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Abstract

An autonomous mobile agent is an executing program that can migrate
from machine to machine in a heterogeneous network under its own control.
An agent can either follow a pre-assigned path on the network or deter-
mine its itinerary based on the data collected from the network. Facilities
for highly dynamic movement of code and data enables a program to take
advantage of the locality of data. It also allows one to optimize between
the requirements of low bandwidth, high latency and disconnected network
connections.

This computing paradigm which exploits code, data and state mobility
raises many new security issues, which are quite different from conventional
client/server systems. Agent servers which provide an execution environ-
ment for the agents to execute can be attacked by malicious agents. Simi-
larly agents could be carrying sensitive information about their owners and
should be protected from tampering by malicious hosts. Also, the data col-
lected by the agent from one host should be protected from tampering by
another host in the itinerary.

In this report, we examine the various security issues that arise in mobile
agents in general with special reference to data collection agents. We pro-
pose an algorithm to identify the malicious host modifying the data in data
collection agents. Multiple hosts can collude to remove the data collected by
the agent from previous hosts. We give a probabilistic collusion detection
algorithm to detect deletion of data by colluding malicious hosts.



Acknowledgments

I would like to express my gratitude to Prof. Sridhar Iyer for his continuing
guidance, encouraging words and support. Thanks are also due to Vikram
Jamwal, Pradnesh Rane and Aneesh V for the fruitful discussions that we
had on the subject.

i



Contents

1 Introduction 1
1.1 The Mobile Agent Paradigm . . . . . . . . . . . . . . . . . . 1
1.2 Mobile Agent Applications . . . . . . . . . . . . . . . . . . . . 2
1.3 Security Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Scope of the Project . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Organization of this Report . . . . . . . . . . . . . . . . . . . 5

2 Security Threats and Counter Measures 6
2.1 Classification of Security Threats . . . . . . . . . . . . . . . . 6

2.1.1 Platform-to-agent . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Agent-to-platform . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Agent-to-Agent . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Counter Measures . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Conventional Approaches . . . . . . . . . . . . . . . . 9
2.2.2 Protecting the Agent from Malicious hosts . . . . . . . 10
2.2.3 Protecting the Agent Platform . . . . . . . . . . . . . 14

3 Security in Data Collection Agents 16
3.1 Modification of Data by Malicious Hosts . . . . . . . . . . . . 16

3.1.1 ReadOnlyContainer . . . . . . . . . . . . . . . . . . . 17
3.2 Deletion of Data by Malicious Hosts . . . . . . . . . . . . . . 17

3.2.1 AppendOnlyContainer . . . . . . . . . . . . . . . . . . 17
3.3 Identifying the malicious host . . . . . . . . . . . . . . . . . . 18

3.3.1 Initialization and Insertion . . . . . . . . . . . . . . . 19
3.3.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Collusion in Data Collection Agents 22
4.1 Attacks by Colluding Malicious Hosts . . . . . . . . . . . . . 22
4.2 Detecting Collusions . . . . . . . . . . . . . . . . . . . . . . . 23

ii



4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Expected Number of Deleted Hosts . . . . . . . . . . . 24
4.2.3 Detecting Collusions : Notification by Proactive Hosts 25
4.2.4 Detecting Collusions : Querying by the Agent Initiator 26

5 Experimentation 28

6 Conclusions and Future Work 30
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iii



Chapter 1

Introduction

1.1 The Mobile Agent Paradigm

Over the years, computers have evolved from huge monolithic devices with
very little memory to client–server environments that allow complex and
varied forms of distributed computing. From remote job–entry terminals to
Java applets, from magnetic tapes to distributed databases, various limited
forms of code and data mobility have always existed. Mobile agent is a
recent computing paradigm which allows complete mobility of cooperating
applications to supporting platforms to form a loosely-coupled distributed
system.

A mobile agent can be thought of as a software program, which can
travel from one place to another. The agent initiates the trip by executing
a “go” instruction which takes as an argument the name or address of the
destination. The next instruction in the agent’s program is executed in the
destination machine. In other words, a mobile agent is not bound to the
system where it begins execution. It has the unique ability to transport
itself from one system in a network to another. The ability to travel, allows
a mobile agent to move to a system that contains the object with which
the agent wants to interact, and then to take advantage of being in the
same host or network as the object [13, 14, 2]. A good survey of the mobile
agent design paradigm, different agent frameworks and possible applications
can be found in [6]. [27] gives common pitfalls in agent-oriented software
development.

Various forms of mobility exist in mobile code. Strong mobility is the
ability of a mobile code system to allow migration of both the code and the
execution state of an execution unit to a different computation environment.
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On the other hand, weak mobility is the ability of a mobile code system to
allow code transfers across different computing environments. The code can
contain some initialization data, but no execution state is transferred.

1.2 Mobile Agent Applications

In this section, we give some applications of mobile agents and show how
they offer a convenient and efficient methodology for designing distributed
applications.

Almost everything that can be done using mobile agents can also be done
using the conventional client/server programming model. In short, there is
no ‘killer application’ for mobile agents. However, advocates of the mobile
agent paradigm, look at mobile agents as a technology that can solve a lot
of problems in a uniform and efficient manner rather than as a technology
that enables new things that weren’t possible in any other way [12].

The three main domains where agents can be put to use are described
in this section [10].

Data Intensive Operations

Mobile Agents can be effectively used when a user with specialized needs
wants to use large amounts of data located at a remote site. As an example,
a user might want to count the occurrences of the word, ‘tamil’, in all the
postings of soc.culture.indian newsgroup. This requirement is very specific
and it is unlikely that any service provider will have a ready-made applica-
tion for this purpose. Also, transferring all the postings of the particular
newsgroup, to the local site may not be practical. In this scenario, an agent
programmed for the specific task can be deployed. Significant savings in
bandwidth can be achieved with very little application support from the
server.

