Automated Testing Tool For UML Behavioral
Descriptions

Guntapudi V Ramanaiah
M.Tech., School Of Information Technology
IIT Bombay

March 25, 2000

Acknowledgment

I would like to thank my guides, Prof. S. Ramesh and Prof. Sridhar Iyer
for their invaluable guidance and encouragement which has been always source
of inspiration for me.

Guntapudi V Ramanaiah

IIT Bombay

January 8, 2001

Department of Kanwal Rekhi School Of Information Technology
Indian Institute of Technology

Bombay

Abstract

The increasing complexity of safety-critical software systems and the costs
associated with software ”failure” has given rise to a need for practical and
effective testing strategies. Software testing is a critical element of software
quality assurance and represents the ultimate review of specification, design, and
coding. Testing is a dynamic method for verification and validation, wherein
the execution behavior of the given system is observed for several “test cases”.
The time and cost devoted to testing needs to be managed accurately. Too often,
lack of sufficient testing causes schedule and budget over-runs with insufficient
guarantee of quality.

An effective software testing strategy starts with the implementation of a
component test process. In component testing, critical components (shared,
reusable, or complex) are subjected to functional or black box testing to en-
sure that they are functionally correct. Also, code coverage, i.e., the number of
execution paths covered by a given test case, needs to be analyzed to determine
the effectiveness of the testing process.

State machines or statecharts are a common approach for the abstraction
of the control and data flow in a wide range of application, such as real-time
applications, networking protocols, GUI design and safety-critical systems. S-
tatechart is a formalism for visual specification of reactive system behavior.
The formalism extends traditional finite-state machines with notions of hierar-
chy and concurrency, and is used in many popular software design notations. A
large part of the appeal of using statecharts for testing, is due to the intuitive op-
erational interpretation of state machine behavior. Statecharts are hierarchical
i nature and allow one to decompose states into sub-states.

For systems where tasks are performed under time-constraints, the misinter-
pretation of even a single event in state machine’s behavior can lead to collapse
the whole underlying system. Hence an efficient testing tool is mandatory for
such systems.

In this report, we discuss various testing techniques, testing strategies and
statechart semantics, using practical examples. We have developed StateTest,
a tool that takes a statechart specification and the test scripts as the input,
and generates the pass or fail report and the coverage metrics as the output.
Presently, StateTest can test the behavior of traditional as well as hierarchical
statecharts. The tool can also be extended to test the statecharts that have
orthogonal (concurrent exzecution) as well as history states.

Contents

Introduction
1.1 Importance Of Testing
1.2 Statecharts o L
1.3 Testing Of Statecharts
1.4 Scope Of the Project
1.5 Organization Of the Report
Testing Techniques
2.1 Testing Fundamentals
2.1.1 Testing Objectives
2.1.2 Test Information Flow
2.1.3 Test Case Design
2.2 White Box Testing
2.2.1 Basis Path Testing
2.2.2 Control Structure Testing
2.3 Black Box Testing
2.3.1 Equivalence Partitioning
2.3.2 Boundary Value Analysis(BVA)
2.3.3 Comparison Testing
24 SUmMmary e e e e e e e e e e

Testing Strategies

3.1 A Software Testing Strategy
3.2 Unit Testing
3.3 Integration Testing
3.3.1 Top Down Integration
3.3.2 Bottom-Up Integration
3.3.3 Comments on Integration Testing
3.4 Validation Testing
3.4.1 Validation Test Criteria
3.4.2 Configuration Review
3.4.3 Alpha and Beta Testing
3.5 System Testing
3.6 Debugging e
3.7 Summary e e e e e

CONTENTS

4.1
4.2
4.3
4.4

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5
8.6

9.1
9.2
9.3
9.4

Literature Survey

AdaTest and Cantata
Property-Based Testing : Tester’s Assistant
ATTOL Software
+1 Software Engineering o oL

A Brief Look At UML

What Is the Unified Modeling Language?
The Building Blocks Of UML

Statecharts : A Visual Formalism for Complex Systems

Statechart Diagrams oL
Semantics of Statechart
History o . . o
Guards e e
Generalization of States
Aggregation of States oL Lo oL
Role of Statecharts

Importance Of Testing Statecharts

Importance Of Testing Statecharts
Methodology L
Coverage Metricso
SUmMmAaryo e e e e e e e

Design Specification Of StateTest Tool

StateTest : A New Tool For Testing Statecharts
Inputs and Outputs To StateTest Tool
The Skeleton Algorithm for Testing Phase
Components Of StateTest Tool
Detailed Design Specification Of StateTest Tool
Explanation Of the Classes

Simulation Results

Statechart Specification File
Statechart Test Cases File
Demo Results
Summary Of the Results,

10 Conclusions
10.1 Future Work e

18
18
18
19
19

21
21
22

24
24
24
26
26
26
30
30

32
32
32
34
35

36
36
36
38
46
48
51

52
52
53
54
63

64

Chapter 1

Introduction

1.1 Importance Of Testing

Software testing is a critical element of software quality assurance(SQA) and
represents the ultimate review of specification, design, and coding [28]. Software
testing is an expensive and labor-intensive task. It has been estimated that
software testing accounts for up to 50 percent of software development, and
even in safety-critical systems. If most of software testing could be automated,
the cost of software development could be significantly reduced [5].

Since the entire input domain of the program (which in most cases is ef-
fectively infinite) cannot be exhaustively searched, formal coverage criteria are
sometimes used to determine test inputs. Such coverage criteria help in early
fault identification, thereby providing greater assurance of software quality and
reliability. Such criteria also provide rules for determining the number of test
cases, as well as the repeatability of the test process. Hence, it is necessary to
define adequate coverage criteria for testing.

The design of tests for software and other engineered products can be as
challenging as the initial design of the product itself. There are three elements
in the test design [20].

o Test Specifications- Test specifications describe exact inputs to a pro-
gram together with exact expected outputs. For example, LIST has the
null string as its single element; expect return value 9.

o Test Requirements- Test requirements describe useful sets of input that
should be tested. For example, LIST must have a single element(value
unspecified) and use the null string as some LIST element.

o Clues- Clues are the sources for test requirements. For example, LIST is
a list of strings and a list element is a string.

One of the goals of testing is to execute the program with appropriate inputs,
such that design/coding faults become apparent as failures[20]. For instance,
consider the following program:

CHAPTER 1. INTRODUCTION 4

void check_square(int do_square, double x)
{
double y = x ;
if (do_square)
y=%x+Xx;
printf ("squared value larger? %d\n", y > x);

}

The fault is that + is used instead of * in statement y = x + x.

Firstly, to provoke a failure, the program’s inputs must cause the faulty state-
ments to be executed. Such inputs need to satisfy a reachability condition. In
this case, the reachability condition is that do_square is true.

Next, the faulty statement must produce a different result than the correct
statement. This is called the necessity condition. I n this example, X = 1
will cause Y to have the incorrect value 2(1 + 1) instead of the correct value
1(1%1). However, X = 2 will cause Y to have the correct value 4. The program
calculated the right result the wrong way, so it won’t fail on that input. The
necessity condition for this fault is X # 2&&X # 0.

Finally, the incorrect internal state must propagate so that it becomes visible
in the program’s results. For example, if X is 4, Y will be 8, instead of 16.
However, since both 8 and 16 are greater than 4, the faulty program will print
7squared value larger? 17, which is the same as the output of a correct program.
In this case, the incorrect internal state was "damped out” before it became
visible. Hence, there is a need for a propagation condition. The propagation
condition for the fault requires that X + X > X have a different truth value
from X % X > X. This is true whenever X < 1.

All these three conditions are called the ideal fault conditions. Hence
the program should be tested with inputs satisfying:

do_square true AND (X!=0 and X!=2) AND (X<=1).

1.2 Statecharts

Statecharts are hierarchical state machines that support the concepts of orthog-
onality, aggregation, and generalization[22]. A behavioral model described as
a statechart is based not only on modes and transitions, but also on events,
conditions and different types of data items. Statecharts resolve the ”blow-up
phenomena”[8] associated with state transition diagrams. A realistic system is
typically not described as a single statechart but as a hierarchy of statechart-
s. A hierarchical statechart allows one to decompose states into sub-states.
In addition to the hierarchy within a chart, one can use the mechanism of
activity-charts to describe the data flow in the system as well its functional
decomposition. In this case, the whole system is decomposed to a hierarchy of
activities, the data flow between the activities is specified, and the behavior of
each of these activities is described using statecharts. This in effect provides

CHAPTER 1. INTRODUCTION 5

a mechanism of decomposing a system into a tree of statecharts, only some of
them are active at a given time. The visibility rules associated with statechart
models are similar to those found in other top-down structured methods. Ele-
ments defined in an activity, can be referred to by any of its sub-activities and
statecharts.

Statecharts, or behavioral models in general, can be used to describe more
than just a model of the system being designed. One can design a 'watchdog’
statechart to observe the system during its operation and monitor its behavior.
As a watchdog, it can be executed in parallel to the system model. A stat-
echart watchdog can operate on the inputs and outputs of the whole system.
However, it is often very useful to monitor internal values or even inject faults
by modifying them.

This report deals with the scoping of elements in a hierarchical statechart
model, and its impact on testing.

1.3 Testing Of Statecharts

The overall behavior of the underlying system that is modeled by statecharts
depends upon the transitions made by the event occurrence. Since even a single
event misinterpretation in statechart’s behavior can lead to collapse the whole
underlying system, an efficient testing tool is mandatory. This is especially
true for systems where tasks are performed within time-constraints. Hence
appropriate care needs to be taken while modeling the behavior of the system
for testing.

Chapter 6 of this report, provides a detailed discussion of the various issues
in testing of statecharts.

1.4 Scope Of the Project

Firstly, this report provides a comprehensive view of the details in testing stat-
echarts. We have also developed StateTest, a tool for testing of statecharts.
StateTest has mainly four modules StatesInfo, CopyStateHierarchy, TestScrip-
tReading, and ReportGenerator. It takes two inputs from the user. The first
input is a file containing the statechart specification and the second input is a
file containing the test script (a set of test cases). StateTest applies the given
test cases to the statechart specification and generates three outputs. The first
output is a pass or fail report for each test case, and the second output is the
coverage metrics (transition, state, event and state-event coverage), while the
third is a detailed error report. We have tested the StateTest tool for various
known input specifications and believe that this StateTest tool can be used for
all applications that can be modeled by statecharts.

