
i

ACKNOWLEGEMENTS

I would like to thank my guide, Prof. Sridhar Iyer for his invaluable guidance and

encouragement while doing this project.

My thanks are due to my classmates Rahul Jha and Srinath Perur, who provided many valuable

suggestions through numerous discussions we had on the subject.

I would also like to thank my parents for their constant loving support.

Vikram Jamwal
IIT Bombay

ABSTRACT

New models for education dissemination have emerged with the growth of distributed

systems, especially with the widespread penetration of Internet. This has made possible

imparting education on a larger scale. Distance evaluation of students constitutes a crucial

factor for success of Distance Education initiatives. Such large distributed systems also raise

number of challenges in terms of design, technologies and their implementations. Most of the

present day systems have client-server architectures. The client-server model though powerful,

has scalability limitations for distance evaluation systems. Over the past few years the mobile

agent paradigm, which has emerged as a new approach for structuring distributed applications,

attempts to address many of these concerns.

In this project, we survey the existing mobile agent frameworks to understand state of the art.

We then use the mobile agent approach for designing, implementing and deploying a system

for distance evaluation of students. We consider the entire examination process: (i) paper-

setting, where the examiners spread over the internet collaborate to produce a question paper,

(ii) examination conduction, where the question papers are distributed and the answer papers

are collected, and (iii) answer-paper evaluation, result compilation and publishing. In this

report we detail our design, implementation and experimentations. We conclude by presenting

our observations and experiences of using mobile agents for designing large distributed

systems. We also list some of the challenges that still need to be tackled and indicate the future

directions of our work.

2

TABLE OF CON TEN TS

1 Introduction 4

1.1 Distance evaluation – motivation : 4

1.2 Distance evaluation – existing schemes : 4

1.3 Extending existing distance evaluations schemes: 5

1.4 Mobile agents 6

1.5 The Proposed Architecture: 7

1.6 Organization of the report 7

2 Survey Of Mobile Agent Frameworks 8

2.1 Benefits of mobile agent technology 9

2.2 Application Domains 10

2.3 Basic design issues in mobile agent frameworks 12

2.4 Standardization Efforts 19

2.5 Mobile agent frameworks considered for study 22

3 Proposed Framework 28

3.1 Examination Setting 28

3.2 Distribution and Testing 29

3.3 Evaluation and Result Compilation 30

3.4 Voyager: Our chosen MA platform 31

4 Implemenatation Aspects 33

4.1 Examination Setting 33

4.2 Distribution and Testing Stage 36

4.3 Evaluation and Result Compilation Stage 38

3

5 EXPERIMENTATION 41

5.1 Performance Evaluation 43

5.2 Observations 45

6 CONCLUSIONS 46

4

C h a p t er 1

1 INTRODUCTION

The growth of distributed systems, especially with the widespread penetration of the Internet,

has made it possible to impart education on a larger scale. This has resulted in new models for

education dissemination. Distance evaluation of students constitutes a crucial factor for

success of distance education initiatives.

1.1 Distance evaluation – motivation :

 The motivation stems from the following two factors:

• The growth of distributed systems, with Internet being the biggest of them all, has

created the possibility of education being imparted on a much larger scale. Many

Universities have started their on-line courses along with their regular in house-

courses[7]. As these infrastructures evolve in future, there will arise a need for

assessing the remote students.

• Consider a system of examination like IIT-JEE (Indian Institute of Technology, Joint

Entrance Examination), which is held on a nation-wide scale and is presently paper

based. In future one would desire such an examination to be made electronic based.

This will help to speed up and better manage the evaluation process.

1.2 Distance evaluation – existing schemes:

Most of the present day Internet based evaluation is web-based[4][6] and employs the client-

server paradigm. It uses HTML-forms for user interface, with either common gateway

interface(CGI)-scripts or java-servlets for back end processing. The questionnaire is

downloaded by the students as a web page and the answers are submitted back to the server.

This is essentially the pull-model of distributing the information. The second Internet based

5

model uses java-applets as the front-end for question paper. This too follows a similar

mechanism as the previous case except that using Java gives more flexibility to the examiner in

choosing the type of content. With the need for providing multimedia content, multimedia

support languages(e.g. flash scripting language) are too being used to provide front-ends. A

component based approach, using Java-Beans, in building Internet based evaluation system is

described in [5].

1.2.1 Computer based testing (CBT)

CBT has been in vogue for quite sometime now. For example, the Graduate Record

Examination(GRE) has started using CBT for its evaluations. This approach presents several

advantages[2][3] like provisions for instant scoring, reduced overall test timings etc. and the

students can take their examinations throughout the year. Additionally the students are

presented with the questions in an adaptive manner i.e. a question is picked from the question

bank in a random manner and the next question that is picked from the bank is determined by

the correctness of the response to the previous question by the student. Such a scheme can be

used for distance evaluation too, incorporating it to existing schemes. But, as the interactions

are remote, it has disadvantages in the form of slow response-times.

1.3 Extending existing distance evaluations schemes:

We will now highlight the extensions that are desirable in the distance evaluation systems:

• Push Model : In some cases there is a need to send the question paper to the

examinee at a time as decided by the examiner. Such a scenario also arises in a case

where a number of students are to be evaluated simultaneously for the same set of

questions. Most of the paper-based testing methods prevalent today follow this model.

• Variety of delivered contents : The use of electronic media for information

dissemination has made it possible to present the questions using dynamic content in

form of audio, video-clips, or multimedia. It will be desirable to support such rich

content in the question-paper.

6

• Subjective questions: The students may be required to provide answers that are

objective, written text or involve some graphical schematics. All of these cannot be

automatically evaluated and would require manual corrections. The present day on-line

systems don’t have a provision for these.

• Off-line examinations: The paradigm followed in these schemes is client-server and.

the students have to remain on-line for the duration of test. For remote interactions,

this can be achieved either by opening a socket connection which remains alive during

the entire duration of examination, or by opening a socket connection for every

request by the client.

• Adaptive Questions: It will be desirable to build adaptive tests wherein questions of

various level of difficulty are offered to the candidates in dynamic order. This order is

determined by the student’s response to the previous set of questions.

We believe that it would be extremely difficult to implement the above extensions using

traditional client-server technologies. In this project, we explore the use of mobile agents as an

alternate implementation mechanism to implement some of the above features.

1.4 Mobile agents

 A Mobile Agent (MA) is a program that can autonomously migrate between the various nodes

of the network and can perform computations on behalf of the user [20]. Whenever a MA

moves from one host to another, both the code and the state of the agent are transferred.

Some of the benefits provided by MAs for creating distributed systems include reduction in

network load, overcoming network latency and disconnected operations. We shall discuss this

technology in detail in the next chapter.

In our case, mobile agents prove to be especially useful because they map and model directly

into the real life situations, need a generic execution environment and can work in both - push

and pull modes.

7

1.5 The Proposed Architecture:

 We have attempted to design a scheme for implementing the complete examination process.

Our scheme consists of following three stages:

1. Examination Setting, where different examiners set the question paper

2. Testing, where question papers are presented to the students

3. Evaluation and Result Compilation, where answers are collected and the results are

compiled.

We have attempted to automate most of the above process, simplify the infrastructure

requirements at different ends, and provide for the security and reliability of the entire system.

We have used the Voyager mobile agent framework [29][30] to implement our design.

1.6 Organization of the report

In Chapter 2 we provide an overview of mobile agent technology and present the literature

survey of important present day mobile-agent frameworks. Chapter 3 of this report discusses

our proposed framework, Chapter 4 provides the detailed design and some implementation

aspects, and in Chapter 5 we discuss the experimentation setup and results. Chapter 6 presents

the future directions of our work and concludes our discussion.

8

C h a p t er 2

2 SURVEY OF MOBILE AGENT FRAMEWORKS

To realize a mobile agent in practice, we would require support from the underlying

distributed network of machines. A developer should be able to write a MA using some

programming language, a MA once created needs an execution environment to run, it needs to

send and receive messages from its surroundings, it needs resources for storing data, it may

need to persistently store itself or migrate to some other node. Its actions need to be

controlled, it has a definite life-cycle, it may need to work in collaboration with other MAs and

it might be of significance to trace its movements and in some cases it may require protection.

Thus we see the need for a framework that provides mechanisms to support these facilities.

Such a framework for supporting mobile agents is called mobile agent framework (MAF). Fig 2-1

S erver

M obile D evice

E xecu tion E nv ironm ent
M ob ile A gent

Serv ice A gent
A pp lication

A gen t M ig ration
Loc al C om m un ica tion

G lobal Com m un ica tion

S ystem
R esources

W ork S tation
O ther

Softw are

D atabase
U ser

A pp lica tio n

Fig 2 - 1 Different Components of a Mobile Agent Framework

9

We define following as the main services provided by a mobile agent framework (Green et. al

[70] follow a very similar classification)

• Life Cycle: Services to create, destroy, start, suspend, stop etc.