Disconnected Operations

Mobile agents are very useful when support for disconnected operations are
required. Appliances like cellphones and PDAs could be connected to the
network through wireless links. They can release an agent programmed to
do a particular task into the network and disconnect themselves from the
network. The agent can complete its task autonomously and wait for the
device to connect again to deliver the results.
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Dynamic Deployment of Software

An organization might have hundreds of PCs or PDAs which need to be
configured with a new version of software. A mobile agent can be deployed
with the configuration logic to all these devices. No special support (ex-
cept that of an agent execution environment) is required on these devices.
Another possibility is to have these devices send agents that wait for inter-
esting events to happen at the remote server. As an example, an agent can
be deployed to notify a user through his cellphone whenever there is a stock
market crash.

1.3 Security Issues

Mobile agent systems provide a computing infrastructure upon which mobile
agents belonging to different and potentially untrusted users can execute.
The communication medium is inherently insecure and the different agents
and agent systems may have conflicting objectives. In this scenario, a vari-
ety of attacks can be conceived. Unauthorized users may eavesdrop network
traffic and observe agents in action, or worse an active intruder may modify
the code, data or state of an agent in transit. Agents may attack the agent
platform (host) supporting their execution to gain unauthorized access to
resources. Note that some of these problems are typical in conventional dis-
tributed (client/server) systems and are solved by cryptographic techniques.
But these techniques, should be adopted for use in mobile code systems.

A new security issue is introduced in mobile code systems: Protection of
mobile agents from malicious sites. Sites could tamper with agents’ code or
state, forcing them to disclose or change private information, run a program
with different initial states multiple times and observe the results, “brain-
wash” them to attack other agents/hosts, delay access to specific and critical
resources or deny services to enable other hosts or agents to gain unfair ad-
vantage. It is also possible for a group of agents and hosts to act together
toward the realization of the above goals.

Mobile code system security is very difficult to achieve because it violates
many fundamental assumptions that exist in most existing computer secu-
rity measures [3]. For example, an important assumption is that a user will
only execute programs which came from trusted, identifiable sources. And
whenever, the program attempts to perform an operation, it is assumed that
the user running the operation intends to perform that operation. Trojan
horses are a notable exception to this assumption. But there is no general
solution to the menace of Trojan horses, except that the user should be
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careful as to run only programs which come from trusted sources. This is no
longer possible to ensure in mobile code systems. It may not be possible or
desirable for a host to monitor the actions performed by an agent arriving
in its execution environment.

Another important problem is that of authentication. Methods based on
cryptography exist to ensure that a given person really sent a given message
and that the message was not altered in transit (see for instance [20]). But
solutions that work well in systems, with a small number of users do not scale
well to mobile code systems, where transactions involving strangers occur
frequently. If we are using public key cryptography for digital signatures,
then we should have reliable public key distribution mechanisms. But no
general and scalable solutions for the key distribution problem are known.
Besides, for a process which is migrating, determining the components in
the program which should be signed, and who needs to sign what is a major
semantic issue.

1.4 Scope of the Project

In this project, we look into the general issues in mobile agent security,
paying special attention to the problem of malicious hosts. A classification
of threats is given and some suggested solutions are examined in detail.

Then, we discuss the various security issues that arise in ‘data collection
agents’ – agents which visit various hosts to collect data from them. In
particular, the principle of AppendOnlyContainer, which can be used to
detect malicious modifications and deletions of data collected by the agent,
is described. The AppendOnlyContainer can only detect that a tampering
has been made. It cannot detect the host which tampered with the data.
We propose an extension to the AppendOnlyContainer mechanism, which
can identify the malicious host that tampered with the data.

Multiple hosts can collude against an agent to delete data items added by
other hosts. The AppendOnlyContainer mechanism will fail to detect these
deletions. We examine the problem of collusions in a variety of scenarios, in
sufficient detail. A trivial solution is available to detect such deletions if the
agent uses a static itinerary. However, the situation is complicated if the
agent decides on the itinerary dynamically during the course of its travel.
Deletion of data can be detected if we allow each host to communicate
directly with the agent initiator. But, this increases the message overhead
and makes disconnected operation of the agent initiator difficult. No general
solution is known to detect collusion in dynamic itineraries.
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We introduce a probabilistic scheme to handle this problem. Depending
on the agent initiator’s prior knowledge of the itinerary and threat percep-
tions, two methods to detect malicious deletions are given. One of these
methods can be used to detect collusions without sacrificing the ability of
the agent initiator to disconnect from the network while the agent is in
motion.

1.5 Organization of this Report

Chapter 2 classifies the threats in mobile code systems and illustrates why
conventional cryptographic techniques are insufficient. Some countermea-
sures suggested in the literature are also explained. The security issues in
data collection agents and our extension to the AppendOnlyContainer mech-
anism are given in chapter 3. Chapter 4 explains the problem of colluding
malicious hosts and our algorithm to detect such collusions. Our simulation
of this algorithm is explained in Chapter 5. Chapter 6 concludes this report
and suggests future work.
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Chapter 2

Security Threats and
Counter Measures

2.1 Classification of Security Threats

Threats in mobile code systems can be broadly classified as: threats emanat-
ing from an agent attacking an agent platform, an agent platform attacking
an agent,and an agent attacking another agent on the agent platform [9].
Various aspects and implications of these threats are explored in detail in
the following sections.

2.1.1 Platform-to-agent

This category represents the class of threats where hosts compromise the
agents. The set of threats include masquerading, denial of service, eaves-
dropping, and alteration. These attacks are most difficult to detect and
prevent, since the host has full control of the agents’ code and data.

Masquerading

An agent platform can masquerade as another agent platform in an attempt
to deceive a mobile agent as to its true destination. As an example, a mobile
agent entrusted with the task of finding the “lowest price” of a commodity
by visiting various virtual shops, can be fooled by a malicious masquerading
platform, by making it believe that all other shops have quoted a higher
price. Thus, the masquerading platform can harm both the visiting agent
and other agent platforms.
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Denial of Service

A malicious agent platform may ignore service requests, introduce unac-
ceptable delays during the execution of time critical tasks or even terminate
the agent without notification. Agents on other platforms waiting for the
results of a non-responsive agent can become deadlocked. An agent can also
become livelocked if more work is continuously generated for the agent by
the malicious platform.