1.5 Organization Of the Report

In the First chapter, Introduction, brief introduction of testing criteria and s-
tatecharts is discussed. In the Second chapter, various testing techniques such

CHAPTER 1. INTRODUCTION 6

as white box testing and black box testing are explored. In the Third chap-
ter, many testing strategies including unit testing, integration testing, system
testing, and validation testing are discussed. The Fourth chapter shows the
literature survey. The Fifth, Sixth, and Seventh chapters are totally dedicat-
ed to explore the semantics of statecharts, UML(Unified Modeling Language),
testing strategy for the statecharts, and coverage metrics including transition
coverage, event coverage, state coverage and state-event coverage. The Eighth
chapter, shows a skeleton algorithm for the testing phase and Object Design
Specification for the project. The Nineth chapter shows the demo results.
The Tenth chapter concludes the report.

Chapter 2

Testing Techniques

2.1 Testing Fundamentals

2.1.1 Testing Objectives

The objective is to design tests that systematically uncover different classes of
errors and do so with a minimum amount of time and effort.

o Testing is a process of executing a program with the intent of finding an
€error.

o A good test is one that has a high probability of finding an as yet undis-
covered error.

o A successful test is one that uncovers an as yet undiscovered error.

Testing cannot show the absence of defects, it can only show that software
defects are present[28].

2.1.2 Test Information Flow

Figure 2.1 shows gives a top-level view of the various phases in testing. It in-
cludes four phases i.e, Testing, Fvaluation, Reliability model and Debug. Soft-
ware configuration includes a software requirements specification, a design spec-
ification, and source code. A test configuration includes a test plan and proce-
dures, test cases, and testing tools. Software configuration and the test config-
uration are input to the Testing phase. Test results and expected results are
input to the Evaluation phase. In this phase, test results and expected results
are compared and generated the error report. In the Debug phase, finding are
corrected. Reliability phase is used to determine the reliability of the under-
lying system. It is difficult to predict the time to debug the code, hence it is
difficult to schedule.

2.1.3 Test Case Design

Designing a test case can be as difficult as the initial design. White box
testing is used to test if a component conforms to its design, while Black box

CHAPTER 2. TESTING TECHNIQUES 8

Figure 2.1: DFD for testing

CHAPTER 2. TESTING TECHNIQUES 9

testing is used to test if a component conforms to its specification. Testing
approaches in general, cannot prove correctness, as they may not cover all
possible execution paths.

2.2 White Box Testing

White-box testing is a test case design method that uses the control structures
of a procedural design.

Using white-box testing methods one can derive test cases to ensure :
1 all independent paths are exercised at least once.
2 all logical decisions are exercised for both true and false paths.
3 all loops are executed at their boundaries and within operational
bounds.
4 all internal data structures are exercised to ensure validity.

2.2.1 Basis Path Testing

Basis path testing is a white-box testing technique proposed by Tom McCabe.
The basis path method enables the test case designer to derive a logical complex-
ity measure of a procedural design and use this measure as a guide for defining
a basis set of execution paths. Test cases derived to exercise the basis set are
guaranteed to execute every statement in the program at least one time during
testing. Any procedural design can be translated into a flow graph. Note that
compound boolean expressions at tests generate at least two predicate node
and additional arcs.

Cyclomatic Complexity

The cyclomatic complexity gives a quantitative measure of the logical complex-
ity. This value gives the number of independent paths in the basis set, and an
upper bound for the number of tests to ensure that each statement is executed
at least once.

An independent path is any path through a program that introduces at least
one new set of processing statements or a new condition (i.e., a new edge). For
example, consider the following program:

g

i=1;

. while (i <= n) {

j=1;

while (j <= i) {
if (A[i] < A[GD);

. swap(A[i],A[3j1);

j=3*1}

.i=1+ 13}

¥

© 0 ~NO O wWw NN+~ O

CHAPTER 2. TESTING TECHNIQUES

mﬁ-“‘
i

//\- .

|
jl

f
\ B8 ;

Figure 2.2: Diagram for flow graph of a bubble sort procedure

10

Cyclomatic Complexity can be calculated by using anyone of the following

methods

1 Number of regions of flow graph.
2 Number of edges - Number of nodes + 2
3 Number of predicate nodes + 1

e Independent Paths are :

1bceb
2bcdebd
3abfa
4 aga

The corresponding flow graph is given by :

Cyclomatic complexity provides upper bound for number of tests required
to guarantee coverage of all program statements. The cyclomatic complexity

for "bubble sort’ procedure in the figure is V(G) =9 -7+ 2 = 4.

Deriving Test Cases

1 Using the design or code, draw the corresponding flow graph.

CHAPTER 2. TESTING TECHNIQUES 11

2 Determine the cyclomatic complexity of the flow graph.

3 Determine a basis set of independent paths.

4 Prepare test cases that will force execution of each path in
the basis set.

Graph Matrices

These can automate derivation of flow graph and determination of a set of basis
paths. To develop a software tool to do basis path testing, graph matrix can
be used [28].

2.2.2 Control Structure Testing

Basic path testing is one example of control structure testing.

Condition Testing

Condition testing aims to exercise all logical conditions in a program module.
Condition testing methods focus on testing each condition in the program.
It can define :

e Relational expression : (E1 op E2), where E1 and E2 are arithmetic ex-
pressions.

o Simple condition : Boolean variable or relational expression, possibly pre-
ceded by a NOT operator.

e Compound condition: composed of two or more simple conditions, boolean
operators and parentheses.

e Boolean expression : Condition without relational expressions.
Example 1 : C1 = B1 & B2
o where B1, B2 are boolean conditions..

o Condition constraint of form (D1, D2) where D1 and D2 can be true (t)
or false(f).

o The branch and relational operator test requires the constraint set (t,t),
(f;t), (t,f) to be covered by the execution of C1.

Coverage of the constraint set guarantees the detection of relational operator
€errors.
Data Flow Testing

In this testing, selects test paths according to the location of definitions and
use of variables.

CHAPTER 2. TESTING TECHNIQUES 12

Loop Testing

Loops fundamental to many algorithms. you can define loops as simple, con-
catenated, nested, and unstructured.

2.3 Black Box Testing

Black-box testing focuses on the functional requirements of the software.It is
not an alternative to white-box techniques[28, 15]. Rather,it is a complementary
approach that is likely to uncover a different classes of errors than white-box
methods. It attempts to find :

o incorrect or missing functions

interface errors

(o]

errors in data structures or external database access

e}

o}

performance errors

e}

initialization and termination errors.

2.3.1 Equivalence Partitioning

Equivalence partitioning is a black-box testing method that divides the input
domain into classes of data for which test cases can be generated. It attempts to
uncover classes of errors. Test case design for equivalence partitioning is based
on an evaluation of equivalence classes for an input condition. An equivalence
class represents a set of valid or invalid states. An input condition is either
a specific numeric value, range of values, a set of related values, or a boolean
condition. Equivalence classes can be defined by :

o If an input condition specifies a range or a specific value, one valid and
two invalid equivalence classes defined.

o If an input condition specifies a boolean or a member of a set, one valid
and one invalid equivalence classes defined.

Test cases for each input domain data item developed and executed.

2.3.2 Boundary Value Analysis(BVA)

Large number of errors tend to occur at boundaries of the input domain. BVA
leads to selection of test cases that exercise boundary values. BVA complements
equivalence partitioning. Rather than select any element in an equivalence class,
select those at the ’edge’ of the class.

Examples :
1 For a range of values bounded by a and b,
test (a-1), a, (a+1), (b-1), b, (b+1).
2 If input conditions specify a number of values n,

CHAPTER 2. TESTING TECHNIQUES 13

test with (n-1), n and (n+1) input values.
3 Apply 1 and 2 to output conditions
(e.g., generate table of minimum and maximum size).
4 If internal program data structures have boundaries
(e.g., buffer size, table limits), use input data to
exercise structures on boundaries.

2.3.3 Comparison Testing

In some applications(e.g., aircraft avionics, nuclear power plant control), the
reliability of software is absolutely critical. Redundant hardware and software
are often used to minimize the possibility of error. when redundant software
is developed, separate engineering teams develop independent versions of the
software using the same specification[25, 15, 28].

After that test each version with same test data to ensure all provide identi-
cal output and run all versions in parallel with a real-time comparison of results.
Even when only a single version will be run in final system, these independent
versions form the basis of a black-box testing technique called comparison test-
ing or back-to-back testing. When outputs of versions differ, each is investigated
to determine if there is a defect. This method does not catch errors in the spec-
ification.

2.4 Summary

In this chapter we have presented the details of two main approaches to testing,
viz., white-box testing and black-box testing. Test cases are decided solely on
the basis of the requirements or specification of the program or module, and the
internals of the module or the program are not considered for selection of test
cases. Due to this nature, functional testing often called black-box testing. In
the structural approach, test cases are generated based on the actual code of the
program or module to be tested. This structural approach is called white-box
testing, also called glass box testing. Unlike the criteria for black-box testing,
which are frequently imprecise, the criteria for white-box testing are generally
quite precise as they are based on program structures, which are formal and
precise.
In the next chapter, we discuss several testing strategies.

Chapter 3

Testing Strategies

3.1 A Software Testing Strategy

The generic aspects of a test strategy are :
e Testing begins at the module level and works ’outward’.
e Different testing techniques are used at different points in time.

e Testing conducted by developer and (for larger projects) by an indepen-
dent test group.

e Testing and Debugging are two different activities, but debugging should
be incorporated into any testing strategy.

System development proceeds with steps :
(1) System engineering
(2) Requirements
(3) Design
(4) Coding

The software engineering process may be viewed as a spiral as shown in the
figure[28].

