Security Issues in Mobile Agents

E C Vijil
School of Information Technology
vijil@it.iitb.ac.in

16 January 2002
Overview of the Talk

- The Mobile Agent Paradigm
- Security Threats and Counter Measures
- Security in Data Collection Agents
- Our Proposals
- Conclusion and Future Work
The Mobile Agent Paradigm

• An executing program that can migrate from machine to machine in a heterogeneous network

• Execution environment provided by supporting hosts

• Follows either a pre-assigned path or determines its itinerary dynamically
Client/Server vs Mobile Agents

- Client/Server
 - Data resides on the server
 - Services provided by the server
 - Interaction through the UI provided by the Server
 - Network Connection retained for the entire duration of the transaction
Client/Server vs Mobile Agents

- **Client/Server**
 - Data resides on the server
 - Services provided by the server
 - Interaction through the UI provided by the Server
 - Network Connection retained for the entire duration of the transaction

- **What if**
 - The user has very specific requirements?
 - Give me the list of books published this year by last year’s best selling author?
 - Application is data intensive?
 - Give me all postings referring to my paper in sci.crypt newsgroup
 - You cannot remain online for the entire duration of the transaction?
 - Dynamic Deployment of Software
Where are Mobile Agents useful?

- Everything that can be done using mobile agents can also be done using CS
- No ‘killer application’ for mobile agents
- Mobile Agents more efficient for some applications
 - Data Intensive Operations
 - Disconnected Operations
 - Dynamic Deployment of Software
 - Highly user specific applications
Security Threats

- Agent can attack the platform
 * Denial of Service
 * Unauthorized access
 * Masquerading

- Platform can attack the agent
 * Most difficult to tackle
 * Eavesdropping
 * Could be exposing proprietary algorithms
 * Privacy concerns
 * Alteration of data and code
 * Masquerading
 * Lowest price finding agent
Problem Scope

• Data Collection Agents

★ Problem of Malicious Hosts
 ★ Identifying the malicious host making deletions
 ★ Detecting attacks by Colluding Malicious hosts
Data Collection Agents

- Visit multiple sites to collect data
 - Typical Example: Shopping agents

- Security Issues
 - Modification of Data
 - Deletion of Data
 - Colluding Malicious hosts

- Ajanta Mobile Agent System
 - A mobile agent framework designed with security in mind

- Assumptions
 - There exists a reliable Public Key Infrastructure (PKI)
 - There are no intruders in the medium
Modification of Data by Malicious Hosts

- A Malicious host modifies the data added by other hosts

- Solution - ReadOnlyContainer
 - Array of data items collected from each host
 - Sign each data item using the host’s private key
 - Encrypt using the initiator’s public key if necessary
 - Data structures
 - V: item1, item2, item3
 - S: sign1, sign2, sign3
 - Owner verifies the signature of each data item
Deletion of Data by Malicious Hosts

- A Malicious host deletes the data added by other hosts
- Solution - AppendOnlyContainer

Notation
- \(E_A \) : Encryption using public key of A
- \(D_A \) : Encryption using private key of A
- \(\text{Sig}_A(X) \) : Signing of data X using private key of A
AppendOnlyContainer

- Initialization at the Owner’s site
 - $\text{checkSum} = E_{owner}(Na)$

- Updation of checksum by a host C adding dataitem X
 - $\text{checkSum} = E_{owner}(\text{checkSum} + \text{Sig}_C(X) + C)$

- Verification at the Owner’s site
 - The owner decrypts and separates the fields in the checksum
 - $D_A(\text{checkSum}) \Rightarrow \text{checkSum} + \text{Sig}_C(X) + C$
 - And verifies the signature
 - $E_C(\text{Sig}_C(X)) == \text{hash}(X)$
 - This is repeated for all data items
 - If verification succeeds we will be able to recover the original random nonce
AppendOnlyContainer - An Example

- Hosts A, B, C adds items X, Y, Z respectively - Vector V contains the individual data items.

- Initialization
 - $\text{checkSum} = E_O(\text{nonce})$

- Updation of checksum by host A adding dataitem X
 - $\text{checkSum} = E_O(E_O(\text{nonce}) + \text{Sig}_A(X) + A)$
 - V contains : X

- Updation of checksum by host B adding dataitem Y
 - $\text{checkSum} = E_O(\overbrace{E_O(E_O(\text{nonce}) + \text{Sig}_A(X) + A)} + \text{Sig}_B(Y) + B)$
 - V contains : X, Y
AppendOnlyContainer - An Example (Contd...)