• Navigation: Services responsible for transporting an agent (with or without state)

between two computational entities residing in different locations.

• Communication: Communication between agents and between agents and other

entities. The naming and the addressing mechanisms followed in the system

• Security: Ways in which agents can access network resources, as well as ways of

accessing the internals of the agents from the network.

In the previous chapter we discussed the basic concept of mobile agents. In this chapter we

shall discuss following aspects of mobile agent technology: (i) benefits of mobile agent

technology (ii) application domains (iii) design issues in mobile agent frameworks (iv) mobile

agent standardization efforts and (v) brief description of existing mobile agent frameworks

2.1 Benefits of mobile agent technology

Mobile agent technology promises to provide some very distinct advantages [9][19] compared

to the other approaches. Some of them are:

2.1.1 Reduced Network Load

For the protocols that rely on heavy interactions, MAs can move to the destination host and

carry on the conversations locally. This reduces the traffic on the network. A similar case exists

when interactions involve large transfers of data.

10

2.1.2 Overcoming Network Latency

Because MAs execute locally, they can respond their environments faster. This is key

requirement in some critical real-time systems.

2.1.3 Encapsulation of Protocols

Upgrading protocols in a distributed system is a cumbersome task. MAs are able to move to

remote hosts and establish ‘channels’ based on the new or proprietary protocols.

2.1.4 Disconnected Operations

MAs can operate asynchronously and autonomously from the process that created them, after

being dispatched. Mobile devices, which need continuous access of fixed network, often suffer

from fragile and low bandwidth connects. In such cases they can embed their task in MAs,

dispatch them, and then reconnect later to collect these agents.

2.1.5 Other benefits

The other advantages provided by mobile agents are dynamic adaptability, seamless

integration, robustness and fault-tolerance.

2.2 Application Domains

Following are some the application domains [9][71] where the mobile agents can provide

better solutions:

2.2.1 Distributed Information Retrieval

These applications involve collecting information from sources spread over the network based

on some pre-specified criteria. MAs improve efficiency by performing the searches near the

information base. This advantage will be more pronounced if the size of the information

analyzed is quite huge. Also MAs can keep on carrying their work even during the times when

the machines of the creators are not operational.

11

2.2.2 Electronic Commerce

MAs can represent a user in the network and do work on his behalf. Hence they can perform

negotiations on his behalf, do purchases and perform product searches. Their ability to

provide real-time responses makes them particularly suitable for these applications. Rahul

et.al.[8] classify the existing Mobile Agent applications in e-commerce as Salesman Agents,

Auction Agents and Buying agents.

2.2.3 Personal Assistance

Similar to the above application, a user can create an assistant agent, which is capable of

performing tasks in network even when the user shuts off his machine. Such an agent can

interact with other such agents to schedule meetings are perform other messaging or retrieval

tasks for or on behalf of the user it represents.

2.2.4 Telecommunication and Networks Services

Advanced telecommunication services like videoconference, video on demand or tele-meeting

can benefit from the MAs. Supporting, managing and accounting for these applications require

special ‘middleware’ for dynamic reconfiguration and customization. As an example, for a

videoconference, the application service brokers can dispatch components (implemented as

MAs), which manage setup, signaling and presentation, to the users.

2.2.5 Workflow Applications

MAs can be used to implement a workflow item for they can then carry information as well as

the behaviour. Independent of any application that created them, these MAs enable the flow

of information by moving through the organization.

2.2.6 Monitoring and Notification

The autonomous and asynchronous nature of MAs enables them to be dispatched and wait for

certain events and to report their status. These monitoring MAs can live beyond the lifetime of

the processes that created them.

12

2.2.7 Information dissemination.

Agents can automatically update the software on user machines by carrying the components

and deploying them. This relieves the user from botheration of upgrading his software after

every new release. They can also be used to disseminate other information like news etc. Such

agents in essence follow the Internet push-model.

2.2.8 Parallel Processing

 The infrastructure for MAs presents an excellent platform for the applications that require

heavy computations. This can be achieved by either a set of MAs executing in parallel or a

single MA cloning itself whenever the need arises.

2.3 Basic design issues in mobile agent frameworks

A Mobile Agent Framework is an infrastructure that that implements the agent paradigm[20].

The various design issues in designing such frameworks are:

2.3.1 Mobility Model

The fundamental requirement in a Mobile Agent System is its ability to transfer an MA from

one host to another. Whenever the migration occurs, the agent is deactivated, its state is

captured, and this state is transferred to the new site along with the agent code. On the new

site the state is again restored and the agent is reactivated. Depending upon the nature of state

transmitted, mobility can be of two types:

• Strong Mobility: If both the data and the execution state (execution context + call

stack) of the agent are transmitted, it is the case of strong mobility. The destination

server can restart the execution of agent precisely from the point where the execution

was stopped on the originating host. This kind of mobility is suitable for the

applications like transparent load-balancing, where the processes (in form of MAs) can

migrate across the servers.

13

• Weak Mobility: In this case the state of the agent is captured at a higher level, i.e. only

the state of the application level data variables is gathered. This captures the execution

state only at function-level in contrast the earlier case where the execution state is

captured at instruction level. Since the mobile-agents are under the direct

programmer’s control, the kind of mobility is sufficient for most of the applications.

Java Virtual Machine (JVM) does not allow thread-level state capture. Since most of the

frameworks use JVM, they only support weak mobility.

2.3.2 Code Shipping

The code of the mobile agent needs to be present at the destination host for its successful

restart. This code can either be

• carried by the agent, in which case, the agent can migrate to any host providing the

execution environment at the destination host

• pre-installed on the destination host This is better for security reasons as no

foreign code is allowed, but this restricts the use of MAs only to pre-defined set of

machines

• available on a code-base server, from where it can be downloaded on-demand.

2.3.3 Agent Naming and Addressing Mechanisms

Agents need to be named and located to enable inter-agent communications or remote agent

management. Naming of the agent can be location dependent or independent.

Different agents running parallel on different hosts may need to exchange temporary results

and synchronize. One of the convenient ways of doing it is for agents on different hosts to use

a common shared naming server. The other alternative is to locate the agent from the host

from which it originated and which is also keeping the logging information about the current

location of such agent.

14

Naming Servers provide location transparency for agents. Yariv and Mitsuru[77] discuss

various schemes for locating mobile agents and delivery of messages between them.

• Brute Force : Agent is located by searching it in multiple destinations. Searching can

be parallel or sequential.

• Logging : An agent is located by following it trial information, indicating its next

destination, left in every agent server it already visited. Trail information for the

disposed agents can be garbage-collected according to, for example, the expired time

or explicit notification by agents

• Registration : An agent updates its location in a predefined directory server that

allows agent to be registered, unregistered or located. Other agents use the directory to

locate the agent. In practice, communicating agents need to agree in advance upon a

naming server. Such agreement can be simplified by adopting an architecture in which

every agent server is associated with one available naming server.

2.3.4 Agent tracking and message delivery

Similar to the above case, agents sometimes need to be tracked for sending them messages or

controlling them remotely. There are two basic methods:

• Locate-and-Transfer : An agent is located after which the message is transferred

directly to it; in this case two separate phases are used.

• Forwarding : Locating a receiver agent and delivery of message to it are both done in

a single phase e.g. the message may be redirected by using trail information

There are two main differences between these methods of message delivery. Locate-and-

Transfer may not always give the locations of agent accurately, since they may be dispatched

during the second phase of the message transfer. With forwarding such cases can be

eliminated, since agents are located on-the-fly during delivery of messages to them. Secondly,

15

forwarding may be more efficient than Locate-and-Transfer in presence of small messages.

Otherwise it might be more efficient to locate an agent and then transfer a large message

directly to it.

2.3.5 Agent Communications

Agents don’t exist in isolation. They need to interact with execution environments (EEs),

resources/ objects, other agents or users to achieve their goals. The communication

mechanisms are characterized by: (i) type of interactions, (ii)the type of mechanisms and

(iii)the cardinality of the communicating partners. We discuss these below.

2.3.5.1 Types of Interactions

 A MA during its life-cycle will need to interact with their EEs, resources, other agents and the

users.

• MA/ EE interaction The MA needs to use the services provided by the EE like file-

services, directory services, transport services or any other services supported by the

EE. Also the EE needs to interact with MA to control and guide its movements and

satisfy of check it needs. As these interactions are between a fixed entity (EE) and a

roving entity-MA. Most of the interactions follow the client-server (CS) model and

follow direct-method invocations.

