
Multi-Tier Networks for Rural Connectivity

Sridhar Iyer KR School of Information Technology

IIT Bombay

www.it.iitb.ac.in/~sri

Rural India: Background

Background

- 6,07,491 villages 1991 census
 - Each village: average 250 households
- DoT's Village Public Telephone scheme
 - One public telephone per village (currently 84% complete)
 - Next phase Installing a second phone where pop. > 2000
- Internet services viable through public kiosks
 - Ref: Work by TeNeT group at IIT Madras (www.tenet.res.in)
- Attempts to increase reach using long-haul wireless links
 - WiMAX Still expensive
 - WiFi Spectrum is free; Equipment cost is low
 - Ref: Work by CEWiT to develop modified MAC (www.cewit.org.in)

Telecommunication within villages

- Can we do more than just 'connect' the village?
- Issues with fixed and cellular telephony
 - Infrastructure establishment and maintenance
 - Investment recovery
- Questions:
 - Can we use WiFi to reach from the kiosk to the homes?
 - Can we use multi-hop wireless networks?

Using WiFi for intra-village communication Timbaktu Experiment

Timbaktu Collective

Rural NGO setting

- One old BSNL telephone line
- Poles get stolen periodically
- No further landlines possible due to railway track
- No cellular coverage due to hills around
- No towers permitted on hills due to being reserved forest

Problem:

- Each time there is an incoming phone call, somebody has to run to call the person to the phone
- Distance between various buildings (kitchen, school, homes) is about 100m average

Experiment Objective

- Can we use off-the-shelf VoIP and WiFi equipment to establish low-cost internal connectivity?
- Communication within Timbaktu (rLAN)
- 2. Interfacing with the landline
- Later generalize to other rural scenarios?

Experimenters

PhD Students:

- Srinath Perur
- Raghuraman Rangarajan
- Sameer Sahasrabuddhe

MTech Students:

- Janak Chandrana
- Sravana Kumar
- Ranjith Kumar
- Moniphal Say
- Annanda Rath

The Equipment (Hardware)

IIT Bombay

The Equipment (Software)

- Netstumbler
 - For signal strength measurements
- Ping
 - For round trip delay and packet loss measurements
- Netmeeting; SJ Phone
 - VoIP clients for actual testing
- Simputer VoIP client
 - SIP based VoIP connectivity
- Asterisk
 - Software exchange

Theoretical Solution

- Very Easy ☺
- 1. Put an Access Point (AP), with a directional antenna on top of the highest structure
- 2. Put additional APs here and there to extend the range of coverage, if required
- Run Asterisk (software exchange) on an low-end PC and connect it to the landline
- 4. Configure the VoIP and WiFi on other devices properly
- 5. DONE
- In reality, it is not so simple.

Environment Complicators

Power Supply Issues

- Timbaktu has only Solar power; mostly D/C.
- Off-the-Shelf APs, PCs, etc. have A/C power plugs.
- Naïve solution (as outlined earlier) is not useful
- Only one place had an inverter for A.C. power points (school bldg) => Location of AP determined by default!

Cable Issues

- Antenna cable loss
- Ethernet cable required for connecting phone adapter or PC to AP

Radio Issues

- Attenuation by Haystack!
- Insect mesh on windows
- Assymmetric transmit power of AP versus client devices

The Setup

IIT Bombay 13

Testing – 1 (VoIP over WiFi using Laptops)

IIT Bombay 14

Findings – 1 (VoIP over WiFi using Laptops)

- Easily done
 - Works as expected, similar to preliminary testing at IITB.
- Decent signal strength; ping and VoIP results
- Plus pts: Easy to configure Netmeeting; SJ Phone
 - Asterisk server can be eliminated using peer-2-peer mode
- Minus pts: Not practical for following (obvious) reasons:
 - Users are comfortable with phone instruments
 - Laptop needs to be always on just in case there is a call
 - Not convenient to carry around
 - Too expensive

Testing – 2 (Simputers and phone Adapter)

IIT Bombay 16

Findings – 2 (Simputers and phone Adapter)

- Do-able with some difficulty
- Signal strength; ping and VoIP results are significantly different from those using Laptops
- Unacceptable delays on the Simputer
- Needs Asterisk server for interconnection
- Not practical from a cost perspective

Technology Transfer

- Continued field tests
- Timbaktu students trained in taking signal strength measurements, VoIP usage trails under various conditions


Cost of Current Solution

- Access Point –
- Antenna –
- Simputer
 - (one per mobile user)
 - Cost can be amortized by also using it as an educational tool in the school
- Phone Adapter
 - (one per location)
- Phone -
 - (one per location)

Learnings (obvious in retrospect)