Faults can occur during any phase in the software development cycle.
Verification is performed on the output of each phase, but some faults are
likely to remain undetected by these methods. These faults will be eventually
reflected in the code. Testing is usually relied on to detect these faults, in
addition to the faults introduced during the code phase itself. Due to this,
different levels of testing are used in the testing process. Each level of testing
aims to test different aspects of the system. The basis levels are unit testing,
integration testing, validation testing, and system testing. These different levels
of testing attempt to detect different types of faults. Unit testing is essentially
for verification of the code produced during the coding phase. Integration
testing activity can be considered testing the design. Validation testing goal
is to see if the software meets its requirements. System testing test the entire
software system. Testing here focuses on the external behavior of the system.

The subsequent sections discuss each of these testing strategies in detail.

14

CHAPTER 3. TESTING STRATEGIES 15

Figure 3.1: Diagram for testing strategy

3.2 Unit Testing

Unit testing does
e Module level testing with heavy use of white box testing techniques.

e Exercise specific paths in the modules control structures for complete
coverage and maximum error detection.

Unit testing can test: interface, local data structures, boundary conditions,
independent paths, error handling paths.

3.3 Integration Testing

Integration testing is a systematic technique for constructing the program struc-
ture while conducting tests to uncover errors associated with interfacing[28, 15].
It addresses the issues associated with the dual problems of verification and pro-
gram construction. Black-box test case design techniques are the most preva-
lent during integration, although a limited amount of white-box testing may be
used to ensure coverage of major control paths. There are two approaches to
integration testing : non-incremental integration and incremental integration

There is often a tendency to attempt non-incremental integration. That
means, constructing a program using big bang approach. All modules are com-
bined in advance. The entire program is tested as a whole. Usually, a set
of errors are encountered. Correction is difficult because isolation of causes is
complicated by the vast expanse of the entire program.

Incremental integration is the antithesis of the big bang approach. The
program is constructed and tested in small segments, where errors are easier to
isolate and correct. Interfaces are more likely to be tested completely, and a
systematic test approach may be applied.

CHAPTER 3. TESTING STRATEGIES 16

In this report, we focus on incremental testing. Incremental testing may be
done using the approaches described below.

3.3.1 Top Down Integration

Top down integration is an incremental integration testing approach. In this,
modules integrated by moving down the program design hierarchy. Either depth
first orbreadth first top down integration may be used. It verifies major control
and decision points early in design process. Depth first implementation allows
a complete function to be implemented, tested and demonstrated. Top down
integration forced (to some extent) by some development tools in programs with
graphical user interfaces.

3.3.2 Bottom-Up Integration

Bottom up integration is also type of incremental integration approach.
Bottom-up integration testing begins construction and testing with atomic
modules (lowest level modules). One can use driver program to test.

It has the following steps :
1 Low level modules combined in clusters (builds) that
perform specific software sub functions.
2 Driver program developed to test.
Cluster is tested.
4 Driver programs removed and clusters combined, moving
upwards in program structure.

w

3.3.3 Comments on Integration Testing

The major disadvantage of: top-down approach is the need for stubs genera-
tion and of bottom-up integration is that "the program as an entity does not
exist until the last module is added”. Critical modules should be tested and
integrated early. In general, a combined approach is preferred.

3.4 Validation Testing

Validation testing aims to demonstrate that the software functions in a manner
that can be reasonably expected by the customer. It tests conformance of the
software to the Software Requirements Specification. This should contain a
section ”Validation Criteria” which is used to develop the validation tests.

3.4.1 Validation Test Criteria

Software validation is achieved through a series of black box tests to demon-
strate conformance with requirements. It is used to check that: all functional
requirements satisfied, all performance requirements achieved, documentation
is correct and ’human-engineered’, and other requirements are met (e.g., com-
patibility, error recovery, maintainability)[28, 15]. When validation tests fail

CHAPTER 3. TESTING STRATEGIES 17

it may be too late to correct the error prior to scheduled delivery. It is often
necessary to negotiate a method of resolving deficiencies with the customer.

3.4.2 Configuration Review

An audit to ensure that all elements of the software configuration are properly
developed, cataloged, and have the necessary detail to support maintenance.

3.4.3 Alpha and Beta Testing

It is very difficult to anticipate how users will really use software. If there is
one customer, a series of acceptance tests are conducted (by the customer) to
enable the customer to validate all requirements. If software is being developed
for use by many customers, can not use acceptance testing. An alternative is
to use alpha and beta testing to uncover errors. Alpha testing is conducted at
the developer’s site by a customer. The customer uses the software with the
developer and recording errors and usage problems. Alpha testing conducted
in a controlled environment. Beta testing is conducted at one or more customer
sites by end users. It is ’live’ testing in an environment not controlled by the
developer. The customer records and reports difficulties and errors at regular
intervals[28].

3.5 System Testing

Software is only one component of a system. Software will be incorporated
with other system components and system integration and validation tests per-
formed. For software based systems can carry out: recovery testing,security
testing, stress testing, performance testing

3.6 Debugging

Debugging occurs as a consequence of successful testing. That is, when a test
case uncovers an error, debugging is the process that results in the removal of
the error. Debugging is not testing.

3.7 Summary

In this chapter, we have discussed various testing strategies including unit test-
ing, integration testing, validation testing, and system testing. In the next
chapter, we will see the literature survey on software testing tools.

Chapter 4

Literature Survey

This chapter presents the details of four testing tools studied as part of this
project. Evaluation/free versions for the first three of these tools were un-
available, hence they were studied from product documentation. Evaluation
version was available for the last tool ”+1Software”, which was downloaded
and extensively used.

4.1 AdaTest and Cantata

A comprehensive testing strategy for state machine software should set targets
for both structural coverage measures as provided by AdaTEST and Cantata
and functional measures. The algorithm used to implement structural cover-
age metrics such as STATEMENT_COVERAGE and DECISION_COVERAGE
within AdaTEST and Cantata can be adopted for other metrics[19].

Users of AdaTEST and Cantata can add code to a test script to implement
State-Event coverage based on the IPL algorithm:

o Declare a two dimensional array of scores, which one axis being indexed
by the state, and the other axis being indexed by the event. Initialize all
cells to zero

Within each test case, write statements to increment the corresponding
cell of the array according to the current state and event(not the next
state

o At the end of test script, calculate the portion of non-zero cells in the
array. Use the CHECK_ANALYSIS command to check the calculated
coverage against the objective level

AdaTEST and Cantata assertions can be used to simplify the testing of

state machines. To verify State-Event Coverage, assertions can be used to
ensure that all events have been exercised in all states.

4.2 Property-Based Testing : Tester’s Assistant

Analysts test computer programs to determine if they meet reliability and as-
surance goals[12]. In other words, testing validates semantic properties of a

18

CHAPTER 4. LITERATURE SURVEY 19

program’s behavior. In order to do this, the actual program must be tested at
the source code level, not some higher-level description of the program. How-
ever, to validate high-level properties, the properties must be formalized, and
the results of the testing related formally to the properties. Property-based
testing is a testing methodology that addresses this need. The specification of
one or more properties drives the testing process,which assures that the given
program meets the stated property. For example, if an analyst wants to val-
idate that a specific program correctly authenticates a user, a property-based
testing procedure tests the implementation of the authentication mechanisms
in the source code to determine if the code meets the specification of ” correctly
authenticating user”. The steps involved in the property-based testing are :

e first, analyst specifies the target property in a low-level specification lan-
guage called TASPEC(Tester’s Assistant SPECification language).

e the program is sliced and code irrelevant to the property disregarded.

e the Tester’s Assistant automatically translates the TASPEC specification
into a oracle that will check the correctness of program executions with
respect to the desired property.

e a new path-based code coverage metric called “iterative contexts” effi-
ciently captures the slice-based computations in the program.

4.3 ATTOL Software

The ATTOL company provides the following products :

ATTOL UniTest, ATTOL SystemTest, ATTOL Coverage. ATTOL
UniTest is the first commercial tool to automate software component testing
for C, C++, Ada 83 and 95. It is aimed at professionals wishing to improve the
reliability of their while optimizing development costs. ATTOL SystemTest is
a product aimed at distributed systems developers and integrators who need to
test interaction or communication between several sub systems. With it’s ability
to work with all communication interfaces written in C and C++, ATTOL
SystemTest is ideal for testing applications based on commercial (MQSeries,
TIB, Tuxedo, Encina, etc.) and proprietary middle ware. ATTOL Coverage is
easy to use and aimed at developers. It measures test effectiveness by analyzing
code coverage.

4.4 41 Software Engineering

The +1 Software Engineerings products support configuration management,
build management, problem reporting, software reuse, software testing, HTML
reports, data repository, reverse engineering, and software metrics. It supports
the following products:

+1Base supports multiple software projects. After selecting which project
to work on, +1Base graphically displays the calling structure of the program

CHAPTER 4. LITERATURE SURVEY 20

including any recursive routines. You can change the model, traverse the calling
structure, and edit or view a module’s source code, documentation, and test
files.

+1CM is an advanced configuration management system supporting iden-
tification, variations, baselines, accounting, auditing, and access control. +1CM
enhances the Source Code Control System (SCCS), an automated configuration
management tool.

+1CR supports problem report management which allows you to submit,
list, view, query, print, and administer problem reports. When combined with
+1CM, +1CR can support process management. This ensures that when a file
is checked in using +1CM, the problem report number exists and its current
status allows for check ins.

+1DataTree predefines the following modules: data elements, data struc-
tures, files, external entities, glossary and personnel.

+1Test supports unit, integration, and regression testing. A unit test tests
an individual source code module. Integration testing tests a ”build” (i.e., a
submodel) of the project. And regression testing runs all currently defined test
cases.

+1Reports generates a number of customized, always up-to-date project
reports. You can create new reports and load in existing reports. It has options
to incorporate, generates your reports in either text or HTML format.

+1Reuse supports reuse repositories created and maintained by the user,
project wide "filtered” repositories which can be under strict quality controls,
and selective reuse. +1Reuse supports reuse of:design, documentation, source
code, header files, test cases, test shell scripts, expected test results and mod-
eling information.

This tool was downloaded, tested against several C programs and its output
was studied. This gave us a clear understanding of the requirements to be met
by a testing tool, thereby enabling us to appropriately design StateTest, which
is described in chapter 8.

