism for event communication to interested kernel

components. The chain is a linked list of notifier blocks. A interested component registers

its call back function, through a notifier block, with the component(notifier) that imple-

ments the notifier chain. When an event occurs, the notifier traverses the notifier chain

and invokes the callback function in each notifier block, thus passing the event notification

to interested components.

Asynchronous event delivery – Shared data structures:

A set of data structures can be created which is shared between the TLs and POs. One

example is a queue. As compared to notifier chains, the PO may need to poll the data

structure. Further, race conditions and reader/writer problems would need to be handled

for message queues. Also, a mechanism will be needed for deleting events which have

been processed by all the POs. In case of notifier chains, the order of execution of POs

is determined by the order within the notifier chain. In case of common data structures,

the order is determined by the order in which the POs access the common data structure.

7.3.4 Interaction Across User-Kernel Space

System calls:

System calls are the APIs provided by an operating system to applications in user-space,

for example getsockopt() and setsockopt(). However, the existing system calls enable

interaction only with certain components of the operating system. They cannot be used

for interaction with new components added, for example a loadable kernel module. In-

teraction with new components is possible by modifying the implementation of existing

system calls or introducing new system calls.

Character device drivers with ioctl:

ioctl() is also a system call provided by the operating system. The purpose of ioctl is
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to enable manipulation of the parameters of special files such as device drivers [23]. This

system call can also be used for interaction with kernel modules. In this case, the kernel

module needs to be implemented as a character device driver. Applications in user-space

can interact with such a module using ioctl.

Event notification to applications:

/proc in Linux:

The proc file system is special file system in Linux. It allows creation of virtual files,

for example, /proc/tcp. Applications can read event information from this /proc file.

However, the information is available only as a string. Further, special functions need to

be defined to be defined by a TL to allow an application to read from the /proc file. Also,

the event information has to be polled by the application.

netlink sockets:

An overview of netlink and its benefits is provided in references [95, 98]. Netlink socket is a

mechanism which enables two-way asynchronous communication between user and kernel-

space. In contrast, ioctl and system calls enable one way (user to kernel) synchronous

communication between user and kernel space. In ioctl and system calls, kernel to user-

space is possible only when the application invokes the call and the kernel returns data

in a variable. Through netlink sockets, however, a kernel component can initiate event

delivery to an application, without an application invocation first. As compared to system

calls, adding a new protocol type or a new constant for netlink sockets is relatively simple.

Another advantage of netlink sockets is that it supports multicast [98]. This is useful when

the kernel needs to send an event notification to multiple applications. Some performance

results for netlink sockets and a benchmark tool is available at reference [4].

7.4 Summary

ECLAIR should be used if the cross layer sync-type is asynchronous. Further, POs and

TLs should be implemented, as proposed in ECLAIR, if multiple cross layer optimizations

are to be implemented or if the cross layer system is to be ported to multiple operating

systems. Core should be introduced to reduce the cross layer overheads.

The TL or PO can be implemented as separate modules or as a part of the kernel.

Kernel modules have the flexibility of being loaded/unloaded during runtime, without the

need for rebooting the system.

Event notification from TL to PO can be done synchronously using callback functions

or asynchronously using a queue data structure. Netlink sockets provide a mechanism

for two-way asynchronous communication between user and kernel space. Netlink sockets

also support event information multicast from kernel to user-space.
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Chapter 8

Summary and Conclusions

In this thesis, we addressed the need for a systematic approach to cross layer feedback.

Cross layer feedback is essential for improving the performance of layered protocol stacks

deployed over mobile wireless networks. For example, network layer feedback about dis-

connections can be used to adapt and improve the performance of TCP congestion control

algorithm. Cross layer feedback can be implemented on the mobile host or an interme-

diate host, such as the base station. The focus of this thesis is on cross layer feedback

within the mobile host.

We surveyed various proposals for cross layer feedback and highlighted the benefit

of cross layer feedback. We also analyzed various cross layer feedback implementation

approaches – such as PMI [34], ICMP Messages [73], MobileMan [21], CLASS [79], ISP [81]

and user-space implementation [54]. We defined design goals for a cross layer feedback

architecture, based on our analysis of existing approaches to cross layer feedback. We

defined an architecture ECLAIR which satisfies these design goals. Through analysis

and measurements we showed that ECLAIR is a low overhead architecture and aids

maintainability. Below we list the contributions of this thesis.

8.1 Thesis Contributions

• We defined the design goals for a cross layer feedback architecture. The design

goals are: efficiency, rapid prototyping, minimum intrusion, portability and any-to-

any layer communication.

