Designing
Distributed Applications
using Mobile Agents

of TEg
Py ok
= T N
ad s £
-] -
B T =)
L . .‘

Pt - H/PC
Sridhar lyer International Conference on
Vikram Jamwal High Performance Computing
KR School of IT, December 17, 2001

lIT Bombay, INDIA Hyderabad, INDIA

Outline

® Motivation

® Mobile Agent technology

® Application domains

® MA frameworks overview

® MA based Structuring

® MA Framework Issues

® MA Application Case Studies
® Conclusion

Distributed Computing Outlook

m Peer-Peer computing

® Context-aware computing
= Mobile computing

m Distributed communities

®= networks of mobile and fixed people, devices and applications

= Virtual communities for e-business, e-government and e-
education

m Real-time 3D environments
® |ntelligent environments

Required ...

® Dynamic adaptations in heterogeneous environments
® Self-organizing systems
B Metadata, ontologies and the Semantic Web

® More than simple client-server interactions

® From one-one or many-one interactions to
« One-many
* Many-many

® Support for collaborations

= We shall pick one representative application viz.
Distance Evaluation

Distance Evaluation

® Fmergence of distance education
® Need for distance evaluation mechanisms

B Alternatives to paper-based exams
= Computer based and Internet based

B Scheduled and uniform exams

® Scenario
® |[IT-JEE type of examination
® Stages
® Paper Setting
m Distribution and Testing
= Fvaluation and Result publication

Evaluation and Result

N

Compilatio

Paper Setting

Result
Publication

Distribution and

Design Goals

® Map to real life scenario
® Automate as much as possible

® Minimize the infrastructure at different
ends

® |[nclude all the stages

Types of e-testing mechanisms

® \Where does the database reside?

m | ocally
= Computer Based Testing (CBT)
= Examples
« GRE and GMAT
® Remote
= |nternet based testing
= Example

e WWW.netexam.com

® These are any time exams

Computer Based Testing (CBT)

B Different Question-Paper for each examinee
" Generated dynamically

® Adaptive
" Different weights given to different questions

" Next question decided on the basis of
* difficulty level and
* correctness of answer to previous guestion

Generator

<

Feedback %

Question Bank Question Paper

Internet Based Testing
Existing Schemes

= Front End
= Mostly “HTML - form based”
® answers sent using ‘GET’ and ‘POST’ methods
® Java applets, Java Script, flash
= Back End
m GGl scripts
m Java servlets
m Security
® Authentication done using ‘login - password’
= May use “https” for secure exchange

B Some issues
® \WWeb Servers are basicallv stateless

Important Points

B Existing models are basically

" Pullbased
® Client-Server

® Extending Internet based evaluation techniques
= Push model
® Different kinds of content
® Dynamic organization of content
m Off-line examination V/S on-line examination
® Subjective answers (not just objective)

m Key technical issues

® How to deliver the exam content?
® How to evaluate the answers?

Client-Server Solution :
Paper Setting Stage

B Paper Setters (PS) are distributed over
a large area.
® PS may want to work offline (why?)

B PS need to be sent notification by the
Paper Assembler (PA) from time to time

B At appropriate time the Question
Paper(QA) needs to be gathered, even if
partially done

C S Design: Paper Setting

Paper —
Assemble}-QD\> Dat
r ata
/ >~
Paper Paper Pape
Setter-1 Setter - Sette
2 3

CS Design

® After supplying his Login id and password (1)
® (which he has procured from e-mail or any other
source),

B cach examiner accesses a web-form from the
server (2).

® After filling the form, he submits it back to the
paper assembler(3).

B PA server stores each PS’s QP in a database with
appropriate indexing (4).

® At a later time, PA queries the database for all
partial QPs and builds an comprehensive paper (5)

Drawbacks

® PA cannot send notifications to the PS
® PA cannot get the partial QPs if PS don’t respond
® The functionality / type of content is limited by
client capability
® Rest of the info has to be uploaded in the form of files.
® There is no provision for

" the local storage of partial data on the form.

" This might be required if the examiner is coming back a
later date to complete his remaining work.

Client Server Solution:
Paper Distribution and Testing

Papers should be distributed to the centers just-in-time
QPs contain dynamic content

Students cannot contact any other machine as long as the
examination is going on

or they can contact only the supervisor
Notifications might need be sent

to the specific, group or all of students during the course of
examination.

Students access QPs only from their terminals
Students get to answer only for a specific time
The center needs to certify the students answer-sheet

CS-Design: Distribution and Testing

® Each student makes a request to the QP Server
(which can be web server to supply it the
Question paper).

B After validation, the QP server supplies a web
page containing the question papers and a form.