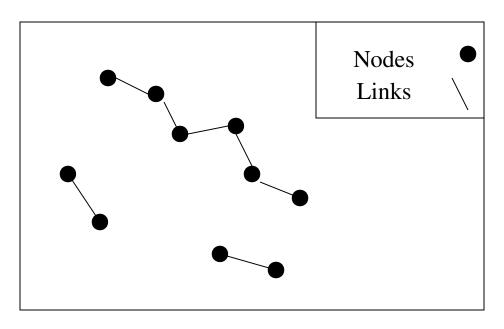
- Theoretical assumptions regarding 'ease' of setup and configuration are misleading
 - Took quite some time to get everything going (even after preliminary work)
- Environment issues have to be handled afresh each time
 - Scenario for one village may be quite different from another

- Asymmetric transmission capabilities of the access point and client devices is a major issue
 - Seeing a good signal strength from the access point does not imply that VoIP (or even ping) tests would be successful

Multi-hop Wireless Networks (MWNs)

- Widely studied in the context of
 - Ad hoc networks
 - Mesh networks
- No infrastructure required; No single point of failure
- However, real-time multi-hop VoIP calls over a WiFi ad hoc network show poor performance
- Alternative: Short voice messages
 - Exploit message relaying; may be delay tolerant
- Questions:
 - How many nodes do we need?
 - How do we route the packets?

How many nodes do we need?


- Depends on
 - Transmission power; Area of operation
 - Terrain; Mobility; Interference
 - Desired communication capabilities; Deployment cost
- Not much work in sparse networks (connectivity < 1)</p>
- Connectivity: probability that a MWN forms a fully connected component
 - Not very useful for our scenario

Reachability

- Reachability is useful for evaluating tradeoffs in sparse networks
 - communication ability versus deployment cost
- Defined as the fraction of connected node pairs:

Reachability =
$$\frac{\text{No. of connected node pairs}}{\text{No. of possible node pairs}}$$

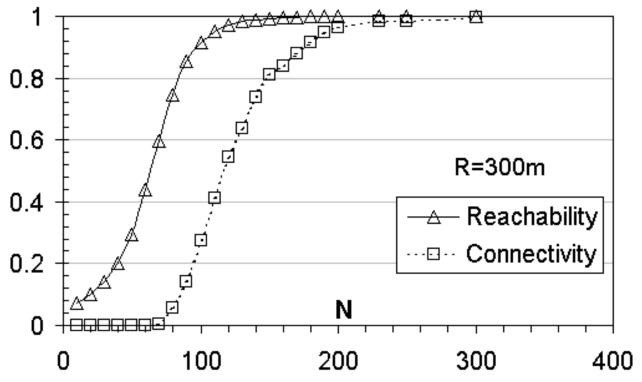
Calculating reachability

$$Rch. = \frac{NumConnectedPairs}{NC_{2}}$$

$$Rch. = \frac{17}{10C_{2}} = 0.378$$

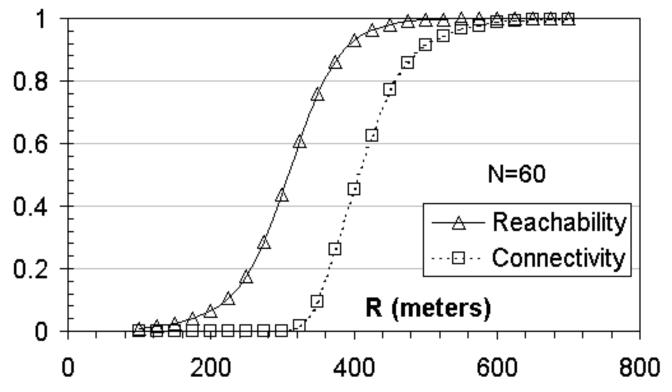
IIT Bombay

Probabilistic Reachability


- Static network graph
 - Measured by averaging over value of reachability for many instances
- Dynamic network graph
 - Average of reachabilities for frequent static snapshots
- Designing for reachability of 0.6 means that over a long period, we can expect 60% of calls to go through

Simulation study

- Village spread across 2km x 2km
 - Low population density
 - Agricultural land
- Simulations performed using Simran a simulator for topological properties of wireless multi-hop networks
- Assumptions:
 - Devices capable of multi-hop voice communication
 - Negligible mobility
 - Homogenous range assignment of R
 - Not a realistic propagation model
 - · Results will be optimistic, but still indicative
 - Nodes randomly distributed


If a device has R fixed at 300m, how many nodes are needed to ensure that 60% of calls go through?