In the next chapter, we discuss UML, which is a pre-requisite for the un-
derstanding of statecharts.

Chapter 5

A Brief Look At UML

5.1 What Is the Unified Modeling Language?

The unified Modeling Language is a language that unifies the industry’s best
engineering practices for modeling systems. It was originally conceived by Ra-
tional Software Corporation and the Three Amigos, Grady Booch (Booch’s
method expressed in his book Object-Oriented Analysis and Design), James
Rumbaugh(OMT) and Ivar Jacobson (OOSE : A Use Case Driven approach).
It is supported by the UML Partners Consortium (Rational Software Corpo-
ration, Microsoft Corporation, Hewlett-Packard Company, Oracle Corporation,
Sterling Software, MCI Systemhouse Corporation, and ICON Computing). The
UML

e Is a language. It is not simply notation for drawing diagrams, but a
complete language for capturing knowledge (semantics) about a subject
and expressing knowledge (syntax) regarding the subject for the purpose
of communication

e Applies to modeling the systems. Modeling involves a focus on under-
standing (knowing) a subject (system) and capturing and being able to
communicate this knowledge.

o Is the result of unifying the information systems and technology industry’s
best engineering practices (principles, techniques, methods ,and tools) .

e Is used for specifying, visualizing, constructing, and documenting systems.
e Is based on the object-oriented paradigm.

e Is a modeling language for specifying, visualizing, constructing, and doc-
umenting the artifacts of a system-intensive process.

e Is an evolutionary general-purpose, broadly applicable, tool-supported,
industry-standardized modeling language.

e Applies to a multitude of different types of systems, domains, and methods
Or processes.

21

CHAPTER 5. A BRIEF LOOK AT UML 22

e Enables the capturing, communicating, and leveraging of strategic, tacti-
cal, and operational knowledge to facilitate increasing value by increasing
quality, reducing costs, and reducing time-to-market while managing risks
and being pro-active in regard to ever-increasing change and complexity.

The goals of the UML are to:

o Be a ready-to-use expressive visual modeling language that is simple and
extensible.

o Have extensibility and specialization mechanisms for extending, rather
than modifying, core concepts.

o Be implementation independent(programming language).
o Be process independent(development).
o Encourage the growth of the object-oriented tools market.

o support higher-level concepts (collaborations, frameworks, patterns, and
components).

o Addressing recurring architectural complexity problems (physical distri-
bution and distributed systems, concurrency and concurrent systems,
replication, security, load balancing, and fault tolerance) using compo-
nent technology, visual programming, patterns, and frameworks.

o Be scalable.
o Be widely applicable and usable.

o Integrate best engineering practices.

5.2 The Building Blocks Of UML

UML defines nine types of diagrams to represent the various modeling view-
points [6, 22, 11, 7]. A diagram provides the user with the means of visualizing
and manipulating model elements. The diagrams may show all or part of the
characteristics of the model elements, with a level of detail that is suitable in
the context of a given diagram. Diagrams may also gather together pieces of
linked information to show, for example, the characteristics inherited by a class.

e Activity diagrams represent the behavior of an operation as a set of
actions

e Class diagrams represent the static structure in terms of classes and
relationships

e Collaboration diagrams are a spatial representation of objects, links,
and interactions

CHAPTER 5. A BRIEF LOOK AT UML 23

e Component diagrams represent the physical components of an appli-
cation

¢ Deployment diagrams represent the deployment of components on par-
ticular pieces of hardware

e Object diagrams represent objects and their relationships, and corre-
spond to simplified collaboration diagrams that do not represent message
broadcasts

e Sequence diagrams are a temporal representation of objects and their
interactions

e Statechart diagrams represent the behavior of a class in terms of states

¢ Use case diagrams represent the functions of a system from user’s point
of view

Sequence and collaboration diagrams can be grouped together into inter-
action diagrams.

One of the crucial aspects of the Unified Modeling Language (UML) that
makes it so valuable for real-time and embedded systems [10]is its heavy re-
liance on and support for finite state machines. State machines are critical in
the construction of executable models that can effectively react to incoming
events in a timely fashion. The UML state machine model represents the cur-
rent state of the art in state machine theory and notation, all based on David
Harel’s statecharts. Statecharts describe both how objects communicate and
collaborate and how they carry out their own internal behavior. They must al-
so reflect important OO issue like inheritance. State machines are the primary
means within the UML for capturing complex dynamic behavior. The UML
is a third-generation state-of-the-art object modeling language that defines a
comprehensive set of notations, and, more importantly, defines the semantic-
s (meaning) of those language elements. The UML is an inherently discrete
language’s meaning that it emphasizes discrete representations of dynamic be-
havior, such as state machines, over continuous representations. Although many
object systems do, in fact, perform continuous control functions and do it well,
the UML provides special support in the area of finite state machines.

In the next chapter we discuss statecharts in detail before going to their
testing issues.

Chapter 6

Statecharts : A Visual
Formalism for Complex
Systems

6.1 Statechart Diagrams

Statechart diagrams represent state machines from the perspective of states and
transitions. For many applications, state machines grow large and cumbersome.
Statecharts extend state machines to deal with those problems [20, 22, 19].
The purpose of using statecharts is to formally specify the behavior of the
instances of a given class in response to external stimuli[24]. In UML notation, a
statechart is represented by the directed graph of states connected by transitions
[1, 16]. The origins of statecharts are :

o finite state machines (FSM)
o state transition diagrams

o Harel’s statecharts

6.2 Semantics of Statechart

State

o a finite period in the life of an object, when the object satisfies some
condition, or performs some action, or waits for some event to occur.

Event

An event is an occurrence of
o a change in truth value of a condition
o a receipt of a message

o the end of a designated period of time

24

CHAPTER 6. STATECHARTS : A VISUAL FORMALISM FOR COMPLEX SYSTEMS 25

Events cause changes in state (transitions).

Transitions
A state transition can have the following elements associated with it:
o an action (behavior that occurs when the transition takes place)

o a guard (Boolean expression that must be true for the transition to be
allowed)

Actions and guards are behaviors, and typically become private operations.
State transitions can also trigger events.

Event[Guard]/ Action Transition

o An event prompts the transition between states

o A guard is used to specify that this transition can occur only if the guard
is true

o An action is performed when the transition occurs

Internal Activities

Internal activities are performed in response to an event received (on entry,
exit, or some other event). Usually, internal activities that result in invocation
ofprivate operations.

State Details

Actions that accompany state transitions into (out of) a state can be noted
as entry (exit) actions within the state. Behavior within a state is called an
activity. Activities can be a simple action or an event sent to another object.
Activities are optional.

State Detail Notation

A state detail notation is given by :

entry: simple action

entry: “destination class name.event name
do: simple action

do: “destination class name.event name
exit: simple action

exit: “destination class name.event name

CHAPTER 6. STATECHARTS : A VISUAL FORMALISM FOR COMPLEX SYSTEMS 26

Composite States

A state can be decomposed into :
o a set of mutually exclusive sub-states (or-decomposition)

o a set of concurrent sub-states (and-decomposition)

Special States

o History State- a state resumed upon re-entry in the state

o Activity- an operation within a state represented by a nested statechart

Figure 6.1 shows the simple statechart and statechart having history state.

6.3 History

By default, a state machine does not have any memory. The special notation
H offers a mechanism to memorize the sub-state last visited, and to get back
to it during a transition entering the encompassing super-state. The history
indicator applies to the level in which the H symbol is declared. It is also
possible to memorizing the last active sub-state, regardless of it’s depth; this is
indicated by the H* symbol. The use of history observed in the figure 6.1 to
implement a dishwasher.

6.4 Guards

A guard is a Boolean condition that may or may not validate the triggering
of an event occurrence. Guards make it possible to maintain the determinism
of a state machine, even when many transitions can be triggered by the same
event. When the event takes place, guards, which must be mutually exclusive,
are evaluated, and then a transition is validated and triggered. As shown in
the figure 6.2, when the stack is not empty, pop operation is allowed on the
current stack.

6.5 Generalization of States

Statechart diagrams may become rather difficult to read when the number
of connections between states become high. The solution for this situation
is to apply the principle of state generalization - the more general states are
calledsuperstates, and the more specific states are calledsub-states. It is prefer-
able to limit the links between the hierarchical levels of a state machine, by
systematically defining an initial (pseudo) state for each level as shown in last
diagram in the figure 6.3. In the figure, state root is super state for the states
error, statel, and state2. Statel and state2 are in turn have sub-states (s1,
s2) and (pl, p2) respectively.

CHAPTER 6. STATECHARTS : A VISUAL FORMALISM FOR COMPLEX SYSTEMS 27

.——[initializatiﬂnH operating }

Start State shutllﬂwrl

Stop State

/.s. N

e | e

8 J
l Opened door

| Wait

Closed door L }

Figure 6.1: Representation of simple statechart and statechart with history

state

CHAPTER 6. STATECHARTS : A VISUAL FORMALISM FOR COMPLEX SYSTEMS 28

FY () 3]
pop “weror (“sinck emply”) pop| not empty |/delete

Figure 6.2: Representation of Statechart Semantics Using Stack

CHAPTER 6. STATECHARTS : A VISUAL FORMALISM FOR COMPLEX SYSTEMS 29

Figure 6.3: Representation of Generalization

CHAPTER 6. STATECHARTS : A VISUAL FORMALISM FOR COMPLEX SYSTEMS 30

6.6 Aggregation of States

State aggregation is the combination of one state from several other independent
states. The composition is of a conjunctive type (composition of type ’and’),
which implies that the object must simultaneously be in all states that consti-
tute the aggregation. State aggregation corresponds to a kind of parallelism
between state machines. In the figure 6.4, State S is an aggregation composed
of two independent states T and U; T is composed of sub-states X,Y and Z,
and U is composed of sub-states A and B. The domain of S is the Cartesian
product of T and U.