131
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• We defined a cross layer architecture ECLAIR, which addresses the above design

goals. ECLAIR provides a Tuning Layer for accessing the control data structures

of each protocol. Protocol Optimizers contain the cross layer feedback algorithms.

They use the APIs of a TL to monitor and adapt a protocol.

We observed that adaptation of a protocol on receipt of cross layer feedback can be

asynchronous or synchronous. ECLAIR supports asynchronous adaptations since

its modules are not embedded within the protocol stack.

• We implemented a prototype of Receiver Window Control (RWC) [54, 66] on a

Linux 2.4.19 kernel, to validate ECLAIR. We validated the ECLAIR implementation

through experiments over Ethernet and 802.11 wireless LAN. We compared the

results with RWC simulations in ns-2 [57].

• We defined metrics to evaluate cross layer architectures against the design goals. We

used these metrics to qualitatively and quantitatively compare ECLAIR with exist-

ing approaches to cross layer feedback implementation. We also defined a notation

to enable easy understanding of cross layer feedback implementations.

Our analysis shows that ECLAIR is useful when a balance of efficiency and main-

tainability is required.

• We measured the overheads of ECLAIR, using the RWC prototype implementation

and profiling tools such as MAGNET [28, 103]. Our results show that ECLAIR’s

impact on data path is negligible as compared to architectures which require mod-

ification to the protocol stack. Further, by proper design ECLAIR’s user-kernel

crossing and data structure search time can be lower than that for user-space im-

plementations which use operating system APIs.

• We proposed a sub-architecture core which can be used to select cross layer data

items offering high benefit. Core helps to further reduce ECLAIR overheads.

• We also presented a cross layer design guide. We showed that an architecture’s suit-

ability is dependent on the cross layer deployment requirements. Incorrect selection

can impact the correctness and efficiency. For example, if ECLAIR is used for a

case where synchronous adaptation is required, then the cross layer behavior would

be incorrect. Further, the stack efficiency will decrease if a synchronous architec-

ture is used where an asynchronous adaptation is required. We presented a simple

technique for selecting the appropriate cross layer architecture in line with the im-

plementation requirements. We also presented some design and implementation tips

for cross layer feedback implementation on a Linux system.
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8.2 ECLAIR Application

Mobile device manufacturers regularly improve their devices for enhancing user experi-

ence. Enhancements to the mobile device’s protocol stack is also one of the improvements.

The protocol stack improvement is aimed at enhanced user experience while on data net-

works. Besides other optimizations, enabling cross layer feedback within the protocol

stack would improve the user experience. For example, as discussed in earlier chapters,

battery life could be improved, or download speeds could be improved.

ECLAIR can be used by manufacturers of mobile devices such as mobile phones,

PDAs, laptops, etc. to enable cross layer feedback within the device protocol stack.

ECLAIR would enable cross layer feedback implementation with minimal modifications to

the existing stack. Also, ECLAIR can be used by mobile device manufacturers for rapid

prototyping of cross layer feedback protocol optimizations. ECLAIR implementation

could be done in hardware or software, as per the requirements of the device manufacturer.

The ECLAIR prototype has been developed on Linux, using certain features of Linux,

such as kernel modules. Further, the ECLAIR prototype was developed primarily for the

purpose of ECLAIR validation and performance measurement. Hence, the prototype does

not check for all the constraints or restrictions imposed by Linux. For other operating

systems, some other constraints, restrictions and checks may apply. In addition, the pro-

totype does not fully check or protect against cross layer feedback conflicts or dependency

cycles. Thus, ECLAIR may require further detailing before being deployed on commercial

systems.

8.3 Future Work

In this section, we present an overview of avenues for further research and how work done

in this thesis could be extended.

Improve synchronous cross layer feedback efficiency

We observed that cross layer feedback can be asynchronous or synchronous. We discussed

the types of adaptations in Chapter 2. An example of synchronous feedback is adaptation

by a protocol for each packet. This type of adaptation decreases the protocol stack execu-

tion speed. ECLAIR does not support synchronous adaptation. However, ECLAIR could

be used for synchronous adaptation provided it can be synchronized with the protocol

stack execution. Another option is modifying the data path of the protocol stack to make

it pass through ECLAIR. For example, TCP’s tcp send function could be replaced by a

new function within ECLAIR PO, which incorporates per packet cross layer adaptation.

However, this will require modifications to the protocol stack. In addition, this would lead
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to increased data path delay, since per packet adaptation is introduced within the data

path. Addition of this component with minimal modifications to the protocol stack, and

ensuring that it imposes minimal execution overheads, are an open research questions.