Eavesdropping

The classical threat of eavesdropping in electronic communication is more
serious in mobile agent systems because an agent platform can, not only
monitor communications, but also every instruction executed by the agent,
all unencrypted or public data it brings to the platform and all data gen-
erated on the platform. An agent may be exposing proprietary algorithms,
trade secrets or other sensitive information. Even if the platform is unable
to automatically extract the secret information, it may be able to infer the
meaning from the types of services requested. For example, an agent may
be communicating with a travel agent. Though the exact details of the
communication is unknown to the platform, the communication may indi-
cate that the person on whose behalf the agent is acting is planning a trip
and will be away from home in the near future. The platform may sell this
information to a suitcase manufacturer who may begin sending unsolicited
advertisements, or even worse, the platform may share this information with
thieves who may target the home of the traveler [9].

Alteration

Alteration includes modification of data, state and code. Modification can-
not be prevented but it should be possible for another agent or platform to
detect unauthorized modifications. Modification is typically prevented by
using digital signatures. But digital signatures are useful only for signing
code and static data. The original author can digitally sign the agent’s code
and read–only data. Signatures cannot be used to detect malicious mod-
ifications to dynamic data modified at different hosts. A host can change
the data generated by other hosts in the agent’s itinerary. Such changes, if
not immediately detected, will be impossible to track down after the agent
has visited other platforms and undergone countless changes in state and
data. Check–pointing and rollback will be extremely difficult because an
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agent’s final state and data might be dependent on the behavior of count-
less autonomous agents whose behavior cannot be recreated. In other words,
re-execution will not always yield same results. Also, one cannot depend too
much on the virtual machine of the malicious platform because the platform
could be running a modified version of the virtual machine.

2.1.2 Agent-to-platform

This category represents the set of threats in which agents exploit secu-
rity weaknesses of an agent platform or launches attacks against an agent
platform. Often, an agent platform is required to execute programs from
potentially untrusted sources. This means that we can no longer say, “don’t
download and run untrusted programs”, any more. These threats include
masquerading, denial of service and unauthorized access.

Masquerading

An agent can take the identity of another agent to gain unauthorized access
to resources or to shift the blame for any actions for which it does not want
to be held accountable. The trust of an agent or the owner of an agent can
be destroyed by a masquerading agent.

Denial Of Service

Mobile agents can launch a denial of service attack by consuming excessive
amounts of the platform’s computing resources. There is also the possibility
of a program consuming excessive resources due to bugs in the program.
Practices to help mitigate these risks like configuration management, design
reviews and testing are not immediately applicable to mobile code systems
because the mobile computing paradigm requires a platform to accept and
execute an agent whose code may have been developed outside its organiza-
tion and has not been subject to any a priori review.

Unauthorized access

Access control mechanisms are used to prevent unauthorized users from
accessing resources. Resource allocation should be done in accordance with
the platform’s security policy. Authentication is used to identify an agent
by the agent platform. How to authenticate and trust an agent which might
have visited many untrusted hosts in its itinerary is a serious issue.
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2.1.3 Agent-to-Agent

This category represents the set of attacks in which agents exploit security
weaknesses of other agents or launch attacks against other agents. These
threats also include masquerading, denial of service, unauthorized access
and repudiation.

Masquerading

An agent can pose as a platform offering some services to another agent.
For example, an agent can pose as a “virtual shop” offering various goods
and services, and fool another agent into revealing credit card numbers.
As usual, masquerading harms both the agent that is deceived and whose
identity has been assumed.

Denial of Service

It is possible for a malicious agent to launch a denial of service attack against
other agents. For example, repeatedly sending messages to another agent
will cause undue burden on the message handling routines of the recipient.
If the agent is charged based on its utilization of CPU resources, this could
lead to a potential monetary loss to the victim.

Unauthorized access

If the access control mechanism of the platform is poor, then an agent can
directly invoke the public methods of other agents, or modify its code and
data. Eavesdropping by agents is also an issue.

2.2 Counter Measures

2.2.1 Conventional Approaches

Conventional techniques for achieving security in distributed systems can
also be put to use in mobile code systems. Public key cryptography, digital
signatures and session keys can be used for achieving various security goals.
As mentioned earlier, these methods cannot be directly applied but must be
adapted for use in mobile code systems.

To illustrate this point, difficulties in using traditional digital signatures
for authenticating mobile agents is explained in detail. A user can digitally
sign an agent on its home platform before it moves into a second platform.
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The second platform on receiving the agent can use this signature to verify
the integrity of the agent’s code, data and state. On the agent’s subsequent
hop to the next platform, the initial signature from the first platform remains
valid for the original code, data and state information. But nothing can be
said about the state or data generated on the second platform. The second
platform can optionally sign the state and data generated on the second
platform. But if the third platform does not trust the second platform,
then this signature does not mean much because the second host could
have modified the state and data arbitrarily before signing. Hence, even if
the third platform trusts the original agent, it cannot allow the agent to
execute with its complete privileges because the agent has passed through
an untrusted platform.

2.2.2 Protecting the Agent from Malicious hosts

Since platforms and hosts have complete control over the agents using their
executing environments, counter measures for protecting agents rely mainly
on detection measures to act as a deterrent. Some general techniques for
protecting an agent are explained below.

Computing with Encrypted Functions

Computing with Encrypted Functions [19] explores a method to ensure com-
putation privacy of mobile code in an untrusted host. It also explains a
method by which a mobile agent remotely signs a document without dis-
closing the user’s private key.