An input transition into state S implies the simultaneous activation of state
machines T and U, i.e, the object is initially placed in the composite state
(Z,A). When event E3 occurs, the T and U state machines can keep evolving
independently, which brings the object to the composite state (X,A). State
machines T and U may also evolve simultaneously, which is the case when
event E1 moves the object from composite state (X,A) to (Y,B). Adding
conditions to the transitions, such as the guard [in Z] placed on the transition
from B to A, makes it possible to introduce dependency relationships between
the components of the aggregate. When event E4 occurs, the transition from
B to A is only valid if the object is also in state Z at that time.

State aggregation, together with state generalization, simplifies the repre-
sentation of state machines. Generalization simplifies by factorization, and
aggregation simplifies by segmentation of the state space.

6.7 Role of Statecharts

(e]

formally specify the behavior of objects

(o]

increase the understanding of classes

(e]

describe what happens when events occur within the system and it’s en-
vironment

o

provide abstract and partial descriptions of the actual code

In the next chapter, we discuss the various issues in the testing of state-
charts.

CHAPTER 6. STATECHARTS : A VISUAL FORMALISM FOR COMPLEX SYSTEMS 31

Figure 6.4: Representation of Aggregation of states

Chapter 7

Importance Of Testing
Statecharts

7.1 Importance Of Testing Statecharts

Statecharts are becoming increasingly popular as a means of specifying safety-
critical systems. It is therefore necessary to develop a systematic and rigor-
ous approach to verifying that these systems conform to their specifications
[5, 20, 8]. Unit testing is performed on safety- critical software to verify its
functional behavior and as a means of obtaining the structural coverage met-
rics . Although commercially available tools exist to automate the collection
of structural coverage metrics, unit testing still consumes a large proportion of
total development costs [12]. Furthermore, the current approach to unit test-
ing is often ad-hoc and the necessity to check the functional behavior of the
system against its specification can be overshadowed by the more quantifiable
targets of structural coverage. As a result, confidence in the quality of the soft-
ware is compromised and the significance of unit testing within the context of
demonstrating safety is reduced.

7.2 Methodology

Statecharts are a rich notation that allow complex system behavior to be speci-
fied in concise diagrams. This efficiency is made possible through a complicated
syntax and semantics[3, 27, 13]. As a result, much of the system behavior is not
immediately obvious from the diagrams. This poses a problem when design-
ing automated functional testing techniques based on statechart specifications.
They would require an understanding of the complex statechart semantics in or-
der to interpret the behavior implied by the diagrams and generate tests based
on this behavior. Notation specific techniques are then only needed to pro-
vide the translation between the graphical specifications and the intermediate
notation([17, 4, 1].

Restricting the testing procedures to a particular domain (say, embedded
safety-critical systems) increases the potential for automation. The proposed
process is summarized in figure 7.1.

32

CHAPTER 7. IMPORTANCE OF TESTING STATECHARTS 33

Behavior defined by
Graphical Specification complex notation
specific semantics

Notation specific
translation

h 4

Intermediate Specification

General purpose
test generation

techmque

b J
Explicit specification
Test Specifications of the behavior under
test in a common
notation

Figure 7.1: Test specifications from complex graphical notation

CHAPTER 7. IMPORTANCE OF TESTING STATECHARTS 34

Statecharts allow complex reactive systems to be described in concise dia-
grams. This is made possible through the use of hierarchical state machines, an
extended transition operation syntax and the ability to model concurrency|2,
23]. Each statechart has a state hierarchy. There is one state which is highest
in the hierarchy and each state may contain a set of sub-states which are lower
in the hierarchy than their surrounding super state[4]. States which contain no
sub-states are basic states. Super states can be either AND-states or OR-states.
When an OR-state is active, one and only one of its immediate sub-states is
active at any time. The system moves between these sub-states sequentially ac-
cording to the order in which the transitions connecting the states are triggered
[14, 22, 26, 20].

Statecharts are a powerful visual formalism for capturing complex behavior,
and apply well to both functionally decomposed systems and to object-oriented
ones[9, 18, 21]. Objects are composite entities consisting both of information
(attributes) and operations that act on that information (methods). State
machines constrain the execution of those operations to better control and un-
derstand the object behavior. A state machine is defined by a set of existence
conditions (states), event responses (transitions), and actions that are executed
as we change states or take a transition. Statecharts add a number of useful
extensions to the traditional flat Mealy-Moore state diagrams, such a nesting of
states, conditional event responses via guards, orthogonal regions, and history.
Although these extensions are mathematically equivalent to Mealy-Moore state
machines, statecharts can be made much more parsimonious and vastly easier
to understand, especially for complex state machines.

7.3 Coverage Metrics

Tests for a state machine or statechart can be designed from the functional
specification of the state machine or statechart, independent of the structural
design of the actual implementation. An obvious starting point is to test ev-
ery transition. That is, to design test cases to set a current state, create the
circumstances which lead to an event, to observe the action taken, the tran-
sition made, and the new state. As there is defined set of transitions in the
state model, a coverage measure associated with this strategy is to measure the
proportion of transitions exercised by a set of test cases.

Transition Coverage

Transition Coverage is defined as the ratio of the number of transitions exercised
by the total number of transitions in the model. This measure is often referred
to as O-switch Coverage, as described in[26]. Developments of this strategy
are to test sequences of two transitions, three transitions, n transitions etc.
For example, 2-Transition Coverage is defined as the ratio of the number of
sequences of two transitions exercised by the total number of sequences of two
transitions in the state model. As the number of transitions exercised by each
test case increases, the number of possible permutations and combinations of
transitions within a sequence also increases, consequently increasing the number

CHAPTER 7. IMPORTANCE OF TESTING STATECHARTS 35

of test cases required to achieve the associated coverage metrics. Increased
complexity consequently makes achievement of coverage for long sequences of
transitions impractical[19]. As a minimum each test case should be specified
as:

an initial “current state”, inputs to the software, the expected action(if any),
including a transition(if any) and outputs(if any), the resulting "next state”.

This gets more complicated when test cases are designed to execute sequence
of two or more transitions. For such test cases, the specification of the test cases
should include the sequence of events, actions, transitions and states involved
in the test case.

Any strategy aimed at testing specified transitions is biased towards pos-
itive testing. That is, test cases are designed to exercise that software does
what it is supposed to do. A thorough test should also include negative test-
ing, to verify that the software does not do things that it is not supposed to
do. Within existing positive test cases, checks should be incorporated to ensure
that there have been no unwanted side effects. Furthermore, additional test
cases should be designed to ensure that invalid actions and transitions cannot
be induced.

State Coverage

The State coverage is defined as the ratio of the number of states covered in
the test cases by the total number of states in the given model.

Event Coverage

The Event coverage is defined as the ratio of the number of events covered in
the test cases by the total number of events in the given model.

State-Event Coverage

Any strategy for ensuring that negative tests are designed to verify freedom
from such bugs is to design test cases which subject each state of the state
machine to each event in the total set of events, not just the legal events for
that state. The State-Event Coverage is defined as the ratio of the number
of state-event pairs exercised by the product of the number of states and the
number of events in the given model. If the state machine is fully specified,
such that in each state, for each event, a unique transition was defined (in
some cases, null transitions), then Transition-Coverage or 0-Switch Coverage
would be the sane as State-Event Coverage. In practice, it is common for state
machines to not be fully specified.

7.4 Summary

In this chapter, we have presented the importance of testing statecharts and
coverage metrics. In the next chapter, we will discuss the design specification
of the StateTest tool.

Chapter 8

Design Specification Of
StateTest Tool

8.1 StateTest : A New Tool For Testing Statecharts

The StateTest tool is used to test the Statecharts behavioral description. It
takes the Statechart specification and the test script as the input and gives the
error report as the output.

8.2 Inputs and Outputs To StateTest Tool

The system has two input files and produces three types of outputs. This can
be viewed from the figure 8.1.

Inputfilel: Contains the list of Statechart specification. The format of the
file is:

Initial_State;Event;Next_State;Actual_Action;

Where all fields are combination of both characters and digits. An example of
this file for the figure 6.3 is :

statel;el;state2; (no action part)
state2;e2;statel;initial; (action part present)
sl;eb;sl; (no action part)

Inputfile2: Contains the list of test scripts. The format of the file is :
State;Sequence_0f_Events;Expected_State;Expected_Action;

Where all fields are combination of both characters and digits. An example
of this file is the figure in 6.3 is :

statel;el,e2,e6,e5,e6,el,e7,e8,e7,e4;error;error; (action part present)
sl;el,e2;sl;initial; (action part present)
s2;el,e7,e8;pl; (no action part)

36

CHAPTER 8. DESIGN SPECIFICATION OF STATETEST TOOL

Statechart
Specification

Test
Script

Figure 8.1: Level 0 DFD for StateTest tool

37

Pass/Fail
report

Coverage
Metrics

Error
Report

CHAPTER 8. DESIGN SPECIFICATION OF STATETEST TOOL 38

Outputl: For each test case, it gives pass or fail report and finally it gives
information about the number test cases are performed among them number of
test cases are failed and number of test cases are passed.

Output2: Tt gives the coverage metric information, i.e, State Coverage,
Event Coverage, State-Event Coverage and Transition Coverage based on the
test cases performed.

Output3: It gives error messages. For example, input file does not exist,
inputfilel has error, inputfile2 has error, and the given test case is not in the
statechart specification.

User Interface: Only one user command is required. The file names can
be specified in the command line itself or the the system prompts for the input
file names.