® The student, if he requires a further section
repeats the request (or gets it after submitting the

previous answers).
)
Serve

.
BB a8

Drawbacks:

m The web-server (QP server) gets overloaded by various clients
requesting at the same time

m Web server needs to maintain a state information for each student
m the number of sections he has been offered,
m the time elapsed for each student.

m A simple web-form offers various limitations like the kind of
multimedia content it can support

m The information (e.g. question papers or corrections) cannot be
pushed to the clients.

m |f the paper collection site is different
m user need to push the answers to a different web-server.

m The responsibility that an answer paper is submitted properly is
now with the student.

Client — Server Solution:

Paper Evaluation and Result Publication
® The Paper evaluators (PE) contact the

Evaluation Server (ES) for their set of papers.

® The ES retrieves the information from the
database, prepares a web-page and send it the
PE.

" ES possesses the logic about which sub-set of which
student should be sent to a particular PE.

B After all responses have come, ES compiles
results and publishes them

@/55 %: g

PE @

Drawbacks:

®m ES cannot push the information to the PEs
® depends upon them to fetch the information

B ES has to maintain information about

® each students, subsection, and the part forwarded to a PE
and its status.

® \WWhere a paper needs to pass multiple PEs
® a3 ES has to coordinate passively.
® As ES does not get the evaluated copy till PE decides to send
it.
® mode of push
= Mechanisms like e-mail
= Do not tightly tie the system

Observations

® Client — Server Solutions do not always
scale

® Do provide the solution in many cases but
tend to create

® Cumbersome solutions when complexity
Increases

B Unintuitive designs
® Need for alternate structuring mechanisms

Can Mobile Agents Help ?

® What are they ?
® How to exploit their advantage ?

® Constituents
" Agent
= Mobility

® We shall first discuss the agent in general
and then focus on mobile agents

Agents: An Introduction

® One of the most hyped Software
technologies of recent times

® We shall now try to:
® Define Software Agents
B Classify Software Agents
® Discuss their relevance
" [ook at their enabling technologies

What Software Agents

are and aren't

B Exact definition difficult
® term is over-used in various contexts.

® The English word "agent"
= shares the same Latin root as the word “act”
= "someone (or something) that has the ability, power or
authority to act”,
® When applied to software
m "3 program that does something on behalf of the user”
= {00 general
« can actually describe any running program!
® Alternative approach

® |ook at the common list of ideal characteristics that most
Software Anent Sveteme seem tn cshare

Experts say:
Agent should display

= Autonomy

" system does its work in a largely pro-active manner,
without explicit control from the user at every step

" |n practice, most agents will check with the user, at
least for major decisions and actions

® |ntelligence
® system does something smart

B exhibits behaviour that humans would consider
intelligent

® typically solving some non-trivial problem, and

" exhibiting some kind of learning, that is, the ability to
adapt and improve over time

Experts say:
Agent should display

= Cooperation

® the system collaborates, minimally with the user,
and usually with other agents, to perform the task.

Based on this criterion, we can categorize
agents into the four classes

[see figure]

Part-View of Agent Topology
[Nwana 96]

Collaborative
Learning
Agents

Collaborative

Agents '

-

Autonomous

Interface

Smart Agents

Agents

Agent — Non Agent:

according to above classification

B Should exhibit at least two of the above features to a
reasonable degree

® those in the non-overlapping area of the circles are not
considered to be Software Agents

® Non-Agent examples

® expert system
 exhibit intelligence
 not cooperation or autonomy
= 3 web indexing robot
« might be autonomous,
« may not very intelligent
m 3 distributed system
« might display some collaboration among the components

e MmAav ha naithar aiitnnnmniie nnr intallinant

Classification of Agents:

= Single-Agent vs Multi-Agent (Collaborative)

= A multi-agent system involves a collection of agents
collaborating to perform a task.

® This model is more complex, but more modular, and is well-
suited for concurrent or distributed tasks.
m Static vs Mobile
® Static agents work on a single system,

= mobile agents (also known as "bots") move from system to
system.

= Depending on the degree of autonomy and the nature of the
task, mobile agents may keep sending intermediate status to
the base.

Classification of Agents:

= Homogeneous vs Heterogeneous
® Both are multi-agent systems
® |n a homogeneous system: agents are all similar
® |n a heterogeneous system: are of different types.

® Deliberative vs Reactive

= A deliberative agent has an explicit representation of its domain
- and uses symbolic reasoning to do its task.
- often has an explicit representation of its own beliefs, desires and
intentions (called the BDI model), and uses these in its reasoning.
m Deliberative agents involve explicit programming of the knowledge
and problem-solving in the conventional way, and is the way most
agents currently work.

Classification of Agents:

= A reactive agent consists of many agents,

» each of which has a very simple stimulus-response type
behaviour.