The problem of computation privacy arises because of the inability of
the agent to prevent disclosure of the program it wants to have executed. If
we have a method by which we can encrypt a program, and let a platform
execute it without the need for decryption, this problem is essentially solved.
In particular, we have code privacy and code integrity in the sense that
specific tampering is not possible. The problem is stated by Sander and
Tschudin as follows:

Alice has an algorithm to compute a function f . Bob has an
input x and is willing to compute f(x) for her, but Alice wants
Bob to learn nothing substantial about f . Moreover, Bob should
not need to interact with Alice during the computation of f(x).

We can distinguish between a function and the program that implements
it. Functions can be encrypted such that their transformation can again be
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implemented as programs. The resulting program will consist of cleartext
instructions that a processor understands. But the processor will not un-
derstand the “program’s function”.

Suppose that we can transform the function f to some other function
E(f). Let P (f) denote the program which implements the function f . A
protocol for non-interactive computing with encrypted functions is given
below.

1. Alice encrypts f .

2. Alice creates a program P (E(f)) which implements E(f).

3. Alice sends P (E(f)) to Bob.

4. Bob executes P (E(f)) at x.

5. Bob sends P (E(f))(x) to Alice.

6. Alice decrypts P (E(f))(x) and obtains f(x).

A general scheme based on the above idea is described here. We encrypt
a polynomial f by composing it with another function s. Assume f is a
rational function (the quotient of two polynomials) and s is also a rational
function that is easily invertible. Now, let E(f) := s ◦ f . For decrypting,
Alice inverts s and calculates s−1 ◦ E(f).

Decomposition Problem: Given a multivariate rational function h
that is known to be decomposable, find s and f such that h = s ◦ f .

No polynomial time algorithm for decomposing multivariate rational
functions is known. And, ways to generate rational functions s for encrypt-
ing f that are easy to invert have been proposed by Shamir [21].

If f is a signature algorithm with an embedded key, the agent can sign
a document without the platform discovering the key. Similarly, if f is an
encryption algorithm containing an embedded key, the agent can encrypt
information at the platform.

The idea is elegant and the challenge is to find appropriate encryption
schemes that can transform arbitrary functions. Algebraic homomorphic
encryption schemes have been proposed as a possible candidate. A lot of
work needs to be done in this field to explore various possibilities.
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Environmental Key Generation

Environmental Key Generation [17] allows an agent to take a particular
course of action when an environmental condition becomes true. The idea
is similar to the notion of ephemeral keys. The key is randomly created
at the time of use and destroyed immediately afterward. In this setup,
the agent will have encrypted data/code and a method to search through
the environment for the data needed to generate the decryption key. The
data can be located at Usenet news groups, web pages etc. When the proper
environmental information is located, the key is generated and the encrypted
code is decrypted and acted upon. Without the environmentally supplied
input, the agent cannot decrypt its own message. In other words, it is
clueless as to its own function and is thus resistant to analysis aimed at
determining its function.

Let N be an integer corresponding to an environmental observation, H
a one–way hash function, and M the hash of the observation N needed for
activation. Note that, N is not known to the agent and only H (N) is known.
We can have a simple condition like

if H (N) = M then K := N

to generate the key. This technique ensures that a platform or any eaves-
dropper cannot uncover the triggering message or response action by directly
reading the agent’s code.

This approach has several weaknesses. A platform can easily modify the
agent to delay the execution of code after it has been decrypted and the
code can be thoroughly analyzed before execution. Also, some platforms
limit the capability of an agent to execute dynamically created code for
security reasons.

Partial Result Encapsulation

An approach used to detect tampering by malicious hosts is to encapsulate
the results of an agent’s action, at each platform visited for subsequent ver-
ification. The verification can be done either when the agent returns to the
point of origin or at intermediate points. Encapsulation could use different
mechanisms for different objectives. Digital signatures can be used for in-
tegrity and accountability and encryption for ensuring confidentiality. The
encapsulation can be done by the agent, platform or by a trusted third party.
Though the solution is not general, it allows certain types of tampering to
be detected.
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Mutual Itinerary Recording

An agent’s itinerary can be recorded and tracked by another cooperating
agent and vice versa, in a mutually supportive arrangement [18]. When an
agent moves to another platform, an agent conveys the last platform, current
platform and next platform information to the cooperating peer through an
authenticated channel.

Hosts are given a color. Given a particular host, a white host is com-
pletely trusted. Hosts which might be malicious are grey. Those hosts which
might collaborate with at least one other host in an attack against a mobile
agent is red. The security of mobile agents against attacks by malicious
hosts can be improved by distributing critical operations of a mobile agent
between two cooperating agents, each of which operates in one of two dis-
junct nonempty sets of hosts Ha and Hb which holds the following condition:

No red host of either set is willing to cooperate with a red host
of the other set.

The idea is to split or secretly share data that might be stolen by a single
host.

Itinerary Recording with Replication and Voting

Rather than a single copy of an agent performing a computation, multiple
copies are used. Even if a malicious agent corrupts a few copies, enough
replicates survive to successfully complete the operation. This approach is
suitable where agents can be duplicated without problems and survivability
is the major concern.

Obfuscated Code

Most mobile agent frameworks [7, 26, 22, 24], use the Java programming
language because of its portability and platform independence. The Java
source code is converted into platform independent bytecode (class files)
which retains most of the information in the source code [16]. Standard
techniques in compiler optimization like dataflow analysis and control flow
analysis (see [1]) can be used to get valuable information about the structure
and semantics of programs. Mocha [25] was one of the first decompilers for
Java. Disassemblers and decompilers have even been constructed for purely
binary programs [4].

An agent is a blackbox if its code and data cannot be read or modified
at any time [8]. The main problem is that there is no known method or
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algorithm for providing blackbox protection. Computing with encrypted
functions is cited as an example, but serious reservations about the limited
range of input specifications that apply are raised. A time limited blackbox
implies that code or data of an agent cannot be read or modified within
a known time interval and that after the interval, the attacks do not have
effects. For example we can declare that electronic coins become invalid
after an expiry date. If such a quality can be ensured, then strong encryption
algorithms are not required and obfuscation algorithms will suffice.

