Rural Wireless Connectivity - Timbaktu Experiment

Sridhar lyer

IIT Bombay

www.it.iitb.ac.in/~sri (sri@it.iitb.ac.in)

Rural India: Background

Background

- Each village: average 250 households
- Internet services viable through public kiosks
 - Ref: Work by TeNeT group at IIT Madras (www.tenet.res.in)
- Attempts to increase reach using long-haul wireless links
 - WiMAX Still expensive
 - WiFi Spectrum is free; Equipment cost is low
 - Ref: Work by CEWiT to develop modified MAC (www.cewit.org.in)

Question:

- What about intra-village connectivity?
- Can we use WiFi to reach from the kiosk to the homes?

Timbaktu Collective

Rural NGO setting

- One old BSNL telephone line
- Poles get stolen periodically
- No further landlines possible due to railway track
- No cellular coverage due to hills around
- No towers permitted on hills due to being reserved forest

Problem:

- Each time there is an incoming phone call, somebody has to run to call the person to the phone
- Distance between various buildings (kitchen, school, homes) is about 100m average

Experiment Objective

- Can we use off-the-shelf VoIP and WiFi equipment to establish low-cost internal connectivity?
- Communication within Timbaktu (rLAN)
- Interfacing with the landline
- Later generalize to other rural scenarios?

Experimenters

PhD Students:

- Srinath Perur
- Raghuraman Rangarajan
- Sameer Sahasrabuddhe

MTech Students:

- Janak Chandrana
- Sravana Kumar
- Ranjith Kumar
- Moniphal Say
- Annanda Rath

The Equipment (Hardware)

The Equipment (Software)

- Netstumbler
 - For signal strength measurements
- Ping
 - For round trip delay and packet loss measurements
- Netmeeting; SJ Phone
 - VoIP clients for actual testing
- Simputer VoIP client
 - SIP based VoIP connectivity
- Asterisk
 - Software exchange

Theoretical Solution

- Very Easy ©
- Put an Access Point (AP), with a directional antenna on top of the highest structure
- 2. Put additional APs here and there to extend the range of coverage, if required
- 3. Run Asterisk (software exchange) on an low-end PC and connect it to the landline
- 4. Configure the VoIP and WiFi on other devices properly
- 5. DONE
- In reality, it is not so simple.

Environment Complicators

Power Supply Issues

- Timbaktu has only Solar power; mostly D/C.
- Off-the-Shelf APs, PCs, etc. have A/C power plugs.
- Naïve solution (as outlined earlier) is not useful
- Only one place had an inverter for A.C. power points (school bldg) => Location of AP determined by default!

Cable Issues

- Antenna cable loss
- Ethernet cable required for connecting phone adapter or PC to AP

Radio Issues

- Attenuation by Haystack!
- Insect mesh on windows
- Assymmetric transmit power of AP versus client devices

The Setup

Testing – 1 (VoIP over WiFi using Laptops)

Findings – 1 (VoIP over WiFi using Laptops)

- Easily done
 - Works as expected, similar to preliminary testing at IITB.
- Decent signal strength; ping and VoIP results
- Plus pts: Easy to configure Netmeeting; SJ Phone
 - Asterisk server can be eliminated using peer-2-peer mode
- Minus pts: Not practical for following (obvious) reasons:
 - Users are comfortable with phone instruments
 - Laptop needs to be always on just in case there is a call
 - Not convenient to carry around
 - Too expensive

Testing – 2 (Simputers and phone Adapter)

Findings – 2 (Simputers and phone Adapter)

- Do-able with some difficulty
- Signal strength; ping and VoIP results are significantly different from those using Laptops
- Unacceptable delays on the Simputer
- Needs Asterisk server for interconnection
- Not practical from a cost perspective

Technology Transfer

- Continued field tests
- Timbaktu students trained in taking signal strength measurements, VoIP usage trails under various conditions

Cost of Current Solution

- Access Point –
- Antenna –
- Simputer
 - (one per mobile user)
 - Cost can be amortized by also using it as an educational tool in the school
- Phone Adapter
 - (one per location)
- Phone -
 - (one per location)

Learnings (obvious in retrospect)

- Theoretical assumptions regarding 'ease' of setup and configuration are misleading
 - Took quite some time to get everything going (even after preliminary work)
- Environment issues have to be handled afresh each time
 - Scenario for one village may be quite different from another

- Asymmetric transmission capabilities of the access point and client devices is a major issue
 - Seeing a good signal strength from the access point does not imply that VoIP (or even ping) tests would be successful

Suggested Solution

- Access Point and Directional Antenna on School bldg
 - Or wherever there is A.C. power supply
- Standard Phone and VoIP Adapter in each residence
 - Need to find a D.C powered Voice to VoIP over WiFi adapter
 - A.C. powered Voice to VoIP over Ethernet adapters available commercially will require an AP on each bldg also!
- Low-power, low-cost device running Asterisk to be connected somewhere in the network
- PSTN to VoIP over WiFi adapter at the landline interface
- Cost of solution ?

Conclusion

- VoIP over WiFi seems to be a viable alternative for providing internal communication within a village
- Next phase of experiment will involve interfacing the rLAN to the external world through appropriate adapters
 - PSTN line
 - Cellular
 - WiFiRe
- Cost of equipment is not the main factor for low cost solutions. Availability of power and terrain are main issues
 - Need to adapt devices for low-power (D.C) also

Comments?