8.3 The Skeleton Algorithm for Testing Phase

The overall view of the StateTest tool can be seen from the figure 8.2.
The algorithm for the testing phase involved in the StateTest tool is :

Skelton Algorithm for testing the statechart specification

Test Case’ Format
state;sequence_of_events;expected_state;expected_action;
Specification of statechart Format
initial_state;event;next_state;actual_action;

tevent means event in the test case

event means event in the specification file of statechart

" + " means concatenation of strings

" $" here used for default state indicating that no transition at all

H OH O H H OH O H H R

read testscript file;

take one test case at a time from the testscript file;
read state

read tevent

read expected_state

read expected_action

event_count:= count (tevent) ;
#icheck if event field has more than one event
if (event_count > 1)

while(event_count >= 1)

{

temp_state_pair := state + eventl ;

read specification file;
take one line at a time;

CHAPTER 8. DESIGN SPECIFICATION OF STATETEST TOOL 39

actual_state_pair := initial_state + event;
compare temp_state_pair and actual_state_pair;

if (both are equal)

{
state := next_state;
temporary_action := actual_action;
}
elseif (tevent == event)
{
if(state contains intial_state || intial_state contains state)
{
if ((intial_state == default_state) ||
{
(state == default_state) &&
(next_state !'= default_state))
state := next_state;
temporary_action := actaul_action;
}
elseif ((state != deafult_state) &&
((next_state != default_state) ||
(expected_state != next_state)))
{
state := next_state;
temporary_action := actual_action;
}
}
}
else
{
exit;
}

read the statechart specification file till ending;

}

event_count := event_count - 1;

CHAPTER 8. DESIGN SPECIFICATION OF STATETEST TOOL 40

continue the process until event_count == 0;

to get pass/fail report

temp_state_pair := state + tevent;

acual_state_pair := intial_state + event;
expected_nextstate_action_pair := expected_state + expected_action;
actual_nextstate_action_pair := next_state + actual_action;
pass_count := 0;

fail_coubt:= 0;
if(event_count == 1)

#concate state with tevent
temp_state_pair := state + tevent;

#iconcate intial_state with event

acual_state_pair := intial_state + event;
if (temp_state_pair == actaul_state_pair)
{
if (expected_nextstate_action_pair == actual_nextstate_action_pair)
{
pass_count := pass_count + 1;
}
else
{
if ((expected_state == default_state) &&
(expected_action == actual_action))
{
pass_count := pass_count + 1;
}
else
{
fail_count := fail_count + 1;
}
}
}
else
{

if (tevent == event)

CHAPTER 8. DESIGN SPECIFICATION OF STATETEST TOOL 41

{
if ((state contains intial_state) ||
(intial_state contains state))

{
if (expect_nextstate_action_pair ==
actaul_nextstate_action_pair)
{
pass_count := pass_count + 1;
}
else
{
if ((expected_state contains next_state) ||
(next_state contains expected_state))
if ((expected_state == default_state)
&& (expected_action == actaul_action))
{
pass_count := pass_count + 1;
}
else
{
fail_count := fail_count + 1;
}
}
}
}

#to handle the innermost states of the hierarchy

else

{

{
if((intial_state contains any one of the transitions)
| | (any one of the transition contains intial_state)

&& (expected_action == actual_action))
{

pass_count := pass_count + 1;
}
else
{

fail_count := fail_count + 1;
}

CHAPTER 8. DESIGN SPECIFICATION OF STATETEST TOOL 42

to handle the situation having more than one event

elseif (event_count > 1)

{
if (state == expected_state)
{
if (expected_action == actual_action)
pass_count := pass_count + 1;
}
else
{
fail_count := fail_count + 1;
}
else
{
if ((expected_state contains state) ||
(state contains expected_state))
{
if (((state == default_state)&&
(expected_state == next_state))
| | ((expected_state == default_state)
&& (expected_action == actual_action)))
{
pass_count := pass_count + 1;
}
else
{
fail_count := fail_count + 1;
}
else
{

if ((expected_state contains state) ||
(state contains expected_state))

{

if(((state == default_state)&&

CHAPTER 8. DESIGN SPECIFICATION OF STATETEST TOOL 43

(expected_state == next_state))
| | ((expected_state == default_state)
&& (expected_action == actual_action)))
{
pass_count := pass_count + 1;
}
else
{
fail_count := fail_count + 1;
}
}
}
#to handle default_states
if (expected_state == "$")
{
if (temp_state_pair != actual_state_par)
{
pass_count := pass_count + 1;
}
else
{
fail_count := fail_count + 1;
}
}

continue the reading of the test script file till ending;

}

The overall view of the modules involved in this process are as shown in the
figure 8.3.

CHAPTER 8. DESIGN SPECIFICATION OF STATETEST TOOL 44

Pass/Fail
Report

Coverage
Metrics

Figure 8.2: Level 1 DFD for StateTest Tool

CHAPTER 8. DESIGN SPECIFICATION OF STATETEST TOOL 45

StatesInfo CopyStateHierarchy
mline counter |
ev_counter counter
states_hierarchy sh_array[]
file reading() :
= co
get ns() pyng
trans 1nfo()
TestSenptReading ReportGenerator
evVent coumnter | stre
pass count strt
fail count sa |
ts reading() main()
get fc()
get sc()

Figure 8.3: Initial Object Design for the StateTest tool

CHAPTER 8. DESIGN SPECIFICATION OF STATETEST TOOL 46

8.4 Components Of StateTest Tool

The modules involved in this StateTest tool are :
o TestScriptReading
o StatesInfo
o CopyStateHierarchy

o ReportGenerator

TestScriptReading

The TestScriptReading module does the following;:
o reads the test script file
o takes one test case at a time

o invokes the CopyStateHierarchy module to get the required statechart
specification information

o final report is given to the ReportGenerator

StatesInfo
The StatesInfo module does the following :
o reads the Statechart Specification file

o gets the information about hierarchy, transitions, state-key pair,and the
number of states (including default states)

o passes these results to the ReportGenerator

o passes hierarchy information to the CopyStateHierarchy module

CopyStateHierarchy
This module does the following :

o gets the states’ hierarchy information from the StatesInfo module

o gives the hierarchy information to the TestScriptReading module

ReportGenerator

After getting results from the TestScriptReading module, it does the following:
o generates Pass/Fail Report
o generates coverage metrics

The overall view of the interaction among all these modules is given by the
figure 8.4.

CHAPTER 8. DESIGN SPECIFICATION OF STATETEST TOOL

47

StatesInfo
nline counter
ev_counter
states lerarchy
file reading()
get ns()
trans info()
CopyStateHierarchy TestSenptReading
evelll counter |
counter pass count
fail count
sh_array(] 4
ts reading()
copying() get fc()
get sc()

Figure 8.4: Detailed Object Design for the StateTest Tool

CHAPTER 8. DESIGN SPECIFICATION OF STATETEST TOOL 48

8.5 Detailed Design Specification Of StateTest Tool

We have implemented StateTest using the Java programming language. We
have used the four classes, whose abstract description is given below.

// This is the specification for the Object-Oriented Design for the StateTest tool.
// It gives all the major classes and most of the major data members and operations
// for these classes. The major parameters of the various operations are also

// given, which shows how objects are being made visible. All the major object

// declarations are also given.

class ReportGenerator

{
// files reading by prompting

BufferedReader input = new BufferedReader(
new InputStreamReader(System.in));
String strt = input.readLine();
String strs = input.readLine();

//local variables declarations

int nstates;

int ntrans;

int tevents;

int dstates;

int tsize?2;

long start ;

long end ;

double total_events = tevents;

double event_coverage ;

double total_transitions ;

float transitions_exercised ;

double transition_coverage ;

double total_states ;

double state_coverage ;

double prod_events_states ;

double StateEvent_Coverage;
//0bjects creation and method invocation

StatesInfo fob = new StatesInfo();
fob.file_reading(strs);

nstates = fob.get_nsQ);
ntrans = fob.get_nt();

CHAPTER 8. DESIGN SPECIFICATION OF STATETEST TOOL 49

tevents = fob.get_te();

dstates fob.get_ds();

tsize2 = fob.get_tsize();

String sal[]l= new String[nstates];

sa = fob.sarray_info();

String tal[l = new String[ntrans];

ta = fob.trans_info();

String sh2[]1[] = new String[nstates] [2*nstates];

CopyStateHierarchy cob = new CopyStateHierarchy();

sh2 = cob.copying(nstates,sa);

TestScriptReading tso = new TestScriptReading();

tso.ts_reading(tsize2,ta,strt,sh2);

// method invocation

}

state_counter=tso.get_sc();
event_counter = tso.get_ec();
state_event_counter = tso.get_sec();
transition_counter = tso.get_tc();
start = tso.get_stime();

end = tso.get_etime();

pass_count = tso.get_pc();
fail_count = tso.get_fc();

class StatesInfo

{

//attributes of the class

String strt ;

String strs ;

int ns;

int nt;

int ds;

int te;

int inline_counter;

public String sh_arrayl[];

public String states_hierarchy[][];

static Vector states_file = new Vector();
Vector transition_file = new Vector();
Hashtable state_key_pair = new Hashtable();
Enumeration states_keys;

HashSet ev_counter = new HashSet();

//methods in the class StatesInfo

public void file_reading(String) ;
public int get_ns();
public int get_nt();
public int get_te();
public int get_dsQ);

CHAPTER 8. DESIGN SPECIFICATION OF STATETEST TOOL 50

public int get_tsize();
public static String[] sarray_info();
public String[] trans_info();

//methods variables:
String fin;
String num_states ;
String num_transitions ;
String num_default_states ;
String num_events ;
String dummy_states ;
String dummy_transitions ;
int ecount;
int entry_counter;

}

public class CopyStateHierarchy extends StatesInfo

{

//attributes of the class CopyStateHierarchy
String sh_array[]= new String[ns];
sh_array = si;

String states_hierarchy[][] = new String[ns] [2#ns];
int counter;
int x ;
int y ;
//method to copy the hierarchical information of the states

public String[][] copying(int z, String si[])
}
public class TestScriptReading extends CopyStateHierarchy
{

//attributes of the class TestScriptReading

int pass_count ;

int fail_count ;

int event_count ;

int event_countl ;

int event_count?2 ;

int testcase_count ;

long start ;
int field_count;

long end ;

long total_time;

int event_counter ;

int entry_counter ;

int state_counter ;

int state_event_counter ;

int transition_counter ;

int tsize ;

CHAPTER 8. DESIGN SPECIFICATION OF STATETEST TOOL 51

String transition_array[] = new Stringl[int];
String strt ;
// flags declaration

boolean TestFlag = false;

boolean dsflag = false;

boolean ds_entry_flag = false;

boolean hlevel_flag = false;

boolean hlevel_flagl = false;
//Hash sets

HashSet states = new HashSet();

HashSet eventsc = new HashSet();
HashSet states_events = new HashSet();
HashSet transitions = new HashSet();
HashSet dnext_states = new HashSet();
HashSet dsnext_states = new HashSet();
HashSet def_states = new HashSet();
HashSet defnext_states = new HashSet();

//methods declarations

public void ts_reading(int gl, String tri[], String zl, String shi[]1[]);
public int get_ec();
public int get_tc();
public long get_stime();
public long get_etime();
public double get_sec();
public int get_pc();
public int get_fc();

8.6 Explanation Of the Classes

The project consists of mainly four classes namely, StatesInfo, CopyStateHier-
archy, TestScriptReading, and ReportGenerator. The StatesInfo is used to get
required information from the input. It extracts the information about number
of states, number of transitions in the given input. CopyStateHierarchy is used
for the copying hierarchical information of the states. The class TestScrptRead-
ing is used for performing test cases. ReportGenerator is used to initialize the
objects and display the result.