The idea is to transform a program into another program which is dif-
ficult to understand, but functionally identical. A taxonomy of obfuscating
transformations can be found in [5]. The implementation of a Java obfusca-
tor is explained in [15].

A main drawback of this kind of solution is the lack of an approach for
quantifying the protection interval provided by the obfuscation algorithm.
Further, no techniques are known for establishing the lower bounds on the
complexity for an attacker to reverse engineer an agent’s code.

2.2.3 Protecting the Agent Platform

An agent should not be allowed to harm the agent platform or other agents.
Techniques for protecting the Agent Platform from a malicious agent is
explained in this section.

Software-Based Fault Isolation

This is a method of isolating application modules into distinct fault domains
enforced by software. A module can do whatever it wants in its fault domain
but, it may not write or call (or optionally read) an address outside its fault
domain except through an explicit cross-fault-domain call. This technique
is known as sandboxing. Fault isolation can also be done in hardware by
putting each module in a different address space but this is very expensive
because there is a lot of runtime overhead for each context switch.

Safe Code Interpretation

Mobile code systems are often developed using interpreted script or program-
ming language because this can support agent platforms on heterogeneous
computer systems. Java and Tcl are the most common examples. Security
features can be built into the interpreter to prevent possible misuse.

The Java programming language has security features built into its in-
terpreter. It uses the sandbox security model to isolate memory and method
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access. Security is ensured through a variety of mechanisms. Static type
checking in the form of byte code verification is done before execution. Dy-
namic checking is done at runtime. A separate namespace is maintained for
untrusted downloaded code. A security manager mediates all accesses to
system resources. Support for dynamic code downloading, digitally signed
code, remote method invocation, object serialization and platform hetero-
geneity make it an ideal platform for agent development.

Safe Tcl is a scripting language used in the early development of the
Agent Tcl System. In Safe Tcl, a second “safe” interpreter pre-scans any
harmful commands from being executed by the main Tcl interpreter. Dif-
ferent safe interpreters can be used to enforce varying security policies.

Signed code

A digital signature can be used as a means of confirming the authenticity
of an object, its origin and its integrity. The semantics of a signature varies
widely. For example, a signature can indicate the author of the code, but
not that the code will perform without fault or error.

We examine the security issues in data collection agents and some solu-
tions in the next chapter.
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Chapter 3

Security in Data Collection
Agents

Data collection agents are mobile agents which visit various hosts to collect
data from them. For example, a ‘shopping agent’ could visit various ven-
dors of a product to collect quotations for the product. Mobile agents are
especially suitable for such applications because the initiator of the agent
need not remain connected to the network after sending the agent.

The Ajanta Mobile Agent System [24, 23] has extensive support for Data
Collection Agents. They provide three containers - ReadOnlyContainer, Ap-
pendOnlyContainer and TargetedState for secure transmission of data [11].
In this chapter we review the security issues in data collection agents, with
special reference to the features offered by the Ajanta System.

3.1 Modification of Data by Malicious Hosts

Often, a mobile agent has to visit a sequence of hosts and malicious modifi-
cations to data generated by one host, by another host needs to be detected.
As an example, a shopping agent may migrate to various vendor’s servers,
collecting quotations for goods to be purchased. Any modifications done by
a vendor to the quotations collected from an earlier vendor must be detected.

The ReadOnlyContainer mechanism in the Ajanta System can be used
to detect such modifications.
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3.1.1 ReadOnlyContainer

Any modifications made to data in the ReadOnlyContainer can be detected
by subsequent hosts. A simple digital signature mechanism is used to achieve
this. The data to be protected is signed by the host adding it. Any other
host can verify the signature.

Note that declaring the data as a constant in the programming language
used to code agents is not sufficient. For example an object declare as final
(in the Java programming language), could be modified by another host
running a non-standard version of the Java Virtual Machine.

3.2 Deletion of Data by Malicious Hosts

Often, an agent needs to collect data from the sites it visits and wishes to de-
tect any modification or deletion of data by subsequent sites in the itinerary.
The AppendOnlyContainer, of the Ajanta System uses a combination of
digital signatures and incremental signing to detect such modifications and
deletions.

3.2.1 AppendOnlyContainer

This section examines the working of AppendOnlyContainer in the Ajanta
Mobile Agent System. The following notation will be used throughout this
report.

EA : Encryption using public key of A.
DA : Encryption using private key of A.
SigA(X) : Signing of data X using private key of A.

Initialization and Insertion

The AppendOnlyContainer object contains a vector of objects to be pro-
tected, along with a vector of their corresponding digital signatures and the
identities of the signers. It also contains a checksum which is used to de-
tect tampering. When an agent object is created, its AOC is empty. The
checksum is initialized by encrypting a nonce with the agent owner’s public
key:

checkSum = Eowner(Na) (3.1)

This nonce Na is kept secret and not carried by the agent. In the shop-
ping agent example, at any stage during its travels, the agent program can
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collect quotations from various vendors and insert the value in AOC. The
check-in procedure requests the current vendor’s agent server C to sign the
data object to be inserted, X, using its own private key, DC . The data
object, its signature and the identity of the signer are inserted into the cor-
responding vectors in the AppendOnlyContainer. Then, the checksum is
updated as follows:

checkSum = Eowner(checkSum + SigC(X) + C) (3.2)

The signature and the signer’s identity are concatenated to the current
value of the checksum. This is then encrypted using the agent’s public key,
rendering it unreadable by anyone other than the agents’s owner.

Verification

When the agent returns home, the owner can verify the integrity of the data.
The verification process works backwards, decrypting the nested encryptions
of the checksum, and verifying the signature corresponding to each item
stored.

DA(checkSum) ⇒ checkSum + SigC(X) + C (3.3)

The verify procedure checks for:

EC(SigC(X)) == hash(X) (3.4)

If verification succeeds for all iterations, we will be able to recover the
original random nonce NA.