Choosing N

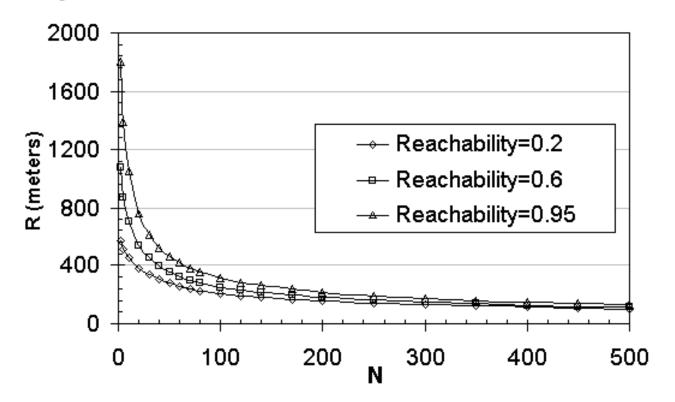
- Around 70 nodes are required
- When reachability is 0.6, connectivity is still at 0

If 60 nodes with variable transmission range are to be deployed in the village, how should R be set?

- Connectivity at zero when reachability > 40%
- Connectivity insensitive to change when R < 320 m
- Increase in R requires power-law increase of transmit power
- Tradeoff between R, reachability, power, battery life
- Increase in R as connectivity tends to 1 is not very useful in increasing communication capabilities

Coverage

Are nodes connecting only to nearby nodes?

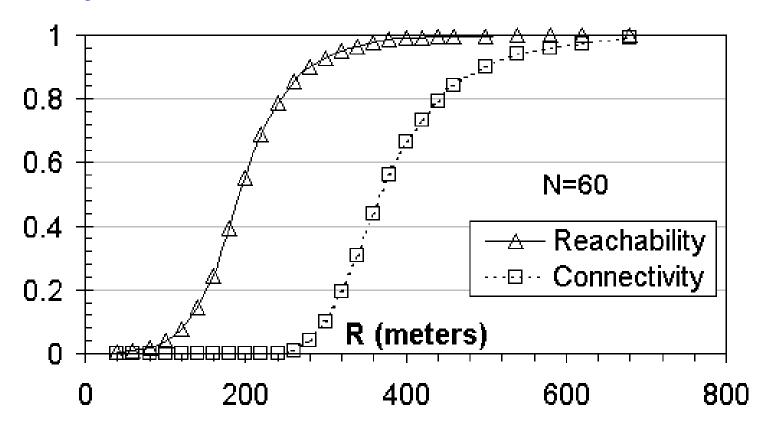

Theorem 3.1. Let G = (V, E) be a graph in which every pair of nodes $(u, v) \in V \times V$ is assigned a distance |uv|, and $(u, v) \in E$ iff $|uv| \leq R$. Then, if the shortest path between some two nodes in V has k edges, k > 1, the sum of the distances of those k edges, L, is bounded as: $\lfloor \frac{k}{2} \rfloor R < L \leq kR$.

- For N=70, R=300m, average shortest path lengths between nodes in a run (from 500 runs)
 - Max = 9.24
 - Average = 5.24
 - Min = 2.01
- Shortest path length of 5 implies a piece-wise linear distance greater than 600m and upto 1500m

Adding mobility

- For the previous case, (N=70, R=300m) we introduce mobility
 - Simulation time: 12 hours
 - Random way-point
 - $V_{min}=0.5 \text{ ms}^{-1}$
 - V_{max}=2 ms⁻¹
 - Pause = 30 mins
- Reachability increases from 0.6 to 0.71
- Especially useful for short voice messages
 - asynchronous communication

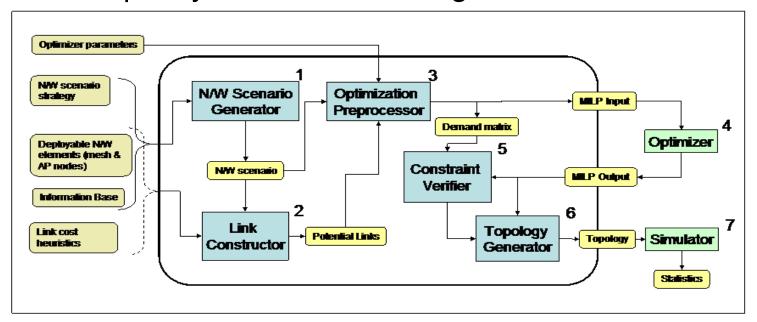
R vs. N


- Can be used for power control
- Maintain reachability as nodes die or R decreases

IIT Bombay 32

Asynchronous Communication

- N=60, varying R
- Uniform velocity of 5ms⁻¹
- Two nodes are connected at simulation time t if a path, possibly asynchronous, existed between them within time t+30
- That is, can store-and-forward message passing happen between the two nodes in 30 seconds
- 20 simulations of 500 seconds each


Asynchronous communication

- 80% of node pairs are connected before connectivity increases from 0
- Asynchronous messaging helps sparse network achieve significant degree of communication

Ongoing Work

- Routing protocol for communication over sparse and partially connected, ad hoc network
 - Existing schemes assume a fully connected network
- Tool for capacity-constrained design of multi-tier networks