• MA/ MA interaction: As two moving agents can be from different origination

environments, the communication mechanisms have to be of a varied kind. The

communicating MAs form peer-to-peer pattern. This forms the basis of agent

collaboration.

• MA/ User Interaction Sometimes the agents are acting on behalf of a user and need

to take instruction or report back results to the users. The interaction is usually

through an GUI to the user and will include all the details of human-computer

interaction.

16

2.3.5.2 Types of Communication Mechanisms

 A MA needing to interact with its surroundings environment or other agents will use

mechanisms, which are synchronous, or asynchronous. The communication partner can be

either addressed directly (RPC, Streams, Message Passing) or indirectly/ anonymously (events,

black-boards, tuple-spaces, synchronization objects) and all these mechanisms can be either

local or remote. The different mechanisms can be described as:

• Method Invocation It involves an object/ agent calling the method of another

object/ agent and communicating by means of passing parameters and accepting a

return value. Although synchronous, asynchronous, and deferred synchronous are

possible, yet it is most suitable in case of synchronous communication. It is achieved

by direct reference to the method (in case the invoked object exists in the same address

space) or LPC (local procedure call) and RPC (Remote Procedure Call) depending

upon the local or remote presence of the invoked object.

• Message Passing In this case the communication takes place by passing a message to

the other agent/ object. The message is passed by invoking a well-know method of the

object, in asynchronous manner. The message encapsulates the protocol, which is then

parsed and interpreted by the receiving object.

• Black Board Black board interactions occur via shared-data-spaces, which are local to

each hosting EEs into which the agents store and retrieve messages. There is a need

for a common message format/ identifier understood by each agent to exchange

information via a blackboard. The messages need not be aware of the location of the

agent or the time when the agent is going to read the message. This leads to temporal

uncoupling, a desirable feature as in most applications

• Tuple Spaces These are the extension of blackboard model where the information is

stored in tuple-space and is retrieved by associative (or pattern-matching) mechanisms.

17

• Streams The communication takes place by opening a stream connection between the

two entities. In many cases this is done by opening socket connections.

2.3.5.3 Other communication features

Additionally the communication structure might provide support for the following:

• Events Handling. Providing an event channel helps in decoupling the system and

making it more flexible and powerful

• Group Communications It is sometimes desired (or required) to treat a group of

mobile agents in a similar manner and to address them singularly. The messages then

can be classified as either unicast, broadcast, multicast or anycast depending upon

whether they are meant for a single, all or a set of agents, or any one agent in a group

respectively.

2.3.6 Security issues

Security is an important consideration in an open network like the Internet. It is important to

safeguard both the execution environment as well as the mobile agents from any undesirable

effects. The different security issues relevant to mobile agents are described in the table below.

18

Table 2.1 Security Issues in Mobile Agent Frameworks [78]

Mobile agent systems have to provide different kind of security mechanisms to detect and

guard against these attacks. These [20] are privacy and integrity mechanisms (to protect agent

code and private data), authentication mechanisms (to confirm identities of communicating

parties), and authorization mechanisms (to allow agent to access server resources in a

controlled manner). It may be noted that first one is most difficult to ensure and is still an

unsolved research problem [74].

Attacked Attacker Attack

Host arriving agent - access and corrupt the
host’s local files, resources
- stop the server in a denial
of service attack.

Host external third party send a huge number of
agents to the host to tie up
all the resources, or even
crash the host

Agent new host access private information,
e.g. a credit card number, a
password, etc, for later use,
or replay

Agent another agent

access private information,
or to crash the agent to stop
it fulfilling its task

Agent third party alter exchanged messages for
its own benefit, e.g. to
recommend their host
instead of another, or to
reveal content of agent

Network incoming agent flood the network with
copies of itself

19

Some efforts have been put into the development of techniques that help proving and detecting

the tampering done by servers. Having such techniques in place, the results of the agent can be

omitted if agent code is tampered by the server. Some of the suggested approaches are,

Hardware Solutions (requires the presence of a special hardware component, whose internal

architecture is unknown to the public), Code Obfuscation [76], Clueless agents [73] Tracing of

Execution [75].

2.4 Standardization Efforts

Mobile agent standardizations efforts have been influenced by two forums: MASIF [80] and

FIPA [79]

2.4.1 Mobile Agent System Interoperability Facility (MASIF)

The mobile agent systems differ widely in architecture and implementation, thereby impending

interoperability, rapid proliferation of agent technology, and growth of industry. To promote

interoperability and system diversity some aspects of mobile agent technology must be

standardized. MASIF is a collection of collection of definition of interfaces that provides an

interoperable interface for mobile agent systems. MASIF specifies two interfaces

MAFAgentSystem(for agent transfer and management) and MAFFinder(for naming and

locating). MASIF is about interoperability between agent systems written in the same language

expected to go through revisions. Language interoperability for active objects is difficult, and is

not addressed by MASIF. Furthermore, MASIF does not standardize local agent operations

such as agent interpretation, serialization/ de-serialization, and execution. In order to address

interoperability concerns, the interfaces have been defined at agent system rather than the

agent level. MASIF standardizes:

• Agent Management : One can envision a system administrator managing agent

systems of different types via standard operations in a standard way: create an agent,

suspend it, resume it, and terminate. It allows agent systems to control agents of other

agent system. Management is addressed by interfaces for suspending, resuming, and

20

terminating agents. Agent Transfer : It is desirable that the agent applications can freely

move among agent systems of different types, resulting in a common infrastructure,

and a large base of available system agents can visit.

• Agent and Agent System Names : Standardized syntax and semantics of agent and

agent system names allow agent systems and agents to identify each other, as well as

clients to identify agents and agent systems. The CORBA services are designed for

static objects, CORBA naming services applied to mobile agents may not handle all

cases well. Therefore MASIF defines a MAFFinder interface as a naming service.

• Agent System Type and Location Syntax : The agent transfer cannot happen unless

the agent system type can support the agent. The location syntax is standardized so

that the agent system can locate each other.

The MASIF in its current form provides the features required for the first level of

interoperability, which is transport of agent information where the information format is

standardized. Once the information is transferred from one system to another, how the agent

system deals with the parameters internally is an implementation matter and not addressed by

MASIF standard. Such information includes agent profile, which describes the language,

serialization, and other requirements the agent has on the current agent system. MASIF makes

it possible for an agent system to understand the requirements the agent has on its system, and

it is first step in end to end interopearability.

2.4.2 Foundation For Intelligent Physical Agents (FIPA)

 FIPA is a standardization effort for a complete architecture for supporting intelligent agents.

The FIPA architecture consists of the following concepts and agents: Agents. Agent Platform

(AP). Directory Facilitator (DF). Agent Management System (AMS). Agent Communication

Channel (ACC). Agent Communication Language (ACL). FIPA has demonstrated several

applications implemented using their architecture and it seems as if FIPA could be an accepted

standard for agents. Example applications include personal travel assistance, personal assistant,

audio/ video entertainment, and network management.

21

 Agent Management Support for Mobility

This specification represents a normative framework for supporting software agent mobility

using the FIPA agent platform. This specification is concerned with specifying the minimum

requirements and technologies to allow agents to take advantage of mobility. This specification

integrates closely with other FIPA specifications (especially Agent Management and Agent

Security) and provides a wrapping mechanism for existing mobile agent systems to promote

interoperability. Table below illustrates some of the FIPA specification features.

FIPA DOES NOT FIPA DOES

mandate the use of mobility features mandates how agents and APs may support

mobility, if mobility is desired

mandate the use of any explicit technology for

supporting mobility

it provides a wrapping mechanism for mobile

agent systems

define how mobile agents and mobile agent

systems operate or are implemented

however, mobility capabilities defined in this

specification rely on their existence

define mobile agent security expected in future versions

Table 2.2 FIPA mobility features

This specification defines extensions that are necessary to the AMS to support mobility. The

platform profile can become a standard way for an agent to discover the mobility supported by

an AP. If an AP does not support mobility, then it will refuse any mobility operation.

22

2.5 Mobile agent frameworks considered for study

We studied several mobile agent frameworks. In this section, we present some of the more

well known mobile agent frameworks.

2.5.1 Aglets

The Aglets Software Development Kit (Aglets SDK) is the product of IBM’s Research

Institute in Japan [9][10][11][12][13][14]. It is also one of the pioneer mobile platforms. Aglets

is a general-purpose mobile-agent platform. Recently its source-code also has been made

available to the developers.

Aglets is a Java-based system in which aglets (agents) migrate between agent servers (aglet

contexts). Aglets, have defined an elaborate security plan but only a limited version of this is

supported.