» A single agent typically has no clue about the actual task to be
performed, but the collective action of the group has an emergent
behaviour which causes the required task to be accomplished.

® This type of behaviour, for example, is shown in ant and
bee colonies, where each insect works independently and
seemingly chaotically, but the overall effect is quite
dramatic.

= Hybrid agents are those which combine more than one
philosophy within the same agent.

Classification of Agents:

reactive school of thought
= Real-world problem-solving

m rarely involves explicit and elaborate reasoning and planning,
= more of local responses based on the current situation, which keeps
changing.
= Advantage
= allows a simple model
m potentially more responsive to rapid change and to automatic learning.

= Disadvantage

= black-box model
= does not allow inspection and debugging of knowledge

Different types of agents

® Agents exist in a multi-dimensional space

= A representative flat-list
® Collaborative agents
® |nterface agents
= Mobile agents
® |nformation/Internet agents
m Reactive agents
= Hybrid agents
= Smart Agents
m Collaborative Agents

= These emphasize autonomy, and collaboration with other agents
to perform their tasks.

= They may need to have “ social ” skills in order to communicate
and neaotiate with other aaents.

Collaborative Agents

m example
® Pleiades Project at CMU.

= Visitor-Hoster:
 helps a human secretary to plan the schedule of visitors to CMU

« matches their interests with the interests and availability of the faculty and
staff.

- organized as a number of agents that retrieve the relevant pieces of
information from several different real-world information sources, such as

finger, online library search etc.

m Collaborative agents are good for problems
® too large for a single system,
= inherently distributed in nature.

® main challenge
- coordination among multiple agents, particularly when they are autonomous
and heteregeneous.

Interface (Personal) Agents

m Emphasize autonomy, and learning in order to perform useful
tasks for their owners.

m Examples

m personal assistants that handle your appointments
m Office Agents in Microsoft Office.

m focus is more on interacting with the user

m "learn” to serve the user better,
« by observing and imitating the user,
« through feedback from the user, or
« by interacting with other agents.

m The main challenge here is how to assist the user without bothering
him, and how to learn effectively.

m normally have a distinctive personality,
m Avatars are an interesting subclass

Information / Internet Agents

® focus on

® helping us to cope with the sheer "tyranny of
information" in the Internet age.

® help to

® manage, manipulate or collate information from many
distributed sources.

B interface agents or mobile agents

B share their
B respective motivations and challenges
® functional challenges of managing information.

Why Software Agents?

B Agents are a useful, and sometimes necessary way
to build systems.

® Particularly true when one or more of the following
scenarios hold:

" The task can be automated, and delegated to a software
system

" The task is very large, and modularization is possible.

® The information needed is vast, and/or widely
distributed, as with the Internet.

® The application or service needs to learn and improve
with time, or be customized for each user.

Example domain: E-commerce

® Many e-commerce tasks have one or more of these features
m Agents: a key technology for e-commerce.

= buyers

® |ocate relevant goods and services, and to identify the best deals for
them

m sellers
m jdentify prospective customers and their needs,
= help them to select products and services,
m customize products and services for them,
® handle the sale and subsequent customer relation management

® in B2C, C2C as well as B2B scenarios.

Enabling Technologies

® Agents is a highly multi-disciplinary technology
combining inputs from
B Software Technology
" Artificial Intelligence
" Networking
" Human Computer Interaction
® and even Sociology
" Management and Economics
|

In addition to the actual domain of the task
* e.g. Business and Commerce in case of e-commerce

Trends: ova Agent Technology Green Paper

® The growth similar to many earlier technologies
® such as DBMS, OO and GUI
= Not a single, new, technology
® integrated application of multiple technologies.
® Not necessarily a new isolated application
® can add a new set of capabilities to existing applications.
® may strengthen HCI
m |nitially
® agent functions will emerge within applications,
m | ater (with experience)
® pbecome part of the operating system or application environment.

Trends: omva Agent Technology Green Paper

® Ultimately (might happen)

m gpplications that do not exploit agent support in the operating
system will be severely disadvantaged.

® Current state:
= still an active research area.
® isolated pioneer products are emerging.
= full set of technologies are not available.
= technologies not integrated with one another.
® No consensus on operating system level support

m despite hype, not in widespread use, nor has it been widely
accepted as an inevitable trend.

