### WiMAX: IEEE 802.16 - Wireless MANs

Sridhar Iyer

K R School of Information Technology IIT Bombay

sri@it.iitb.ac.in

http://www.it.iitb.ac.in/~sri

#### Wireless networks

- Wireless PANs (Bluetooth IEEE 802.15)
  - very low range
  - wireless connection to printers etc
- Wireless LANs (WiFi IEEE 802.11)
  - infrastructure as well as ad-hoc networks possible
  - home/office networking
- Multihop Ad hoc Networks
  - useful when infrastructure not available, impractical, or expensive
  - military applications, emergencies



Wireless standards and their networking environments

- Wireless MANs (WiMAX-802.16)
  - Similar to cellular networks
  - traditional base station infrastructure systems

Wireless MAN: Wireless Metropolitan Area



#### **WiMAX**

- Goal: Provide high-speed Internet access to home and business subscribers, without wires.
- Base stations (BS) and subscriber stations (SS)
- Centralized access control to prevents collisions
- Supports applications with different QoS requirements
- WiMAX is a subset of IEEE 802.16 standard

#### IEEE 802.16 standards

- 802.16.1 (10-66 GHz, line-of-sight, up to 134Mbit/s)
- 802.16.2 (minimizing interference between coexisting WMANs)
- 802.16a (2-11 Ghz, Mesh, non-line-of-sight)
- 802.16b (5-6 Ghz)
- 802.16c (detailed system profiles)
- P802.16e (Mobile Wireless MAN)



## Physical layer

- Allows use of directional antennas
- Allows use of two different duplexing schemes:
  - Frequency Division Duplexing (FDD)
  - Time Division Duplexing (TDD)
- Support for both full and half duplex stations
- Adaptive Data Burst profiles
  - Transmission parameters (e.g. Modulation, FEC) can be modified on a frame-by-frame basis for each SS
  - Profiles are identified by "Interval Usage Code"

### Time Division Duplexing (TDD)



# Media Acces Control (MAC)

- Connection oriented
  - Connection ID (CID), Service Flows
- Channel access: decided by BS
  - UL-MAP
    - Defines uplink channel access
    - Defines uplink data burst profiles
  - DL-MAP
    - Defines downlink data burst profiles
  - UL-MAP and DL-MAP are both transmitted in the beginning of each downlink subframe

#### TDD Downlink subframe



10

### Uplink subframe



### Uplink periods

- Initial Maintenance opportunities
  - Ranging to determine network delay and to request power or profile changes
  - Collisions may occur in this interval
- Request opportunities
  - SSs request bandwith in response to polling from BS
  - Collisions may occur in this interval
- Data grants period
  - SSs transmit data bursts in the intervals granted by the BS
  - Transition gaps between data intervals for synchronization

### Bandwidth request

- SSs may request bandwidth in 3 ways:
  - Use the "contention request opportunities" interval upon being polled by the BS
  - Send a standalone MAC message called "BW request" in an allready granted slot
  - Piggyback a BW request message on a data packet

#### Bandwidth allocation

- BS grants/allocates bandwidth in one of two modes:
  - Grant Per Subscriber Station (GPSS)
  - Grant Per Connection (GPC)
- Decision based on requested bandwidth and QoS requirements vs available resources
- Grants are notified through the UL-MAP

14

### Bandwidth Request-Grant Protocol



- 4: BS alleeates bandwidth to SSs for transmitting databased on their bandwidth requests.
- 2.1835dwidthsrifits bandwidth for requesting more bandwidth.
- 2:2 SS1 transmits data with pandwidth requests.
- 5.2 SS<sub>2</sub> transmits data and bandwidth requests.

#### Scheduling services

- Unsolicited Grant Service (UGS)
  - Real-time, periodic fixed size packets (e.g. VoIP)
  - No periodic bandwith requests required
- Real-Time Polling Service (rtPS)
  - Real-time, periodic variable sizes packets (e.g MPEG)
  - BS issues periodic unicast polls
- Non-Real-Time Polling Service (nrtPS)
  - Variable sized packets with loose delay requirements (FTP)
  - BS issues unicast polls regularly (not necessarily periodic)
  - Can also use contention requests and piggybacking
- Best Effort Service
  - Never polled individually
- Can use contention requests and piggybacking
   Sridhar Iyer
   IIT Bombay

### Example

|                  | Total Uplink Bytes = 100 |  |                 |  |  |  |
|------------------|--------------------------|--|-----------------|--|--|--|
|                  | 2 SS and 1 RS            |  |                 |  |  |  |
| SS <sub>1</sub>  |                          |  | SS <sub>2</sub> |  |  |  |
| Demands:         |                          |  | Demands:        |  |  |  |
| UGS = 20         |                          |  | UGS = 10        |  |  |  |
| rtPS = 12        |                          |  | rtPS = 10       |  |  |  |
| nrtPS = 15       |                          |  | nrtPS = 15      |  |  |  |
| BE - 30          |                          |  | RF - 20         |  |  |  |
| Total Demand Per |                          |  |                 |  |  |  |

Flow:

UGS = 30

rtPS = 22

Sric nrtPS = 30

BE = 50

| Flows:                | UGS | rtPS | nrtPS | BE |  |  |  |
|-----------------------|-----|------|-------|----|--|--|--|
| 1st Round             | 40  | 30   | 20    | 10 |  |  |  |
|                       | 30  | 22   | 20    | 10 |  |  |  |
| Excess Bytes = 18     |     |      |       |    |  |  |  |
| 2 <sup>nd</sup> Round | 30  | 22   | 20+12 |    |  |  |  |
| 10+6                  |     |      |       |    |  |  |  |
|                       | 30  | 22   | 32    | 16 |  |  |  |
| Excess Bytes = 2      |     |      |       |    |  |  |  |
| 3 <sup>rd</sup> Round | 30  | 22   | 30    |    |  |  |  |
| 16+2                  |     |      |       |    |  |  |  |
|                       | 30  | 22   | 30    | 18 |  |  |  |

$$SS_1$$
 Allocation = 20 +12 + 15 + 9 = 56  
 $SS_2$  Allocation = 10 +10 + 15 + 9 = 44

IIT Bombay 17

#### References

- IEEE 802.16-2001. "IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems". Apr. 8, 2002.
- C. Eklund, R. B. Marks, K. L. Stanwood, and S. Wang, "IEEE Standard 802.16: A Technical Overview of the WirelessMAN™ Air Interface for Broadband Wireless Access", *IEEE Communications Magazine*, 40(6):98-107, June 2002.
- Andrew S. Tanenbaum, *Computer Networks*, Prentice-Hall India, Fourth edition, 2003.
- S. Keshav. *An Engineering Approach to Computer Networking*. Pearson Education, Sixth edition, 2003.

#### Thank You

Other Tutorials at: www.it.iitb.ac.in/~sri

Google Search: Sridhar Iyer IIT Bombay

#### **Contact Details:**

Sridhar Iyer

School of Information Technology

IIT Bombay, Powai, Mumbai 400 076

Email: sri@it.iitb.ac.in