2.5.2 Concordia

The Concordia platform [22][23] is a commercial system, developed at the Horizon Systems

Laboratory of Mitsubishi Electric Information Technology Center, America. It is available for

evaluation. Concordia is a framework for development and management of network-efficient

mobile agent applications for accessing information anytime, anywhere and on any device

supporting Java. Concordia has extensive support for agent communication, providing for

asynchronous event handling as well as specialized group collaboration mechanism. It also

addresses fault tolerance requirements and checkpoints for recovery, whereby it enables

reliable agent transfers.

2.5.3 D’Agent

D’Agents [24,25] (formerly AgentTcl) is an experimental system being developed at

Dartmouth College, USA. It is free for non-commercial use. AgentTcl was one of the first

mobile agent systems. It was built on top of the Tcl language. It received worldwide attention

for its support for strong mobility and for its promises to implement all security aspects of

mobile code. These promises, however, have not been kept. Instead, its developers decided to

shift toward multi-language support and changed its name to D’Agents. The D’Agents system,

23

just like its ancestor AgentTcl is a general-purpose mobile agent platform, without any

specified application focus.

2.5.4 Grasshopper

The Grasshopper system [27] is another commercial product. It was developed by

Forschungsinstitut für offene Kommunikationsysteme (IKV++), Germany. A light edition

(max. 5 agents and 2 agencies) is available for evaluation. Grasshopper is a relatively new

system and one of the first platforms implementing MASIF support. Its application focus is on

telecommunication applications.

2.5.5 Mole

The Mole platform [28] is another experimental system. It was developed at the University of

Stuttgart, Germany and its source-code is available. The Mole platform has a relatively long

history. It is also a general-purpose mobile agent platform, without expressed focus on any

application area.

2.5.6 Voyager

Voyager [29][30] is a commercial product of the ObjectSpace Inc, USA. It is a general-purpose

distributed middleware that is claimed to be used at more than 10,000 companies word-wide.

ObjectSpace Inc. does not advertise its system as a mobile system (that supports CORBA), but

as an ORB that has mobility support. Voyager is a modular system, including security

solutions, administration tools, transaction services, etc. Most of these modules, however, are

only available in the commercial package.

We use the following parameters 1 for comparing above frameworks:

• Project details, supported platforms and languages, and implemented standards (See

Table 2.3)

1 http:/ / www.informatik.uni-stuttgart.de/ ipvr/ vs/ projekte/ mole/ mal/ mal.html

24

• Types of migrations, agent naming and agent tracking mechanisms, and resource

access control mechanisms (See Table 2.4)

• Communication mechanisms (See Table 2.5)

Table 2.3 Project details and platform /
language / standards supported by mobile
agent systems

Sno. System
Name

Organization Supported Platforms Supported
Languages

Implemented
Standards

Project URL

1 Aglets IBM Tokyo
Research

JDK 1.1.x
on Win32, OS/ 2 Warp
Version 3 and 4, AIX
4.x,Solaris for SPARC, and
Solaris for x86MRJ SDK
2.0.1 on MacOS 8.x

Java 1.1 None
(Interfaces for
MASIF are
used internally
but currently
not compliant
to MASIF)

http://www.trl.ibm.co.jp/
aglets/

2 Concordia Mitsubishi
Electric ITA

Win32, Solaris, Linux,
HP/ UX, AIX.

Java 1.1 Not yet, but
proposed.
MASIF and
FIPA

http:/ / www.meitca.com/
HSL/ Projects/ Concordia/

3 D’Agents Dartmouth
College

Unix (nearly all variants) Tcl, Java,
Scheme

None http:/ / agent.cs.dartmouth. edu/

4 Grasshopper IKV++ GmbH Tested on: Windows
NT/ 9x, Solaris
Should run on all platforms
supporting JDK 1.1 and
higher.

Java 1.1 MASIF, FIPA
(add on
module)

http:/ / www.ikv.de/ poducts/ gras
shopper/

5 Mole University of
Stuttgart, IPVR

execution: all platforms
supporting Java JDK
1.1development: additional
make support required
(experimental Java make
under development)

Java 1.1 None http:/ / www.informatik.unituttga
rt.de/ ipvr/ vs/ projekte/ mole.html

6 Voyager ObjectSpace,
Inc.

Certified 100% Pure Java Java 1.1.
and 1.2

None http:/ / www.objectspace.
com/ products/ vgrORBpro.htm

25

Table 2. 4 Migration, Agent Tracking and
Access Control features of mobile agent
frameworks

Sno. System
Name

Migration
Weak/
 Strong

 Code Shippment Agent Tracking Directory of
Services

Resource Access
Control
Mechanism

1 Aglets Weak Necessary classes
are archived and
transferred to the
receiver. A Jar file
is supported

Other classes are
transferred on
demand from code
base server.

Logging facility is
provided on the
aglet Tahiti.
Server.

A Finder as an
experimental feature

-simple privilege
configurable
preferences like
Java 1.1 sandbox
model; trusted
aglets and
untrusted aglets.
-fine-grained
access control with
security policy file
like Java2.
- Permission
classes -access
protection by each
aglet
- Individual aglet
can set its own
protection againt
messages from
other aglets.
- Server
authentication.

2 Concordia Weak (but
with multiple
method entry
points via
Itinerary).

All are supported
- on demand from
sending host,
- on demand from
code server,
- all classes as a
whole from
sending host,
- all classes as a
whole from code
server.

Home register via
mobile agent
debugger

Global and local -
using a string
identifier.
-Global directory
maintained by
optional Directory
Manager service

- Server configured
access control list.
-Privileges are
granted based on
the identity of the
user who launched
the agent

26

3 D’Agents strong (Tcl
and Java),
weak
(Scheme)

All classes as a
whole from
sending host

Name service (if
agent chooses to
use it)

Global Configurable
policies

4 Grasshoppe
r

Weak On demand from
sending host,
on demand from
code server

Region registry - global for all
agencies
- registered to the
region registry
- additionally local
within an agency

Configurable
policies

5 Mole Weak All classes as a
whole from code
server

None Local using a string
identifier

None

6 Voyager Weak Flexible resource
loading

Federated naming
service

Federated naming
service

Configurable
policies

Table 2. 5 Communication Mechanisms in MA
Frameworks

Sno. System Local Global Addressing

1 Aglets Supports messaging.

A message is an object
The hook method of the
receiver will be invoked
with the sent message.

The system defined
message is also provided
which is used for moving,
cloning, storing and
retrieving into/ from
secondary storage and
terminating

Proxy objects are used for the
communication with an aglet.
All messages are sent to the
0proxies.

Proxies forward messages to
the remote moved aglets

 The aglet server, which hosts
the aglet, retrieves messages
and converts system messages
into system events. Security
mechanisms control message
passing..

A proxy object (AgletProxy)
is used as a partner of a
communication.

And every aglet has its own
identifier (AgletID). An
AgletID object can be
converted into an
AgletProxy object in an
aglet

27

2 Concordia Distributed Events and
Agent Collaboration.

Data format is arbitrary
object which subclasses
from Concordia base
class.

Distributed Events and Agent
Collaboration.

Data format is arbitrary object
which subclasses from
Concordia base class.

Publish-subscribe type
model.

Event may be sent directly
to agent via its unique
Agent ID.

Also supports
group-oriented events

3 D’Agents Message passing
(arbitrary strings, soon to
be arbitrary binary data)

Message passing
(arbitrary strings, soon to be
arbitrary binary data)

By machine name plus
unique (per-machine)
integer id;
Directory services provide
location-independent
addressing

4 Grasshopper asynchronous/ synchrono
us messages
(any java object)

asynchronous/ synchronous
messages
(any java object)

Combination of host name,
agency name and place
name

5 Mole (asynchronous) messages
(any java object)

(synchronous) rpcs
(any java object)

session mechanism

(asynchronous) messages
(any java object)

(synchronous) rpcs
(any java object)

session mechanism

via the name of the agent
plus name of system node

via bearing a (String) badge

6 Voyager local method invocation
and local invocation
through a remote proxy

Voyager Remote Messaging
Protocol (VRMP), RMI,
CORBA IIOP, DCOM

extended URLs, CORBA
IORs

28

C h a p t er 3

3 PROPOSED FRAMEWORK

We divide the examination process into three stages: (i) examination setting, (ii) distribution

and testing, and (iii) evaluation and result compilation

3.1 Examination Setting

The examination setting process (Fig 3.1) takes place in a collaborative manner where the

examiners sitting at different remote locations prepare their questions. Mobile Agents are then

dispatched to these examiners. These MAs fetch the question papers from all of the examiners.

The central controlling authority decides on the final question paper based on the inputs from

different examiners.