In the next chapter, we describe the experiments performed using StateTest
and discuss the results.

Chapter 9

Simulation Results

9.1 Statechart Specification File

The StateTest tool takes the statechart specification file as an input n the form
generated by the Statechart Editior (SCE) tool, which was developed by a
group in the BARC (Bhabha Atomic Research Centre). For example,
for the figure 6.3, the code generated by the Statechart Editior is :

statechart
11 11 11 11

[IrY
[
[
[IY
[IY
[
[
[
[IrY
[
[

0010101010000000000000

0000000000101 000001000
0000000000000010100010
0000000O0OO0OOOOOOOOCOOOOOO
0000000O0OO0OOOOOOOOCOOOOOO
0000000O0OO0O0OOOOOOOCOOOOOO
00000OO0O0O0OOOOOOOOOOOOOOO
00000O0O0O0OOOOOOOOOCOOOOOO
0000000O0OO0OOOOOOOOCOOOOOO
0000000O0OOOOOOOOOCOOOOOO
0000000O0OO0OOOOOOOOCOOOOOO

000O0OTroot 04000000 2000 20000 111000000000000
10000 statel 0 46261 0000 293 2550 111000000000000O0
20000 state2 0 4 367 59 0 0 0 0 535 266 0 1110000 00000000
30000 error 0 4 242 301 0 0 0 0 387 376 0 111000 000000000
40000 013234503000000000000

50000s10411093 0000 185 147 0 11100 0000000000

6 0000s204 166 181 000 02352290 111000000000000
70000p1l 0440787 00004851430 111000000000000

52

CHAPTER 9. SIMULATION RESULTS 53

80000 01464171 03000000000000
90000 01234 15503000000000000
10000 0p204399 195 0 0 O O 483 240 0 1110000000000 0O
4 3011110 0 00 0 O 4 323 45 292 73 0

8307 1110 0 0 0 0 0 4 464 171 461 142 0

930 6 1110 0 0 0 0 0 4 234 155 234 181 0

5 1110 6 1110 8 e5 0 0 0 0 4 110 143 166 208 0O

6 1110 5 1110 8 e6 0 0 0 0 4 199 181 185 135 0

1 1110 3 1110 8 e3/error 0 0 0 O 4 262 255 305 301 0
2 1110 3 1110 8 e4/error 0 0 0 0 4 391 255 360 301 O
7 1110 10 1110 5 e7 0 0 0 0 4 407 136 422 195 0O

10 1110 7 1110 5 e8 0 0 0 O 4 449 195 443 143 0

1 1110 2 1110 9 e1 0 0 0 O 4 293 143 367 150 O

2 1110 1 1110 9 e2/initial 0 0 O O 4 367 187 293 192 0

In this representation many fields are not required for the StateTest tool.
It takes this form as an input, and internally generates the specification file
as a four tuple, as was seen in the previous chapter 8. The first line is just
name ’statechart’, the next line containing four 11’s, first two 11’s indicates the
number of states and number of transitions (including default states) in the
given model, remaining two 11’s are simply copies of the first two 11’s. The
next two consecutive lines containing 1’s indicating the number of states and
number transitions present. The next block represent the hierarchical state
information. It is of rectangular matrix of 11 by 22 (2*11). For each each
state, there are two columns reserved, one is for indicating normal states and
another for indicating orthogonal states. The next block meant for state
numbering. The last block indicates transitions among the states involved
in the given model.

9.2 Statechart Test Cases File
The test cases for the example statechart fig 6.3, are as follows :

#Specification file name :example_figure_specification.txt
#Test case file_name : example_figure_testcases.txt

#Test Case’ Format :

State;Sequence_0f_Events;Expected_State;Expected_Action;

1;el,e2,e6,eb,e6,el,e7,e8,e7,e4;3;error;
1;e6,e5;6;

5;el,e2;5;initial;

1;el,e2,e5;6;

5;e1,e7;10;

6;el,e7,e8;7;

CHAPTER 9. SIMULATION RESULTS 54

9.3 Demo Results

The demo results for the given Statechart specification and Test cases are as
follows:

Enter the Test Cases file name : example_figure_specification.txt

Enter the Statechart Specification file name : example_figure_testcases.txt
Number of states : 11

Number of tramnsitions:11

Inline counter value in reading State Info.is : 1

Inline counter value in reading State Hierarchy Info. is :11

Inline counter value in reading State - Key pair is :11

Key : State

3:error

2:state2

10:p2

1:statel

O:root

Inline counter value in reading Transition Info. is :11
default states:3
total events:8
ns:11

nt:11

te:8

ds:3

field count :4

Test Case : 1
1;el,e2,e6,eb5,e6,el,e7,e8,e7,e4;3;error;
expected state: 3

expected action:error

event(s) are: el,e2,e6,e5,e6,el,e7,e8,e7,ed
The number of events to be parsed are: 10

Temporary Event : el
Temporary State_Event Pair : 1lel

CHAPTER 9. SIMULATION RESULTS 55

Statechart Specification Checking is going on
4;1;
8;7;
9;6;
5;e5;6;
6;e6;5

b

I

1;e3;3;error;

2;e4;3;error;

7;e7;10;

10;e8;7;

1;e1;2;
Temporary State : 2
Temporary Action: Temporary Event : e2
Temporary State_Event Pair : 2e2
Statechart Specification Checking is going on
4;1;

2;e2;1;initial;
Temporary State : 1
Temporary Action:initial
Temporary Event : e6
Temporary State_Event Pair : 1le6
Statechart Specification Checking is going on
4;1;
8;7;
9;6;
5;e5;6;
6;e6;5;
Temporary Event : eb
Temporary State_Event Pair : 5eb
Statechart Specification Checking is going on
4;1;
8;7;
9;6;
5;e5;6;
Temporary State : 6
Temporary Action:
Temporary Event : e6

CHAPTER 9. SIMULATION RESULTS 56

Temporary State_Event Pair : 6e6
Statechart Specification Checking is going on
4;1;
8;7;
9;6;
5;eb5;6;
6;e6;5;
Temporary State : 5
Temporary Action:
Temporary Event : el
Temporary State_Event Pair : 5el
Statechart Specification Checking is going on
4:1;

37
6

-

b

8
9
5;
6
1

]

5;6;
6;5
;e3;3;error;

2;e4;3;error;

7;e7;10;

10;e8;7;

1;el1;2;
Temporary Event : e7
Temporary State_Event Pair : 2e7
Statechart Specification Checking is going on
4;:1;

8;7;

9;6;

5;e5;6;

b

b

o®

6;e6;5;
1;e3;3;error;
2;e4;3;error;
7;e7;10;
Temporary Event : e8
Temporary State_Event Pair : 10e8
Statechart Specification Checking is going on
4;1;
8;7;
9;6;
5;e5;6;
6;e6;5;
1;e3;3;error;
2;e4;3;error;
7;e7;10;
10;e8;7;
Temporary State : 7

CHAPTER 9. SIMULATION RESULTS 57

Temporary Action:
Temporary Event : e7
Temporary State_Event Pair : 7e7
Statechart Specification Checking is going on
4;1;
8;7;
9;6;
5;eb;6;
6;e6;5;
1;e3;3;error;
2;e4;3;error;
7;e7;10;
Temporary State : 10
Temporary Action:
Temporary Event : e4
Temporary State_Event Pair : 10e4
Statechart Specification Checking is going on
4;:1;
8;7;
;6

o®

;
5;
6;5;
;e3;3;error;
2;e4;3;error;
test cases’s state: 3
test case’s event:el,e2,eb6,eb5,e6,el,e7,e8,e7,ed
test cases’s action: error
Statechart Specification Checking is going on
4;1;
8;7;
9;6;
5;e5;6;
loop is in the super state spec. seq_events
this test case is passed

6;
;€635

b

o®

9
5’
6
1

field count :3
Test Case : 2

1;e6,e5;6;

expected state: 6

event(s) are: e6,eb
The number of events to be parsed are: 2
Temporary Event : e6
Temporary State_Event Pair : 1e6

Statechart Specification Checking is going on
4;1;

CHAPTER 9. SIMULATION RESULTS 58

Temporary Event : eb
Temporary State_Event Pair : 5eb

Statechart Specification Checking is going on
4;1;

8;7;

9;6;

5;e5;6;
Temporary State : 6
Temporary Action:

test cases’s state: 6

test case’s event:e6,eb

test cases’s action: error
Statechart Specification Checking is going on
4;:1;

8;7;

9;6;

5;eb5;6;
loop is in the super state spec. seg_events
this test case is passed

field count :4

Test Case : 3

5;el,e2;5;initial;

expected state: 5

expected action:initial
event(s) are: el,e2
The number of events to be parsed are: 2
Temporary Event : el
Temporary State_Event Pair : 5el
Statechart Specification Checking is going on
4;1;

8;7;

9;6;

5;eb5;6;

6;e6;5;

1;e3;3;error;

2;e4;3;error;

7;e7;10;

10;e8;7;

1;e1;2;
Temporary Event : e2
Temporary State_Event Pair : 2e2

CHAPTER 9. SIMULATION RESULTS

Statechart Specification Checking is going on
4;:1;

2;e2;1;initial;
Temporary State : 1
Temporary Action:initial
test cases’s state: 1
test case’s event:el,e2
test cases’s action: initial

Statechart Specification Checking is going on
4;:1;

8;7;

9;6;