If any mismatches are found, the agent owner knows that the corre-
sponding object has been tampered with, and needs to be discarded. It also
implies that the objects extracted up to this point were valid, while other
objects whose signatures are nested deeper within the checksum cannot be
relied upon.

3.3 Identifying the malicious host

A malicious host can modify/delete the data collected from previous hosts
visited by the agent. When the agent returns to the agent owner’s site the
verification mechanism tests the integrity of the data. The tampered data
can be detected by the invalid checksum value. The malicious host however
is not detected and can continue to tamper with the agent’s data.
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We suggest a modification to the AppendOnlyContainer mechanism which
is shown in Figure 3.1. The principal idea is to sign the entire data carried
by the agent, when the host needs to insert a data item.

Assumptions

We assume that all hosts in the itinerary adds some data to the container,
the link is free of active intruders and that there is only one malicious host.

3.3.1 Initialization and Insertion

The checksum is initialized by encrypting a nonce Na with the agent A’s
public key EA as before. This nonce Na is kept secret and not carried by
the agent. At any stage during its travels, the agent program can collect
quotations from various vendors and check the value into the container. The
check-in procedure requests the current vendor’s agent server C to sign the
entire vector of objects using its own private key DC . The object is inserted
in the datacontainer vector and the checksum is updated as follows:

checkSum = EA(checkSum + SigC(datacontainer) + C) (3.5)

The current agent server signs the entire data SigC(datacontainer). The
signature SigC(datacontainer) and the signer’s identity C are concatenated
to the current value of the checksum. This is then encrypted using the
agent’s public key, rendering it unreadable by anyone other than the agents’s
owner. Note that the entire contents of the data collected by the agent so
far is signed by the host while adding its data.

3.3.2 Verification

Verification of the data is similar to the AOC scheme. The verification pro-
cess works backwards, decrypting the nested encryptions of the checksum,
and verifying the signature corresponding to the data stored.

DA(checkSum) ⇒ checkSum + SigC(data) + C (3.6)

where C is the current signer, and data is the data object in the objects
vector. The DA is the private key of A. The verify procedure checks for:

EC(SigC(data)) == hash(data) (3.7)
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class AppendOnlyContainerExtn{
Vector dataContainer; // the objects to be protected
byte[] checksum;
AppendOnlyContainerExtn(Publickey k, int nonce){

dataContainer = new Vector();
checksum = encrypt (nonce); // with key k

}

public void checkIn(Object X) {
dataContainer.addElement(X);
sig = host.sign(dataContainer);
checksum = encrypt (checksum + sig + currenthost);

}

public boolean verify (PrivateKey k, int nonce){
loop{

checksum = decrypt(checksum);
// Separate signature and hostname from checksum
and verify this signature.
// If verification fails, either hostname
or previoushost is the malicious host.
previoushost = hostname;

}until what’s left is the initial nonce;
}

}

Figure 3.1: The Extended AppendOnly Container

If verification succeeds for all iterations, we will be able to recover the
original random nonce NA.

If any mismatches are found, the agent owner knows that the corre-
sponding object has been tampered with. The objects extracted up to this
point are valid, but subsequent objects whose signatures are nested deeper
within the checksum cannot be relied upon.

Let us assume that hosts H1,H2, · · · ,Hi,Hj , · · · ,Hn were visited by the
agent, in that order. Without loss of generality, let the verification fail while
verifying the data added by Hi. This will happen only if the tampering was
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done by Hi after generating the checksum or by Hj before generating the
checksum. Thus, either Hi or Hj is the malicious host.

In this chapter, we examined mechanisms to detect modifications and
deletions to data collected by data collection agents. We proposed an exten-
sion to the AppendOnlyContainer mechanism which can identify the mali-
cious host modifying or deleting the data. In the next chapter, we see how
two or more hosts can act together to delete data items from a mobile agent
without getting detected. We also give a probabilistic collusion detection
algorithm to detect such modifications.
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Chapter 4

Collusion in Data Collection
Agents

AppendOnlyContainer can detect modifications and deletions to data, if
they are carried out by individual hosts without any help from other hosts
in the itinerary. However, two or more hosts can collude to delete data items
added by other hosts without getting detected. For example, in a shopping
agent, two vendors can collude to remove the quotations added by a third
vendor. In this chapter we examine the problem of collusions in detail. We
also propose a probabilistic collusion detection scheme to detect collusions.

4.1 Attacks by Colluding Malicious Hosts

Let us suppose that an agent wishes to collect data from hosts H1, H2, H3,
· · ·, Hi, Hi+1, · · ·, Hj , Hj+1, · · ·, Hn, in that order. Further, assume that
hosts Hi and Hj+1 are both malicious and willing to collude. Host Hi on
receiving the agent, does the following:

1. It adds its own data Di, to the AppendOnlyContainer .

2. It recomputes the checksum as given in equation (3.2). We shall denote
this checksum by checkSumi.

3. It sends checkSumi to Hj+1.

Hj+1 on receiving the agent does the following:

1. It adds its own data Dj+1, to the AppendOnlyContainer .
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2. It recomputes the checksum as given in equation (3.2). But, instead
of using the current value of checksum carried by the agent, it uses
checkSumi.

3. It removes data items Di, · · · , Dj from the AppendOnlyContainer

Note that the agent owner or subsequent hosts in the itinerary has no way
of detecting that items Di, · · · , Dj have been removed from the container.
In short, colluding hosts hosts are capable of removing data items, escaping
detection. However, they are incapable of making modifications to data
items added by other hosts. We give some solutions to tackle this problem
in the next section.

4.2 Detecting Collusions

The problem of colluding malicious hosts was explained in Section 4.1. If
the agent owner knows the hosts visited by the agent in advance, then this
problem is trivially solved. The agent owner can make all hosts add data
to the container (null data, if the host has none). When the agent returns,
the owner can check if all hosts visited by the agent have added data to
it. If the data item corresponding to a host H is missing, then the data
has been removed as a result of collusion, unless H itself is a malicious
host. The particular data items which are missing also give an indication of
the malicious hosts. However, a malicious host can deliberately keep away
from adding its dataitem to the container with the aim of implicating its
neighbors of collusion.