Further, besides ECLAIR, the other architectures which support synchronous adap-

tation introduce data path delay and hence impact the stack efficiency. It would be in-

teresting to further analyze this and determine optimizations that can be used to reduce

the data path delay.

Enhancement of ECLAIR sub-architecture

Any implementation of cross layer feedback will impose some overheads on the system.

To minimize these overheads, we have proposed a preliminary method for selection of high

utility cross layer data items. These data items are placed together in a sub-system called

core, to minimize the cross layer feedback overheads of these data items. For this thesis,

we assumed that the collective frequency of access of a data item, by the various layers,

is a measure of its utility. Further, we assumed that the read (or write) costs for all data

items are similar. For implementation on actual devices, it is essential to develop proper

models for determining the utility of a cross layer data item. Further, the exact read and

write costs need to be determined for the device on which cross layer feedback is to be

implemented. This will help in identifying appropriate cross layer feedback data items,

and minimizing the cross layer feedback costs.

ECLAIR for base station and other network nodes

We proposed ECLAIR – an architecture for mobile device protocol stacks. The design

goals defined were also for a cross layer architecture on a mobile device. However, ECLAIR

could be extended for use on base station, routers and other network nodes. This would

require addition or changes to the design goals and accordingly extensions to ECLAIR.

As discussed earlier in Chapter 1, cross layer adaptations at a base station would need

to be suited to each device connected to the base station. Thus, some of the important

requirements would be: support for a large number of connections, facility to identify

connections from the same device and support for efficient interaction with the mobile

device – to enable information exchange with it. For addressing these requirements,

ECLAIR would need to be suitably extended. For example, for supporting large number

of connections, the architecture would require a facility for creation of additional Tuning

Layers and Protocol Optimizers as the connections grow. Also, an additional device

component would be needed for information exchange with each devices. Lastly, Protocol

Optimizers would need to interface with this device component to determine adaptations

specific for each device.
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ECLAIR for Seamless mobility

Seamless mobility requires feedback between protocols at the same layer. For example,

when moving from a wireless local area network to a wireless wide area network, feedback

would be required between 802.11 MAC and GPRS MAC. ECLAIR provides Tuning

Layers (TL) for each protocol. In Chapter 3, Section 3.4, we presented an example of

seamless mobility using ECLAIR. However, some extensions would be required to enable

ECLAIR to provide information to the network entities, to support seamless mobility.

ECLAIR provides a user TL which can be used for interaction with external entities.

An additional network node component may be needed that interacts with the network

nodes. This component would send device status and other information to the network

nodes and receive information from them. The seamless mobility PO can now use this

network information for adapting the device protocol stack. Details of the network node

component, issues related to efficient information exchange with the network entities and

issues related to simultaneous tuning of multiple protocols on the device, are open research

questions.

Extending ECLAIR to resolve cross layer conflict and dependency cycles

ECLAIR is an architecture for implementing cross layer feedback. There are certain issues,

such as cross layer feedback conflict and dependency cycles [41], which are intrinsic to

cross layer feedback.

Cross layer feedback involves modifying the behavior of the existing protocols, for

example, modifying TCP’s retransmit timer to change its retransmit behavior. However,

there could be a conflict as multiple POs, besides TCP itself, may want to change the

value of TCP’s retransmit timer. It is important to determine which one of the writes

to a protocol’s control data structure is correct at a point in time. Further, cross layer

feedback can lead to adaptation loops involving multiple protocols [41]. A mechanism is

required to trap and resolve such cross layer feedback conflicts and cycles.

ECLAIR does not provide a direct solution to these cross layer issues. However,

ECLAIR provides the components which can be used to solve these issues. An overview

was provided in Chapter 7 as to how ECLAIR components can be used to handle these

issues. We had stated that a PO can be created that collects information from all TLs

and detects cycles. This PO can be used to modify behavior of certain TLs. The existing

TLs do not have any provision for behavior modification through a PO. The TLs can be

extended to support this. Further, for conflicts we stated that a TL can detect conflicts

and introduce time delays for updates to a protocol through POs. This too needs addi-

tional research. For example, a protocol itself may also update its data structures. The

TL should be able to detect this also. Also, in this context it needs to be determined
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whether TLs should immediately update protocol data structures or delay the update and

combine the update of multiple POs.

The list, above, of open research issues is not exhaustive. There could be other issues

related to cross layer feedback architecture, which have not been discussed above and

need further research.



Appendix I

Additional Tuning Layer APIs are listed below. Please see Chapter 3 for rest of the APIs.

Socket identifier is the 4-tuple – source address and port, destination address and port.