5;e5;6;
loop is in the super state spec.seq_events
this test case is failed

field count :3

Test Case : 4
1;el,e2,e5;6;
expected state: 6
event(s) are: el,e2,eb
The number of events to be parsed are: 3
Temporary Event : el
Temporary State_Event Pair : lel
Statechart Specification Checking is going on
4;1;
8;7;
9;6;
5;eb;6;
6;e6;5;
1;e3;3;error;
2;e4;3;error;
7;e7;10;
10;e8;7;
1;e1;2;
Temporary State : 2
Temporary Action:

59

CHAPTER 9. SIMULATION RESULTS 60

Temporary Event : e2
Temporary State_Event Pair : 2e2
Statechart Specification Checking is going on

4;1;

8;7;

9;6;

5;e5;6;
6;e6;5;
1;e3;3;error;
2;e4;3;error;
7;e7;10;
10;e8;7;
1;e1;2;

2;e2;1;initial;
Temporary State : 1
Temporary Action:initial
Temporary Event : eb
Temporary State_Event Pair : 1eb
Statechart Specification Checking is going on
4;1;

8;7;

9;6;

5;eb5;6;

6;e6;5;

1;e3;3;error;

2;e4;3;error;

7;e7;10;

10;e8;7;

1;el1;2;

2;e2;1;initial;

test cases’s state: 1

test case’s event:el,e2,eb

test cases’s action: initial
Statechart Specification Checking is going on
4;:1;

8;7;

9;6;

5;e5;6;
loop is in the super state spec.seq_events
this test case is failed

field count :3

Test Case : b
5;el1,e7;10;
expected state: 10
event(s) are: el,e7

CHAPTER 9. SIMULATION RESULTS 61

The number of events to be parsed are: 2
Temporary Event : el
Temporary State_Event Pair : 5el
Statechart Specification Checking is going on
4;1;
8;7;
9;6;
5;eb;6;
6;e6;5;
1;e3;3;error;
2;e4;3;error;
7;e7;10;
10;e8;7;
1;el1;2;
Temporary Event : e7
Temporary State_Event Pair : 2e7
Statechart Specification Checking is going on

4;:1;

8;7;

9;6;

5;eb5;6;
6;e6;5;
1;e3;3;error;
2;e4;3;error;
7;e7;10;

test cases’s state: 10
test case’s event:el,e7
test cases’s action: initial
Statechart Specification Checking is going on
4:1;
8;7;
9;6;
5;e5;6;
loop is in the super state spec. seq_events
this test case is passed

field count :3

Test Case : 6

6;el,e7,e8;7;

expected state: 7

event(s) are: el,e7,e8

The number of events to be parsed are: 3
Temporary Event : el
Temporary State_Event Pair : 6el

Statechart Specification Checking is going on
4;1;

CHAPTER 9. SIMULATION RESULTS 62

b I

D N

b

8
9
5;
6
1
2

]

5;6;
;e6;5;
3;3
4

b

o®

3€9;
;e4;3;error;
7;e7;10;
10;e8;7;
1;el1;2;
Temporary Event : e7
Temporary State_Event Pair : 2e7

Statechart Specification Checking is going on

;error;

4:1;

8;7;

9;6;

5;e5;6;
6;e6;5;
1;e3;3;error;
2;e4;3;error;
7;e7;10;

Temporary Event : e8

Temporary State_Event Pair : 10e8

Statechart Specification Checking is going on
4;:1;

Temporary State : 7
Temporary Action:
test cases’s state: 7
test case’s event:el,e7,e8
test cases’s action: initial
Statechart Specification Checking is going on
4;1;
8;7;
9;6;
5;eb5;6;
loop is in the super state spec. seq_events
this test case is passed
Number of test cases performed are : 6
Number of test cases passed are : 4
Number of test cases failed are : 2

CHAPTER 9. SIMULATION RESULTS 63

Number of states covered are : 7
Number of states are : 7.0
State Coverage is 100%

Number of events are : 8.0

Number of events covered are : 7

Event Coverage is 87%

Number of states and events covered are : 12.0
Number of states and events pair are : 56.0
StateEvent Coverage is 21Y%

Number of transitions exercised are : 7

Number of transitions are : 8.0

Transition Coverage is :87%
Total time for 6 test cases is :630ms
Time for One test case is :105 ms

9.4 Summary Of the Results

From the getting results, it is obsevred that the number of test cases performed
are 6 of which 4 are passed and 2 are failed. The state coverage is 100% that
indicates given test cases covered all the states in the given model. It is also
interesting to see that transition coverage and Event coverage are the
same. Because, for the given Statechart model, i.e, figure 6.3, there is a distinct
transition for each distinct event. The State-Event coverage is low, because
given test cases had covered less number of state-evet pairs (12) when compare
to the acutally existed event-pairs in the given model are 56. Generally, this
metric is meant for negative testing. It is observed that time taken for a
test case is reasonable, i.e, simply 105ms. Observe that the given test cases are
having sequence of events also.

Chapter 10

Conclusions

In this project, we first performed a survey of software testing techniques, s-
tudied the requirements for testing statecharts. Subsequently, we studied some
commercially available software testing tools. Finally, we designed StateTest,
a tool for testing statecharts, implemented StateTest in Java and have per-
formed experiments with it.

10.1 Future Work

StateTest presently tests the Statechart specification that has hierarchy. This
hierarchy can be many levels. The code generated by the StateTest Edi-
tor(SCE) is very specific and reserved one column for each state to indicate
the orthogonal state presence. So using that field, one can easily extends the
functionality of the StateTest tool to test the Statechart specification having
orthogonality and history information. Note that code generated by the Stat-
echart Editor from the given model of Statechart, is one of the input to the
StateTest tool. That too, in the transition block, there is numbering for each s-
tate, that indicates, whether the state is normal, orthogonal, default, or history.
So, this may be used to handle orthogonal states and history states.

StateTest can also be extended and generalized to test statecharts having
different specification formats.

64

Bibliography

[1]

[10]

[11]

[12]

[13]

A. Peron A. Maggiolo-Schettini. A graph rewriting framework for state-
chart semantics. In Proceedings of Fifth International Workshop on Graph
Grammers and Their Application to Computer Science, Springer LNCS
vol 1078, pp 106-121, 1996.

A. Peron A. Maggiolo-Schettini. Retiming techniques for statecharts. In
Proceedings of FTRTFT’96, Springer LNCS vol 1135, pp 55-71, 1996.

M. Merro A. Maggiolo-Schettini. Priorities in statecharts. In Proceedings
of LOMAPS’96, Springer LNCS wvol 1192, pp 404-429, 1997.

S. Tini A. Maggiolo-Schettini, A. Peron. Equivalences of statecharts. In
Proceedings of CONCUR’96, Springer LNCS vol 1119, pp 687-702, 1996.

Jie Pan A.Jefferson Offutt, Zhenyi Jin. The dynamic domain reduction
procedure for test data generation. In Software-Practice and Theory, 1999.

Sinan Si Alhir. UML in a Nutshell : A Desktop Quick Reference. O'Reilly
& Associates,Inc.,, 1998.

Rumbaugh Booch and Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, Reading, MA, 1998.

Moshe Cohen. Scoping and Testing in State Based Models. i-Logix,Inc.,
223rd Avenue, Burlington, MA 01803.

IEEE COMPUTER. Ezecutable Object Modeling with Statecharts , Vol.
30, No. 7. ., 1997.

Bruce Powel. Douglass. Doing Hard Time: Using Object Oriented Pro-
gramming and Software Patterns in Real Time Applications. Addison-
Wesley, Reading, MA., 1998.

Bruce Powell Douglass. Real-Time UML,Efficient Objects for Embedded
Systems. Addison-Wesley-Longman, Spring, 1997.

Matt Bishop George Fink. Property-based testing;a new approach to test-
ing for assurance. In Technical Report CSE-95-15, 1996.

Rance Cleaveland Gerald Litten, Michael von der Beeck. A Compositional
Approach to Statechart Semantics. Institute for Computer Applications in
Science and Engineering, NASA Langley Research Center, Hampton, VA.

65

BIBLIOGRAPHY 66

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

D. Harel. Statecharts : A visual formalism for complex systems. In Science
of Computer Programming vol.8, 1987.

Pankaj Jalote. An Integrated Approach To Software Engineering. Narosa
Publishing House, New Delhi, 1999.

James J.Odell. Advanced Object-Oriented Analysis and Design Using UML.
Cambridge University Press and SIGS Books, New York, 1998.

F. Levi. A process language for statecharts. In Proceedings of LOMAPS’96,
Springer LNCS vol 1192, pp 388-403, 199.

K. Lieberherr and I. Holland. Assuring Good style for Object Oriented
Programs. IEEE Software, ., 1989.

Information Processing Limited (IPL). Testing state machines with adatest
and cantata. In Softwre Testing, White papers, 1999.

Brian Marick. The Craft Of Software Engineering,Subsystem Testing in-
cluding Object-Based Testing and Object-Oriented Testing. Prentice Hall
PTR, New Jersey, 1995.

Bertrand. Meyer. Object-Oriented Software Construction, Second Edition.
Prentice Hall, Upper Saddle River, NJ., 1997.

Pierre-Alain Muller. Instant UML. Wrox Press Ltd., Canada, 1999.

A. Peron. Statecharts, transition structures and transformations. In Pro-
ceedings of TAPSOFT’95, Springer LNCS wvol 915, pp 454468, 1995.

A. Peron and A. Maggilio-Schettini. Transitions as interrupts : A new se-
mantics for timed statecharts. In Proceedings of TACS’94, Springer LNCS
vol 789, pp 806-821, 1994.

Shari Lawrence Pfleeger. Software Engineering Theory and Practice. Pren-
tice Hall, New Jersey, 1998.

Tsun S.Chow. Testing software design modeled by finite-state machines.
In IEEFE Transactions on Software Engineering, 1978.

Bikram Sengupta. On the Sematics of Statecharts. Department of Com-
puter Science, State University of New York al.Stony Brook, NY 11794

Roger S.Pressman. Software Engineering, Fourth Edition. McGraw-Hill
Companies,Inc., New York, 1997.