4.2.1 Overview

Depending on the requirements of the agent initiator, two approaches can
be taken to detect collusions:

• All the hosts that added data to the agent can notify the agent ini-
tiator. If the initiator receives notification from a host and its data
is missing from the container, then it could imply deletion of data by
colluding malicious hosts. But, this prevents disconnected operations
and involves significant message overhead.

• The agent initiator can query various hosts which it believes was vis-
ited by the agent. This allows disconnected operations but involves a
greater message overhead.
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We argue that all hosts need not participate in the collusion detection
process. The idea is to reduce the number of messages exchanged, while not
significantly reducing the ability of the initiator to detect collusions. We
introduce the notion ‘Expected Number of Deleted Hosts’ to achieve this
objective.

4.2.2 Expected Number of Deleted Hosts

Let n be the number of hosts visited by the agent. If n is not known to
the agent initiator in advance, then n is estimated by the owner depending
on the application. Also, let k be the owner’s estimate of the number of
malicious hosts and m = n − k. For simplicity, let us assume that k = 2.
The argument can be easily extended for k > 2.

Assuming that the actual number of malicious hosts is also 2 (our esti-
mate was very accurate), the number of hosts whose data items get deleted
can be anywhere from 1 to n − 2. More hosts are deleted if the malicious
hosts are placed far apart and vice versa. The Expected Number of Deleted
Hosts (ENDH) is the average number of hosts that are deleted, assuming all
permutations of hosts are equally likely.

If P (i) is the probability that exactly i hosts are deleted, then,

ENDH =
n−2∑
i=0

i.P (i) (4.1)

For n hosts, there are n! different itineraries. We assign a probability of
1
n! to each of them.

For k = 2, let us calculate the number of permutations in which at least
one host will be deleted. As an analogy, consider a linear arrangement of m
honest hosts. Such an arrangement creates a total of m + 1 gaps between
the hosts. If we denote the hosts by Hi and the gaps by Gi, the arrangement
can be represented as G1,H1, G2,H2, · · · , Gm,Hm, Gm+1. The two malicious
hosts can fit into the m + 1 gaps created by the m hosts. This can be done
in

(
m+1

2

)
ways. Further, the m honest hosts can be permuted in m! ways

and the two malicious hosts can be permuted in two ways. Hence the total
number of permutations is given by 2.m!.

(
m+1

2

)
.

Similarly, P (i), the probability that exactly i hosts are deleted, can be
calculated. To delete i hosts, the two malicious hosts should occupy the
gaps {Gk, Gk+i}, 1 ≤ k ≤ (m− i + 1). For example, a single host is deleted
when the two malicious hosts occupy the first and third positions, second
and fourth positions, (m− 2)nd and mth positions and so on. Therefore, to
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delete a single host, the two malicious hosts can occupy m different positions.
To delete two hosts, the malicious hosts can occupy m−1 different positions.
And to delete i hosts, the malicious hosts can occupy m − i + 1 different
positions. Since the two malicious hosts can be permuted in 2 different ways
and the m honest hosts can be permuted in m! ways, P (i), the probability
that exactly i hosts are deleted is given by,

P (i) =
2.m!
n!

.(m− i + 1) (4.2)

Hence,

ENDH =
2.m!
n!

.
m∑

i=1

i.(m− i + 1) (4.3)

4.2.3 Detecting Collusions : Notification by Proactive Hosts

The basic idea is to allow the hosts which add data to the agent to notify
the initiator that it has added some data. If we allow all hosts to notify the
initiator, then the problem is essentially solved. However, this creates a lot
of message overhead and makes disconnected operations difficult. The idea
is to reduce the number of messages, while not sacrificing too much on the
ability of the initiator to detect collusions.

The actual number of ways in which a host can be deleted, depends
upon its position in the itinerary. But a host H has no way of determining
its exact position in the itinerary because the deletion of few hosts could
have happened before the agent reaches H. In this scenario, ENDH is a
useful measure, which can help H decide whether or not it should send a
message to the initiator. For a fixed n, H should send a message with a
higher probability if the value of ENDH is high and vice versa. Since, a
host in the itinerary (other than the initiator) has very little idea about
its exact position, n and k, it cannot reliably calculate ENDH. Moreover, a
single message from one of the deleted hosts is sufficient to determine that
a deletion due to collusion has occurred.

Hence, we require the initiator to calculate ENDH. The fraction ENDH
n ,

is a good measure of whether or not a host should a message. After adding
its data to the container, the host will determine whether or not to send
a message by throwing a biased coin. It sends a message with probability
ENDH

n . This leads to a tremendous decrease in the number of messages sent,
while not losing too much on the ability to detect collusions.
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Messages cannot be received by the agent initiator if it has disconnected
itself from the network after releasing the agent. In this case, another host
in the itinerary which is known to be honest or any other secure host can
be configured to receive the notification messages.

4.2.4 Detecting Collusions : Querying by the Agent Initiator

If the hosts need to disconnect after sending the agent, then an alternative
scheme can be used to detect collusions. Instead of making the host send
notification messages to the initiator, the initiator can query the various
hosts. The ENDH parameter can be used here too. The host will send
query messages to various hosts with probability ENDH

n . If a host responding
the query message has added data to the container, it will respond with a
positive response. Otherwise, it responds in negative. If a host responds
positively and its data item is absent in the container, it possibly implies
deletion of data through collusion and the initiator can take affirmative
action. Note that the initiator could be sending queries to hosts which
never received the agent. This cannot be avoided when the initiator has
incomplete knowledge of the hosts which actually added the data.

A problem with this approach is that a malicious host can deliberately
send a positive response to the query even if it has not added any data.
This would make the agent initiator believe that a collusion had taken place
when no collusion exists.