I-1 TCP TL APIs

•Name: get rtt()

Input Parameters: socket identifier

Returns: Round Trip Time of a flow (Number) | Return Code (Number)

Description: Locates the socket and returns the round trip time

•Name: get retx timer()

Input Parameters: socket identifier

Returns: Value of flow’s retransmit timer (Number) | Return Code (Num-

ber)

Description: Locates socket and returns the retransmission timer value

•Name: set rtt()

Input Parameters: Socket identifier, value of rtt (Number)

Returns: Return Code (Number)

Description: Locates socket and updates the round trip time

•Name: set retx timer()

Input Parameters: Socket identifier, retransmit timer value (Number)

Returns: Return Code (Number)

Description: Locates socket and updates retransmit timer value

•Name: cancel retx timer()

Input Parameters: [ Socket identifier ]

Returns: Return Code (Number)

137



138 CHAPTER 8. SUMMARY AND CONCLUSIONS

Description: Locates socket(s) and cancels the retransmit timer. If no socket

identifier is specified then the timers of all the TCP flows are

canceled.

•Name: enable retx timer()

Input Parameters: [ Socket identifier ], timer value (Number)

Returns: Return Code (Number)

Description: Locates socket(s) and restarts the retransmit timer, with the

specified value. If no socket identifier is specified then the timers

of all the TCP flows are restarted with the specified value.

I-2 Mobile-IP TL APIs

•Name: get solicitation timer()

Input Parameters: –

Returns: Timer (Number) | Return Code (Number)

Description: Returns the solicitation timer

•Name: get current solicitations()

Input Parameters: –

Returns: Solicitations (Number) | Return Code (Number)

Description: Returns the number of solicitations sent

•Name: get max solicitation interval()

Input Parameters: –

Returns: Max interval (Number) | Return Code (Number)

Description: Returns the maximum solicitation interval

•Name: set solicitation timer()

Input Parameters: Timer (Number)

Returns: Return Code (Number)

Description: Updates the solicitation timer

•Name: set current solicitations()

Input Parameters: Solicitations (Number)

Returns: Return Code (Number)

Description: Updates the number of solicitations sent

•Name: set max solicitation interval()
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Input Parameters: Max interval (Number)

Returns: Return Code (Number)

Description: Updates the maximum solicitation interval

I-3 802.11 MAC TL APIs

•Name: get fragmentation threshold()

Input Parameters: –

Returns: Current fragmentation threshold (Number) | Return Code

(Number)

Description: Returns current packet fragmentation threshold

•Name: set fragmentation threshold()

Input Parameters: Fragmentation threshold (Number)

Returns: Return Code (Number)

Description: Sets packet fragmentation threshold

•Name: get round trip time()

Input Parameters: –

Returns: Round trip time (Number) | Return Code (Number)

Description: Returns round trip time to next hop

•Name: get signal strength()

Input Parameters: –

Returns: Received Signal Strength (Number) | Return Code (Number)

Description: Returns current received signal strength

•Name: get recv queue status()

Input Parameters: –

Returns: Receive queue status (Number) | Return Code (Number)

Description: Returns the % of queue filled, of the current interface

•Name: get send queue status()

Input Parameters: –

Returns: Send queue status | Error (Number)

Description: Returns the % of queue filled, of the current interface
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•Name: get current bandwidth()

Input Parameters: –

Returns: Bandwidth (Number) | Error (Number)

Description: Returns the bandwidth of current interface

•Name: get packet errors()

Input Parameters: –

Returns: Received packet errors (Number) | Return Code (Number)

Description: Returns number of packets received with error

I-4 802.11 Phy TL APIs

•Name: get bit errors()

Input Parameters: –

Returns: Current bit error rate i.e. bits per 105 (Number) | Return Code

(Number)

Description: Returns the current bit error rate

•Name: get channel()

Input Parameters: –

Returns: Current channel (Number) | Return Code (Number)

Description: Returns currently selected channel for transmission

•Name: set channel()

Input Parameters: Transmit channel (Number)

Returns: Return Code (Number)

Description: Sets the transmission channel

•Name: get sensitivity threshold()

Input Parameters: –

Returns: Sensitivity Threshold (Number) | Return Code (Number)

Description: Returns the sensitivity threshold

•Name: set sensitivity threshold()

Input Parameters: Sensitivity Threshold (Number)

Returns: Return Code (Number)

Description: Updates the sensitivity threshold



I-4. 802.11 PHY TL APIS 141

•Name: get noise level()

Input Parameters: –

Returns: Noise level (Number) | Return Code (Number)

Description: Returns the current noise level
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