- Updation of checksum by host C adding dataitem Z

 ★ $checkSum = E_O(E_O(E_O(nonce) + Sig_A(X) + A) + Sig_B(Y) + B) + Sig_C(Z) + C'$

★ V contains : X, Y, Z
Problems with AppendOnly Container

- Can only detect that a modification/deletion has taken place
- Cannot identify the host doing the modification/deletion
- Identification of the malicious host is important to prevent future modifications
Identifying malicious hosts - Proposed solution

- Main idea
 - AppendOnlyContainer signs each data item separately
 - Instead sign all the data carried by the agent together

- The checksum update procedure is modified as follows
 - Original: $\text{checkSum} = E_{\text{owner}}(\text{checkSum} + \text{Sig}_C(X) + C)$
 - Our Proposal: $\text{checkSum} = E_{\text{owner}}(\text{checkSum} + \text{Sig}_C(data) + C)$

- If verification fails while decrypting the data added by $Host_i$
 - Either $Host_i$ or $Host_{i+1}$ is the malicious host.
SecureContainer - An Example

- Hosts A, B, C adds items X, Y, Z respectively - Vector V contains the individual data items.

- Initialization

 \star $checkSum = E_O(nonce)$

- Updation of checksum by host A adding dataitem X

 \star $checkSum = E_O(E_O(nonce) + Sig_A(X) + A)$
 \star V contains : X

- Updation of checksum by host B adding dataitem Y

 \star $checkSum = E_O(E_O(nonce) + Sig_A(X) + A) + Sig_B(X, Y) + B)$
 \star V contains : X, Y
SecureContainer - An Example (Contd...)

- Updation of checksum by host C adding dataitem Z

 - \[\text{checkSum} = E_O \left(E_O \left(E_O (\text{nonce}) + \text{Sig}_A (X) + A \right) + \text{Sig}_B (X, Y) + B \right) + \text{Sig}_C (X, Y, Z) + C \]

 - V contains: X, Y, Z
Collusion in Data Collection Agents

- Two or more hosts jointly attacking an agent
- The colluding hosts can share information
- Can they do better than hosts acting individually?
Deletion of data by colluding malicious hosts

- Two or more hosts can collude to delete data items from the AppendOnlyContainer.

- Itinerary $H_1, H_2, H_3, \ldots, H_i, H_{i+1}, \ldots, H_j, H_{j+1}, \ldots, H_n$

- H_i does the following:
 1. It adds its own data D_i, to the AppendOnlyContainer.
 2. It recomputes the checksum. We shall denote this checksum by checkSum_i.
 3. It sends checkSum_i to H_{j+1}.

- H_{j+1} on receiving the agent does the following:
 1. It adds its own data D_{j+1}, to the AppendOnlyContainer.
 2. It recomputes the checksum. But, instead of using the current value of checksum carried by the agent, it uses checkSum_i.
 3. It removes data items D_i, \ldots, D_j from the AppendOnlyContainer.
Detecting Collusions

- Static Itinerary

- Dynamic Itinerary
 - Notification by hosts
 - Prevents disconnected operations
 - Querying by the agent initiator
 - Allows disconnected operations
 - Higher message overhead
Our Approach

- Both these solutions involve message overhead which can be avoided.

- Expected Number of Deleted Hosts (ENDH)

- Owner assumes k out of n hosts are malicious.

- $P(i)$ is the probability that exactly i hosts are deleted.

- $ENDH = \sum_{i=0}^{n-2} i \cdot P(i)$

- Notification by Proactive Hosts

- Querying by the Agent Initiator
Our Approach (Contd...)

- Notification by Proactive Hosts
 - Each host notifies the initiator with probability \(\frac{ENDH}{n} \)

- Querying by the Agent Initiator
 - Agent initiator queries with probability \(\frac{ENDH}{n} \)

- Experimentation
 - Notification by Proactive Hosts
 - Accuracy of more than 90% with about 67% reduction in the number of messages
 - Querying by the Agent Initiator
 - Accuracy of more than 90% with about 25% reduction in the number of messages
Conclusions

- Mobile Agents are a useful programming paradigm
- Its utility is limited if security threats are not mitigated
- Problem of Malicious hosts - Difficult to tackle
- Our solutions
 - Identify the malicious host in data collection agents
 - A probabilistic scheme for detecting collusions