PS-2

PS = Paper Setter

PS-3

PS-4
PS-4

PS-1

Paper Assembler

Compr ehensive Paper

= M obile Agents

To Distribution Server

Fig 3 - 1 Examination Setting Stage

29

3.2 Distribution and Testing

Once a question paper is prepared, it is dispatched to the different examination centers with

the help of Courier Mobile Agents (Fig 3-2). Having finished their distribution work, the

Courier Agents get either terminated or they return to their place of origin. The distribution

servers at these centers have a list of candidates enrolled for that center. The examination

paper at each center is cloned to the number of students in each center. The examination

papers can time-out themselves after a fixed interval of time. Once a student finishes

answering a question or the examination paper times out, the answers are given back to the

distribution center, which launches a Answer Mobile Agent for each student answer paper.

These Mobile Agents then make their way to the Evaluation Center

Distr ibution
Server

Exam Center
Distr ibution

Server

Single copy of paper

c9611060

Separate Copy per user

L ist of Students enrolled
…

…

Each Candidate get a Copy

1

4

3

2

Answered and Returned

5

Each copy returned

Fig 3 - 2 Distribution and Setting Stage

30

3.3 Evaluation and Result Compilation

Once an Answer Agent reaches the evaluation center, it is supplied with an itinerary of the

examiners. The Answer Agents can also move to an Objective Question Evaluator if it

possesses answers to multiple-choice questions, to automatically evaluate their answers. The

Answer Agents move from one examiner to other, until all of the questions are evaluated.

They then move to the Publishing Center where they supply their results and where the final

comprehensive results are published.. (See Fig 3-3)

c9611060

Examiner B

Examiner A

Examiner D

Examiner C

Distributor

Results

…
…

Agents collaborate to produce the final result

Objective Questions Evaluator

Distribution Server

Fig 3 - 3 Evaluation and Result Compilation

31

3.4 Voyager: Our chosen MA platform

We have already described the Voyager framework in Section 2.6. Choosing Voyager as our

application development platform was mainly influenced by the factors listed below:

• The results on performance comparison of mobile agent framework, as seen from a

parallel study at IIT Bombay [72], indicate that Voyager ORB performs better for

remote messaging.

• Unlike many other platforms, Voyager ORB is a generalized platform for distributed

object computing. The MAs are treated as any other distributed object, with special

primitives for mobile agent behavior2. This allows easy integration of MAs with the

rest of the application structure.

• Voyager was compatible with the latest version of Java (jdk1.2) available at the time of

development of application, while many systems like Aglets, Mole etc. were still not

ready with the new compatible versions.

• Voyager allows the creation of remote objects. This additional feature, which exploits

code-mobility, was very useful in our case as one of our goal in this application was to

let the examination coordinating center have maximum control of the whole

distributed examination-setup. We could thus easily install remote components like

Distribution Servers on the Examining Center machines.

• Agent and objects in voyager can be moved to new location, both on the basis of

absolute addressing and relative addressing. In the latter case, the object (or agent)

needs to specify the reference of the object (or agent) that resides on the host that the

former wants to migrate to.

2 Voyager uses the concept of facets, which allow the behavior of facet object to be added to an object during runtime

32

• Other advantages provided by the Voyager framework were federated directory

service, different kinds of messaging (one-way, synchronous, future), object and agent

persistence support, distributed event handling and security provisions in the form of

security manager. In addition to this it also is compatible with CORBA and DCOM,

which we consider important for the possible future integration of our application with

other existing software.

In the next chapter, we describe the implementation details of MADE: our system for mobile

agent based distance evaluation.

33

C H A P T E R 4

4 IMPLEMENATATION ASPECTS

As discussed in the previous chapters, Voyager agents are extensions of distributed objects.

This enables us to employ the object-oriented principles to the design the system. We present

the important implementations aspects in all the three stages of examination process.

4.1 Examination Setting

NS

N-1 N-2

NS

NS

Cloning

Install Agent

GUI

Fetch Agent

Launcher

Controller
GUI NS = Name Server

N = Paper Setter Node

Fig 4 - 1 Details of Examination Setting process

34

As discussed in the previous section, the examination paper is prepared in a collaborative

manner with various paper-setters setting partial question papers sitting at their remote

terminals. The central coordinating authority then collects these questions and prepares a final

comprehensive question paper. We use two types of mobile agents – Install and Fetch agents

(See Fig 4.1). The Install Agent installs the application on different nodes. The Fetch Agent

collects partial papers from the paper-setters. It also enhances the application functionality at

run-time as explained in the following sections.

4.1.1 Main participants

• Launcher: Initializes the application, creates the paper-coordinating object, creates

and launches InstallAgent and FetchAgent

• PaperCoordinator: Receives question objects from all the paper-setters and help the

principal paper setter edit the final questions

• InstallAgent: Installs RemoteGUI on each machines corresponding to the remote

paper-setter

• FetchAgent: Moves from one remote paper-setter’s machine to the other until it has

finished collecting question objects from all, coordinates with the Paper-coordinating

object, InstallAgent interacts with the PaperCoordinator, InstallAgent, NamingService,

and RemoteSetterGUI for fetching all the questions. It also provides an object that

enhances the remote paper-setter’s GUI dynamically at run-time.

• RemoteSetterGUI : Provides the GUI to remote paper-setter

• NamingService: Allows InstallAgents to register with it and FetchAgents to query it

for reference to InstallAgent. Also facilitates FetchAgent getting a reference to the

RemoteSetterGUI.

35

4.1.2 Collaborations (Fig 4.2)

• At the control center, the Launcher object instantiates an Install Agent. This Agent is

supplied the itinerary which consists of list of paper-setters that have to be visited. The

Install Agent moves to the remote paper-setter.

• IntallAgent creates the RemoteSetterGUI once it reaches a remote paper-setter

machine. RemoteSetterGUI registers itself with the NamingService

• InstallAgent clones itself and the clone moves to the new paper-setter. In this way

RemoteSetterGUI is installed on all the machines.

• When it is time to collect papers, Laucher instantiates a FetchAgent, and moves it to

the first InstallAgent it should visit.

• FetchAgent reaches the new location, queries the NamingSerivce for a reference to the

InstallAgent.

• FetchAgent also gets a reference to the RemoteSetterGUI by first querying the

InstallAgent for its name and later NamingService for its reference.

• FetchAgent creates a GUI enhancing object and install it to the RemoteSetterGUI.

This allows FetchAgent to directly communicate directly with the paper-setter. It

prompts the paper-setter to submit the questions. Depending upon the response of

paper-setter, it can go into either of these states – wait, deferred or force-fetch.

• Once the FetchAgent gets a question-paper it move to the PaperCoordinator and

submits it.

• FetchAgent keeps on polling the paper-setters till they have submitted their questions

or it force-fetched them.

36

Launcher RemoteSetterGUIFetcthAgentInstallAgent

new InstallAgent()

new FetchAgent()

moveTo(RemoteSetter)

new RemoteSetterGUI()

NamingService

register()

moveTo(InstallAgent)

Clone() &
moveTo(next RemoteSetter)

getGUIName()

addEnhancePanel()

removeEnhancePanel()

new EnhancePanelt()

getGUIReference()

Fig 4 - 2 Interactions during Examination Setting

4.2 Distribution and Testing Stage

This stage uses two types of mobile agents – PaperCourier Agent and Answer Agent. The

former’s main task is delivering the question paper to all the examination centers. The latter

represents a student’s answer sheet and has more complex behaviour. It is to be noted that we

37

have decided not to allow any agent to visit or be created on a student machine. This is mainly

done for improving security of the system. The task of creating an answer agent is done at the

distribution server, which is a more trusted host. The details for this stage are described below.

4.2.1 Main Participants

• PaperCourierAgent: This agent carries the question paper to all the examination

centeres. It carries a single copy of a particular question paper.

• DistributionServer: This server distributes the question paper among all the students

in an examination center my making multiple copies. It has to be supplied a list of the

students enrolled in the center along with the addresses of the machines where they

will be taking their tests. It also gathers the answers from the students and launches

AnswerAgents to the evaluation center, one per student.

• PaperGUI : It is GUI made available to each student for attempting his answers.

• AnswerAgent: This agent represents an answer-paper of a student and is capable of

moving to an evaluation-center to get its answers evaluated.

4.2.2 Collaborations (Fig 4-3)

• After being launched and supplied the itinerary for various distribution centers, the

PaperCourierAgent moves to the first examination-center. Here it calls a method

atCentre() on itself. This causes PaperCourierAgent to begin its work at an

examination center.

• After supplying the question-paper ot the DistributionServer, it moves on to the next

location. After having finished it task , it terminates itself after informing the control-

center that it has finished it has successfully finished its task.

• DistributionServer instantiates PaperGUI for each student enrolled on his respective

host.

38

• Once the PaperGUI timeouts, or the students have submitted their answers, the

answer object is submitted to the distribution server.