If k > 2, various scenarios are possible. Malicious hosts can collude in
many different ways. This makes a general analysis impossible. However, if
the collision model is decided upon, the ENDH can be calculated, using the
same principle.

A summary of various security threats and the solutions that can be
applied is given in Table 4.1.
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Itinerary Type of Threat Opponent Security Level Solution
Static Modfication Single Host Detection Signatures
Static Modification Single Host Identification of Malicious Host AppendOnlyContainerExtn
Static Modification Multiple Hosts Detection Signatures/AppendOnlyContainer
Static Modification Multiple Hosts Identification of Malicious Host AppendOnlyContainerExtn
Static Modification Colluding Hosts Detection of Modification Signatures/AppendOnlyContainer
Static Modification Colluding Hosts Identification of Malicious Host AppendOnlyContainerExtn
Static Deletion Single Host Detection of collusion AppendOnlyContainer
Static Deletion Single Host Identification of Malicious Host AppendOnlyContainerExtn
Static Deletion Multiple Hosts Detection of Modification AppendOnlyContainer
Static Deletion Multiple Hosts Identification of Malicious Host AppendOnlyContainerExtn
Static Deletion Colluding Hosts Detection of collusion Trivial Modification to AOC
Static Deletion Colluding Hosts Identification of Malicious Host Trivial Modification to AOC
Dynamic Modfication Single Host Detection Signatures/AppendOnlyContainer
Dynamic Modification Single Host Identification of Malicious Host AppendOnlyContainerExtn
Dynamic Modification Multiple Hosts Detection Signatures/AppendOnlyContainer
Dynamic Modification Multiple Hosts Identification of Malicious Host AppendOnlyContainerExtn
Dynamic Modification Colluding Hosts Detection of Modification AppendOnlyContainerExtn
Dynamic Modification Colluding Hosts Identification of Malicious Host AppendOnlyContainerExtn
Dynamic Deletion Single Host Detection AppendOnlyContainer
Dynamic Deletion Single Host Identification of Malicious Host AppendOnlyContainerExtn
Dynamic Deletion Multiple Hosts Detection AppendOnlyContainer
Dynamic Deletion Multiple Hosts Identification of Malicious Host AppendOnlyContainerExtn
Dynamic Deletion Colluding Hosts Detection of Collusion Probabilistic Collusion Detection
Dynamic Deletion Colluding Hosts Identification of Malicious Host Not known

Table 4.1: Summary: Security Threats and Solutions
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Chapter 5

Experimentation

In this chapter, we describe the setup that was used to simulate the proba-
bilistic collusion detection technique and significant results. The simulations
were done in Java without depending on any particular mobile agent frame-
work.

The total number of hosts in the itinerary can be varied. Two hosts
are designated as malicious. Then, an itinerary is chosen by a random
permutation of the hosts. The agent initiator calculates the ENDH using
equation 4.3. The actual number of hosts that are deleted depends on the
position of the two malicious hosts. The subsequent actions depend on the
actual method (Notification by pro-active hosts or Querying by the Agent
Initiator) used for detecting collusions.

Notification by Proactive Hosts

The agent caries the probability, prob =
(

ENDH
n

)
with it, where n is the

owner’s estimate of the number of honest hosts. Each host on receiving the
agent does the following.

1. It adds its data to the AppendOnlyContainer.

2. It generates a random number, r, (0.0 ≤ r ≤ 1.0).

3. If r ≤ prob, sends a message to the initiator, indicating it has added
data to the container.

A collusion is detected by the agent initiator if it receives a message
from a host that would have been removed by two colluding hosts. The
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experiment was repeated a number of times, each time using a different
itinerary. We found that collusions were detected in more than 90% of the
cases. The reduction in the number of messages was around 67%.

Querying by the Agent Initiator

The agent initiator has a list of m hosts which are likely to be visited by the
agent. The initiator calculates the probability, prob =

(
ENDH

m

)
. After the

agent returns, the initiator does the following:
1: for all i such that 1 ≤ i ≤ m do
2: It generates a random number, r, (0.0 ≤ r ≤ 1.0).
3: if r ≤ prob then
4: Sends a query to host i, asking whether it added any to the agent
5: if Host i gives a positive reply and the data is absent from the AOC

then
6: Declare Collusion
7: end if
8: end if
9: end for

We assumed that the host will query 20% more hosts than in the actual
itinerary. The collusions were detected in more than 90% of the cases.
However, the reduction in the number of messages was around 25%. This is
expected because the host could be querying a lot of hosts which are not in
the actual itinerary.
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Chapter 6

Conclusions and Future
Work

6.1 Conclusions

Mobile agents offer a convenient programming paradigm whose benefits can-
not be exploited fully if various security issues are not mitigated. This
project examined the various security issues that arise in mobile agents. In
particular, the threats posed by malicious hosts to data collection agents
was examined in detail. The AppendOnlyContainer mechanism can be used
to detect modifications and deletions to the data collected by data collec-
tion agents. However it fails to detect the malicious host which tampered
with the data. We proposed an extension to AppendOnlyContainer that can
detect the malicious host.

The problem of colluding malicious hosts was studied. However, two or
more hosts can collude to delete data added by other hosts in the itinerary.
The extent of damage depends on the position of malicious hosts in the
itinerary. The AppendOnlyContainer mechanism will fail to detect collu-
sions. We proposed a probabilistic method to detect collusions. A summary
of various security threats and the solutions that can be applied is given in
Table 4.1.

6.2 Future Work

Our extension to the AppendOnlyContainer mechanism can identify only the
last malicious host modifying the data. A general method to identify all the
malicious hosts will prove very useful in the deployment of mobile agents
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for mission critical applications. Our probabilistic method for detecting
collusions requires the hosts to contact the owner(or vice versa), which might
not be always possible for some applications. A new approach which does
not rely on messaging is highly desirable.
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