• DistriubtionServer launches the AnswerAgent, one per student answer-set.

PaperCourier AnswerAgent-1PaperGUI -1DistServer

moveTo
(nextDistServer)

atCentre()

distributeQuestionPaper() new PaperGUI –1
(QuestionList)

show PaperGUI-1()

dispatchAnswers
(AnswerList)

new AnswerAgent
(AnswerList)

moveTo(EvaluationCentre)

…

Fig 4 - 3 Interactions during Distribution and Testing

4.3 Evaluation and Result Compilation Stage

This is the final stage in the examination process. There is only one kind of agent operating

here – AnswerAgent. It represents a user’s answer sheet, which has the responsibility of getting

its answers evaluated and its scores published. The details of this stage are described below.

4.3.1 Participants

• Answer Agent: This has already been described in the above section.

39

• EvalCentreServer: This server coordinates the evaluation process. It has reference to

the different Examiner machines, ObjectiveEvalServer and the PublishResultGUI.

• ObjectiveEvalServer: This server evaluates the objective type questions. It has correct

solutions, which are provided by the examination coordinator through a separate

channel, i.e. the QuestionPaperAgent does not carry the question solutions with it.

This is done to simplify the required security mechanisms.

• Examiner: Examiner are either need for auditing purpose or for evaluating subjective

questions. The AnswerAgents, park at an examiners place until they get evaluated or

they timeout.

• PublishResultGUI : Each AnswerAgent after it finishes the self-evaluation process,

moves to the PublishResultGUI server and supplies its scores. When all the Answer

Agents are finished with their work, the comprehensive results are compiled and

published through this server.

4.3.2 Collaborations (Fig 4-4)

• AnswerAgent asks for a reference to ObjectiveEvalServer if it is carrying answers to

objective type question.

• AnswerAgent supplies the student answers to the ObjectiveEvalServer which

compares them to the correct solutions and evaluates the scores. These scores are

returned to the AnswerAgent.

• If the AnswerAgent has answers to subjective questions, it queries the

EvalCentreServer again; this time for an itinerary of examiners. Once the itinerary is

available, it moves to each Examiner and gets its answers evaluated.

40

• After all the answers have been evaluated, the AnswerAgent enquires for

PublishResultGUI reference and after getting it move and supplies its scores to

PublishResultGUI server.

Fig 4 - 4 Interactions during Evaluation
and Result Compilation

AnswerAgent Examiner-1ObjectiveEvalServerEvalCentreServer PublishResultGUI

get PublishResultGUIRef()

publishResults()

new ObjectiveEvalServer()

new Examiner - 1()

new PublishResultGUI()

…

get ExaminerItinerary()

get ObjectiveEvalServerRef()

evaluateAnswers()

moveTo(Examiner -n)

moveTo(Examiner -1)

41

C H A P T E R 5

5 EXPERIMENTATION

The experiments were carried out on PIII, 450 MHz workstations with Windows2000

operating system. Voyager ORB was installed on all of these machines. The different

configurations used, are illustrated in Fig5.1, Fig5.2 and Fig5.3, where the services running on

that particular node have also been mentioned. We have simulated the set up for examination

process by using different port for the different services, viz. Paper Setters and Coordinators

uses IP-Port 4000, Distribution Servers at Examination Centers IP-Port 5000, Student

Machines IP-Port 6000, Evaluation Center IP- Port 7000, Examiners IP-Port 8000, Objective-

question evaluator IP-Port 8888, and Publishing Center IP-Port 9000.

Fig 5 - 1 A typical setup for testing Examination
Setting Stage

Paper Coordinator
[Port 4000]

Paper Setter –1
[Port 4000]

Paper Setter –2
[Port 4000]

42

Fig 5 - 2 Schematic view of experimental-setup for
Distribution-Testing and Evaluation-Result

Compilation Stages

Fig 5 - 3 A typical physical setup for testing
Distribution-Testing Stage and Evaluation-Result

Publication Stage

Paper Coordinator[Port 4000]
Student 1-b[Port 6000]
Publishing Server [Port 9000]
Obj. Quest Eval [Port 8888]

Distribution Server –1
[Port 5000]
Student 2-a[Port 6000]
Examiner 1[Port 8000]

Distribution Server – 2
[Port 5000]
Student 1-a [Port 6000]
Examiner 2 [port 8000]

Student 2-b [Port 6000]
Evaluation Center
[Port 7000]

Examiner –2

Evaluation
Center

Examiner –1

Objective Question
Evaluator

Distribution Server –1

Paper Coordinator

Question Paper Courier
Agent

Student- 1a Student- 1b Student- 2a Student- 2b

Distribution Server –2

Result Publishing
Server

Answer Paper Agent

43

5.1 Performance Evaluation

The performance criterion most relevant for our application is the response time for the students.

We define response time as the time taken between a student making a request, such as, request

for next question or request for next section in the question paper, and getting the appropriate

response.

We have performed experiments (Fig 5-4) to make the following two set of measurements:

• Case 1: Response times in Mobile Agent Interactions

• Case 2: Response times in Client-Server Interactions

Fig 5 - 4 Experimental set-up for measuring
Response Times

Fig.5.5 shows the interface for measuring these response times. The interface is an extended

version of the usual objective-type question paper

 Remote Question Paper Server

Student Paper Interface Client
 MA Interactions

Client –Server Interactions

44

Fig 5 - 5 Interface for measuring Response Time

The ‘Start’, causes a mobile agent to be launched from a remote machine, which brings in the

new question paper/ section for the student in the first case. In second case the same first page

of question paper/ section is fetched as data from the remote-server.

The students, browsing through the given set of questions, generate further queries. In case of

MA, these questions would be been pre-fetched by the mobile agent and hence the responses

will be local. In the second case every request will cause a remote request to be placed in

typical client-server mode.

Fig 5-6 shows the response times in both the cases for a similar set of questions.

45

0
50

100
150
200
250
300
350
400
450
500

1 2 3 4 5 6 7 8 9 10 11

Request Number

R
es

p
o

se
 in

 m
ill

is
ec

o
n

d

Mobile Agent

Client-Server

Fig 5 -6 Response times for MA and C-S implementations

5.2 Observations

We see that in case of client-server, the response times will remain more or less constant

whereas in the case of MA, the initial response takes much longer while the remaining requests

take negligible time as compared to client-server responses. The initial longer response in case

of MA is because of the additional time taken for agent creation, dispatch and transfer.

Response-time determines the user-experience and hence is critical for our application. In

future with the content getting richer (graphics and multimedia support), this difference will

become even more pronounced. Traditional client-server distributed programs avoid this

problem by techniques like pre-fetching, caching etc. Mobile agents inherently provide these

capabilities in our application.

We could achieve required ease of installation and remote management with the chosen

framework though in some cases the class-loader was not able to download the required

classes from the code-server. Also the framework does not provide agent tracking and

control support, which is useful for our application and a critical need when we run this

application on the Internet scale.

46

C H A P T E R 6

6 CONCLUSIONS

Most present day distributed systems are structured using the client-sever paradigm. Existing

computer based evaluation systems are also necessarily client-server implementations. For local

and simple objective-question evaluations, these systems prove to be sufficient. They enable

features like adaptive questioning and quick compilation of results. Distance evaluations pose

some new challenges. Network delays affect the student’s response times and there is increased

complexity of coordination and control of examination process. Other desirable features are

support for push model, off-line examinations, and easy integration of different stages of

examination process. However, simple extension of existing client-server systems to include

these features seems impractical.

Mobile Agents provide a more flexible paradigm of structuring such systems, as they can

support disconnected operation, help in better utilization of network bandwidth, and enable

local interactions.

In this project, we have designed and implemented MADE: a mobile agent based system for

distance evaluation. We have also implemented a similar application using traditional client-

server architecture. From our implementation and experiments, we observe that mobile agents

provide considerable improvements over the existing systems in the following ways: student’s

perceived response time, capability to handle different types of examinations (objective as well

as subjective), application level multicasting which leads to better bandwidth utilization,

dynamic upgradation of applications, support for heterogeneous execution environments,

centralized control and management of logistics and security of the examination process.

We have shown that the mobile agent approach is viable for building next generation internet

applications. However, translation of prototypes into the real world applications needs to

47

address the following additional issues: inadequate system support for mobile agent execution,

security of agent as well as host, and reliable transfer of agents.

This current work may be extended in the following directions

• Reliability : There is a need to provide the reliable transfer of mobile agents because

we cannot afford to loose an agent carrying question or answer paper. Also we should

not have multiple copies of an answer paper, during any stage of the agent transfer.

Additonally, to recover from server and network outages, mobile agents should

support check-pointing and recovery.

• Persistence: There is a need for proper archiving of the question and answer papers.

It will also be important to maintain the unique identity of each answer paper; difficult

thing to achieve because the digital information is easily altered and duplicated and

altered.

• Security: Our design takes care of most of the issues so as to cause the minimum

security overheads. Still we need to provide for secure transfer and authentication of

questions and answer papers. Protecting the answer paper from malicious tampering

will be a critical requirement for the success of the system.

48

BI BLI OGRAPH Y

[1] Alfonso Fuggetta, Gian Pietro Picco and Giovanni Vigna. "Understanding Code

Mobility ", IEEE Transactions on Software Engineering , vol. 24(5), 1998

[2] S. L. Wise and B.S. Plake. Research on the affects of administering tests via

computers, Educational Measurement: Issues Practice, vol. 8, no. 3, pp 5-10, 1989

[3] Walworth, M., & Herrick, R. J. (1991). The use of computers for educational and
testing purposes. Proceedings Frontiers in Education Conference (pp. 510-513),1991

[4] Y.D. Lin, C. Chou, Y.C. Lai, and W.C. Wu, WebCAT*- A Webcentric, multiserver,

computer-assisted testing system,” International Journal of Educational Telecommunications,
vol. 5, no. 3, pp.171-192, 1999

[5] Jakob Hummes, Arnd Kohrs, and Bernard Merialdo. Questionnaires: a framework

using mobile code for component-based tele-exams. In Proceedings of IEEE 7th Intl.
Workshops on Enabling Technologies: Infrastructure for Collaborating Enterprises (WET ICE),
Stanford, CA, USA, June 1998

[6] Chien Chou. Constructing a Computer-Assisted Testing and Evaluation System on

the World Wide Web-The CATES Experience, in IEEE Transactions on Education, Vol
43, No 3, Pages 266-272, August 2000

[7] Robert Ubell. Engineers turn to e-learning, IEEE Spectrum, October 2000

[8] Rahul Jha, Srinath Perur, Vikram Jamwal and Sridhar Iyer. Mobile Agents in e-

commerce: A quantitative evaluation, in Proceeding of 8th Int. Conference on Advanced
Computing and Communication, Kochi, Dec 2000.

[9] Danny B. Lange. Mobile Objects and Mobile Agents: The Future of Distributed

Computing, In Proceedings of The European Conference on Object-Oriented Programming ’98,
1998.

[10] Yariv Aridor and Danny B. Lange. Agent Design Patterns: Elements of Agent

Application Design, In Proceedings of Second International Conference on Autonomous
Agents’98, 1998.

[11] Danny B. Lange and Mitsuru Oshima. Mobile Agents with Java: The Aglet API,

World Wide Web Journal, 1998.

2

[12] Gunter Karjoth, Danny B. Lange, and Mitsuru Oshima. A Security Model for Aglets,

IEEE Internet Computing, Vol. 1, No. 4, July/ August, 1997.

[13] Danny Lange and Mitsuru Oshima. The Aglet book "Programming and Deploying
Java Mobile Agents with Aglets", Addison-Wesley.

[14] Yariv Aridor and Mitsuru Oshima . Infrastructure for Mobile Agents: Requirements

and Design, Proc. of 2nd International Workshop on Mobile Agents (MA ’98), Springer Verlag,
September 1998.

[15] Anand Tripathi, Neeran Karnik, Manish Vora, Tanvir Ahmed, and Ram D. Singh

Ajanta -- A Mobile Agent Programming System, Technical Report #TR98-016,
Department of Computer Science, University of Minnesota, April 1999.

[16] Anand Tripathi, Neeran Karnik, Manish Vora, Tanvir Ahmed and Ram Singh.

Mobile Agent Programming in Ajanta, In Proceedings of the 19th International Conference on
Distributed Computing Systems (ICDCS ’99) , 1999

[17] Neeran Karnik and Anand Tripathi . Agent Server Architecture for the Ajanta

Mobile-Agent System, In Proceedings of the 1998 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA’98), Las Vegas, July 1998.

[18] Anand Tripathi and Neeran Karnik.. Protected Resource Access for Mobile Agent-

based Distributed Computing, In Proceedings of the ICPP workshop on Wireless Networking
and Mobile Computing, Minneapolis, August 1998.

[19] Neeran Karnik and Anand Tripathi . Design Issues in Mobile Agent Programming
Systems. IEEE Concurrency, July-Sep 1998 pp 52-61.

[20] Neeran Karnik. Security in Mobile Agent Systems, Ph.D. dissertation

[21] Ladislau Bölöni and Dan C.Marinescu. A Multi-Plane State Machine Agent

Framework., CSD-TR#99-027, September 99
http:/ / bond.cs.purdue.edu/ papers/ Multiplan.ps

[22] Tom Walsh, Noemi Paciorek, David Wong. Security and Reliability in Concordia, In

Mobility, Processes, Computers, and Agents, Addison-Wesley, 1999, pp. 525-534.

[23] David Wong, Noemi Paciorek, Tom Walsh, Joe DiCelie, Mike Young, Bill Peet.
Concordia:Infrastructure for Collaborating Mobile Agents, First International Workshop
on Mobile Agents 97 (MA’97) in Berlin, Germany on April 7 - 8, 1997

3

[24] Robert S. Gray and David Kotz and George Cybenko and Daniela Rus. D’Agents:
Security in a multiple-language, mobile-agent system. In Giovanni Vigna, editor,
Mobile Agents and Security, Lecture Notes in Computer Science, Springer-Verlag, 1998.

[25] Brian Brewington and Robert Gray and Katsuhiro Moizumi and David Kotz and

George Cybenko and Daniela Rus. Mobile Agents for Distributed Information
Retrieval. In Matthias Klusch, editor, Intelligent Information Agents, chapter 15, Springer-
Verlag, 1999.

[26] O. Holder, I. Ben-Shaul and H. Gazit. Dynamic Layout of Distributed Applications

in FarGo. Proceedings of the 21st International Conference on SoftwareEngineering (ICSE’99),
Los Angeles, CA, USA, May 1999.

[27] Grasshopper Technical Overview http:/ / www.ikv.de/ products/ grasshopper/

[28] Joachim Baumann, Fritz Hohl, Kurt Rothermel and Markus Straßer (1998):Mole -

Concepts of a Mobile Agent System,World Wide Web, Vol. 1, Nr. 3, pp. 123-137

[29] G. Glass, "ObjectSpace Voyager Core Package Technical Overview ", Mobility:
process, computers and agents , Addison-Wesley, Feb. 1999

[30] ObjectSpace Inc., ObjectSpace Voyager Core Package Technical Overview, 1997.

[31] Alberto Silva, Miguel Mira da Silva, José Delgado. AgentSpace: An Implementation

of a Next-Generation Mobile Agent System, in Proc. of Mobile Agents’98, Lecture Notes in
Computer Science, 1477, Springer Verlag, 1998.

[32] Ernö Kovacs, Hong-Yon Lach, Björn Schiemann, Klaus Röhrle, Carsten Pils: Agent-

based Mobile Access to Information Services, ACTS Mobile Summit AMOS’99, June
1999.

[33] M. Zapf, H. Müller, K. Geihs. Security Requirements for Mobile Agents in Electronic

Markets, In: Proceedings of the working conference on Trends in Distributed Systems for Electronic
Commerce (TrEC’98), Lecture Notes in Computer Science, Springer, Hamburg (June
1998)

[34] Srilekha Mudumbai, Abdeliah Essiari, William Johnston. Anchor Toolkit(A Secure

Mobile Agent System), Technical Report, Imaging and Computing Sciences Division
Ernest Orlando Lawrence Berkeley LaboratoryUniversity of California. http:/ / www-
itg.lbl.gov/ Akenti/ Anchor

[35] C. Santoro. ARCA: A Framework for Mobile Agents Programming - A White Paper,

Internal Report, University of Catania - Dec 1998

4

[36] Kawamura,T., Yoshioka,N., Hasegawa,T., Ohsuga,A. and Honiden,S. Bee-gent:
Bonding and Encapsulation Enhancement Agent Framework for Development of
Distributed Systems ", In Proceedings of the 6th Asia-Pacific Software Engneering Conference,
1999.

[37] Werner Van Belle, Karsten Verelst, Theo D’Hondt. Location Transparent Routing in

Mobile Agent Systems Merging Name Lookups with Routing, Presented at Future
Trends of Distributed Computer Systems, December ’99 PROG/ DINF/ VUB

[38] A. Lingnau, O. Drobnik and P. Doemel. An HTTP-based Infrastructure for Mobile

Agents, Fourth Int’l World Wide Web Conference Proceedings (Boston, Dec1995), World
Wide Web Journal 1 (1995), pp. 461-71

[39] Mehdi Jazayeri, Wolfgang Lugmayr. Gypsy: A Component-Oriented Mobile Agent

System. 8th Euromicro Workshop on Parallel and Distributed Processing (PDP2000) (Rhodos,
Greece, January 19-21, 2000).

[40] Nelson Minor. Hive: Distributed Agents for Networking Things", Proceedings

ASA/ MA ’99, 1999

[41] Walter Binder. Design and Implementation of the J-SEAL2 Mobile Agent Kernel,in
6th ECOOP Workshop on Mobile Object Systems: Operating System Support, Security, and
Programming Languages; France, June 2000;

[42] A.S. Park, M. Emmerich, D. Swertz: Service Trading for Mobile Agents with LDAP

as Service Directory. IEEE 7th Intl. Workshop on EablingTechnologies: Infrastructure for
Collaborative Enterprises, WETICE’98, Stanford University, California, USA, June, 1998.

[43] Marcus J. Huber. JAM: A BDI-theoretic Mobile Agent Architecture, in Proceedings of
the Third International Conference on Autonomous Agents (Agents’99), Seattle, WA,May, 1999,
pgs 236-243

[44] L.M.Silva, P.Simoes, G.Soares, P.Martins, V.Batista, C.Renato, L.Almeida, N.Stohr.

JAMES: A Platform of Mobile Agents for the Management of
TelecommunicationNetworks, Proc. IATA’99, Intelligent Agents for Telecommunication
Applications, Stockholm, Sweden, August 1999

[45] Ciaran Bryce and Jan Vitek The JavaSeal Mobile Agent Kernel, in ASA/ MA

Proceedings’99, 1999

[46] Jumping Beans White Paper, Ad Astra Engineering, Inc., 1998
http:/ / www.JumpingBeans.com/

[47] Dirk Struve. Kariboga, Mobile Agent System, Project's Documentation Web Page,

http:/ / www.projectory.de/ kaariboga/ index.html

5

[48] L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Proceedings of WETICE’98, IEEE,

1998

[49] KOE Documentation,
http:/ / www.cnri.reston.va.us/ home/ koe/ docs/ manuals/ index.html

[50] Chr. Tschudin. The Messenger Environment M0 - A Condensed Description. In

Vitek and Tschudin (Eds.): Mobile Object Systems, LNCS 1222, 1997, pp. 149-156

[51] Chr. Tschudin. On the Structuring of Computer Communications. PhD thesis 2632,
University of Geneva, Switzerland 1994

[52] Puliafito, O. Tomarchio, and L. Vita. MAP: Design and Implementation of a Mobile

Agents Platform. Journal of System Architecture, 46(2):145-162, 2000.

[53] Smith, Chris. Theory and the Art of Communications Design. State of the University Press,
1997.

[54] R Ghanea-Hercock, J Collis, D Ndumu. Co-operating Mobile Agents for distributed

parallel processing, Autonomous Agents ’99, Seattle.

[55] M. Fukuda, L. Bic, M. Dillencourt, Messages versus Messengers in Distributed
Programming, Journal of Parallel and Distributed Computing (JPDC), Vol. 57, 199-211,
1999

[56] Mobile and Intelligent Platform for Agent Communication Environment:

MIPLACE, NEC Research & Development, vol.40, No.3 July 1999

[57] Satoru FUjita, Suresh Jagannathan, et al. Mobile and Distributed Agents in Mobidget,
Poster paper in ASA/ MA 99, 1999

[58] G.P.Picco. µCode: A Lightweight and Flexible Mobile Code Toolkit In Mobile

Agents, Proceedings of the 2nd International Workshop on Mobile Agents 98 (MA’98),
Stuttgart (Germany), K.Rothermel and F. Hohl eds., September 1998, Springer,
Lecture Notes on Computer Science vol. 1477, ISBN 3-540-64959-X, pp. 160-171

[59] Pawel Wojciechowski . Nomadic Pict: Language and Infrastructure Design for

Mobile Computation. Ph.D. thesis, March 2000. Also as Technical Report 492,
Computer Laboratory, University of Cambridge, June 2000.

[60] Pawel Wojciechowski and Peter Sewell. Nomadic Pict: Language and Infrastructure

Design for Mobile Agents,. In ASA/ MA’99 (First International Symposium on Agent

6

Systems and Applications/ Third International Symposium on Mobile Agents), October 1999.
An extended version is to appear in IEEE Concurrency.

[61] Wen-Shyen E. Chen, C.Y. Lin and Yao-Nan Lien. A Mobile Agent Infrastructure

with Mobility and Management Support. Proceedings of the 1999 International Workshops
on Parallel Processing, Institute of Electrical and Electronics Engineers, Inc.

[62] K. Kato, Y. Someya, K. Matsubara, K. Toumura, H. Abe. An Approach to Mobile

Software Robots for the WWW, IEEE Transactions on Knowledge and Data Engineering,
Vol. 11, No. 4, 1999 July/ August.

[63] Ohsuga, A., Nagai, Y., Irie, Y., Hattori, M., and Honiden, S. PLANGENT: An

Approach to Making Mobile Agents Intelligent, IEEE Internet Computing, Vol. 1, No. 4
(1997), pp.50-57

[64] P. Bellavista, A. Corradi and C. Stefanelli. A Secure and Open Mobile Agent

Programming Environment", Proc. Fourth International Symposium on Autonomous
Decentralized Systems (ISADS ’99), Tokyo, Japan, March 21-23,1999, pages 238-245,
IEEE Computer Society Press.

[65] P.Bellavista, A.Corradi, and C.Stefanelli. An Open Secure Mobile Agent Framework

for Systems Management, Journal of Network and Systems Management (JNSM), Special
Issue on "Mobile Agent-based Network and Service Management",September 1999.

[66] A.Corradi, R. Montanari, C. Stefanelli. Mobile Agents Protection in the Internet

Environment. In Compsac’99 Proceedings, 1999

[67] J. White. Mobile Agents, in Software Agents, J. Bradshaw (ed.), AAAI Press / The
MIT Press, 1996

[68] Dag Johansen, Robbert van Renesse, and Fred B. Schneider. Operating system

support for mobile agents. In, Proceedings of the 5th. IEEE Workshop on Hot Topics in
Operating Systems, Orcas Island, Wa, USA (4th-5th May, 1995), Published by: IEEE
Computer Society, NY, USA,May 1995.

[69] Milojicic, D., laForge, W., Chauhan, D. Mobile Objects and Agents, Design,

Implementation and Lessons Learned, in the Proc. of the Fourth USENIX Conference on
Object-Oriented Technologies and Systems (COOTS ‘98), April 27-30, 1998, Santa Fe, New
Mexico

[70] Green, S. et al. Software Agents: A review, Technical Report, Departmentof Computer

Science, Trinity College, Dublin, Ireland

7

[71] Gian Pietro Picoo. Understanding, Evaluating, Formalizing, and Exploiting Code
Mobility, PhD Dissertation, Department of Automation and Informatics, Torino
Polytecnico, Italy.

[72] Rahul Jha. Mobile Agents for e-commerce. M.Tech. Thesis 2001, IIT Bombay, India

[73] Riordan J., Schneier B.: Environmental Key Generation Towards Clueless Agents, in:

Giovanni Vigna (Ed.): Mobile Agents and Security. pp 15-24. Springer-Verlag, 1998.

[74] Sander T., Tschudin C. F.: Protecting Mobile Agents Against Malicious Hosts, in:
Giovanni Vigna (Ed.): Mobile Agents and Security. pp 44-60. Springer-Verlag, 1998

[75] Vigna G.: Cryptographic Traces for Mobile Agents, in: Giovanni Vigna (Ed.): Mobile

Agents and Security. pp 137-153. Springer-Verlag, 1998.

[76] Young A.; Yung M.: Encryption Tools for Mobile Agents: Sliding Encryption, E.
Biham (Ed.): Fast Software Encryption. Proceedings of the 4th International Workshop,
FSE’97, Haifa, Israel, January 20-22, 1997., LNCS 1267, Springer-Verlag, 1997

[77] Y. Aridor, and M. Oshima. Infrastructures for Mobile Agents: Requirements and

Design. In Proceeding of Second International Workshop on Mobile Agents, MA’98, Stuttgart,
Germany, 1998

[78] Todd. Papaioannou On Structuring of Distributed Systems, The argument for

mobility, PhD Thesis, Loughborough University University, 2000

[79] FIPA Specification Documentation http:/ / www.fipa.org

[80] D. Milojicic, M. Breugst et. al. MASIF: The OMG Mobile Agent System
Interoperability Facility, In Proceeding of Second International Workshop on Mobile Agents,
MA’98, Stuttgart, Germany, 1998

.

 4