B earlv adonters who can demonstrate the valiie

Mobile Code

B Definition:
" Capability to dynamically change the bindings
between code fragments and the location where
they are executed

® Approaches: (Not a totally new concept)

B Remote batch job submission & use of PostScript
to control printers

® Distributed OS led to more structured approach
* Process Migration
* Object Migration (Mobile Objects)

® Mobile Code Systems (Mobile Agents)

Process Migration

® Transfer of OS process from one m/c to other

® Migration mechanisms handle bindings
between

® process and execution environment
" (e.g. open fds, env variables)

® Provide for load balancing

® Most of these facilities provide transparent
process migration

® Other like Locus provide for some control
" |ike external signal or migrate() system call

Object Migration

® Makes possible to move objects among address
spaces
® finer grained mobility with respect to processes

® e..g Emerald system : Different granularity levels -
small to complex objects
 does not provide complete transparency

= COOL (oo extension of Chorus OS) allows total
transparent migration
® Process and Object migration address issues
when

B code and state are moved among hosts of loosely
coupled, small scale distributed systems

B inglifficient when annlied to larae scale gettinas

Mobile Code Systems

® Code mobility is exploited on Internet Scale
® | arge scale, heterogeneous hosts, technologies
B Strong v/s weak mobility

® Mobility is location aware

® Programming language
 provides mechanisms and abstractions that enable
shipping/ fetching of code to/from nodes

® Underlying run-time
* supports marshalling, code, check in , security etc
* no knowledge of migration policies
® Applications
" Not just for load balancing

® F-commerce, distributed information retrieval,
workflow etc.

Distributed System Structuring

Mechanisms
Call to server proced
results Procedure
Client Server
Procedure
/‘ < - Data
results
Remote Evaluation
Procedure

Code on Demand

Procedure
+

State
< >

Procedure

Data

Procedure
+
State

+

State Data

Procedure I

+
State
Procedure
+
State Data
Data - >

Mobile Agents

Remote Evaluation v/s MA

® A one hop solution
® Mobile agents an extension of REV

® REV involves just a movement of code from
one host to a host which is capable of caring
out the process where as for MA we have active
entities been shipped over the network (data,
code and execution state).

® Performance wise it both will have same
performance except that MA’'s execution
environment is comparatively heavy.

Process migration v/s MA

® Not the desire of the process to move, but
the desire of the distributed operating
system to have it moved

® Mainly to improve load distribution, fault
resilience, parallelism and so on.

® The programmer (user) has neither
control no visibility of migrating process.

I\/Ioblle AC ole

Interaction Model

Request

[
»
<
|
[
>
<
«
[
»
o
<«

Response

N
N

Server

N~

Client/server communication

‘ Mobile agent ’

@ —0

Request

@ Response

Mobile agent communication

N
N

Server

~

A generic Mobile Agent Server

*Event notification

* Agent collaboration
support

Event

Maneﬁer *User identification
Mobile| | Agent

*Protection

<:g:> (agent, server)

@ * Authentication

Agent "Agentstate | Security Manage

Manager *Agent checkpoint

(fault tolerance)

¥/
Persistent

Java based Agent server

Context

Code
server

Java-based Agent server

Agent Transfer

Data

Class Code

) S
I __ B
— =

Network Stream

SENDER RECIEVER

Bag of a traveling agent

Agent Source

Travelling Agent (Concordia

public class MyAgent extends Agent {

private String name;

private Vector someData;
private AgentObject someObject;
private AnotherObject anotherObject;

public void methodl() {

}
public void method2 () {

, } —

class AgentObject {
private String data;

void calculate() {
}

}

class AnotherObject {

private Integer data;

void someMethod() {

i :

platform)

Agent State

String hﬂﬂga: “agent name”;
Vector someData = .. ;
AgentObject someObject= ..;
AnotherObject anotherObject = ..;

Agent Byte

Code
MyAgent.class AgentObject.class

AnotherObject.class

MA based Structuring

Who is affected?
and look for:

® Designers

" ‘metaphor’ which best captures the problem and
provides a neat solution

® Implementers
" Ease of implementation, testing and extension

" Users
" solution and performance

® system which is easily deployed, easy to use and
maintain

 and possibly fun to work with ©

5 Steps to MA based structuring

m Step 1: Application Evaluation
= Which application is a good candidate for MA based design
?

m Step 2: Component Design
= Mobile v/s static components
m Step 3: Choosing (designing?) Framework
= Underlying mobility support
m Step 4: Detailed Component Design
= Component placement + Management
® Step 5: Implementation and Deployment
® Coding, testing and infrastructure requirements

Realizing Step 1:

Application Evaluation

B Case 1:

® You have an application and you want to test
its candidacy for MA based design

B Case 2:

® You want to invent an application that best
exploits MA paradigm

® |n both cases: Required understanding of
® advantages that MA’s bring
B |ssues that they raise

metaphor [G.Picco]

Two friends Asha and Latha interact to make
a cake (results of service)

"recipe is needed (know-how about sen\

=also ingredients (movable resources)

moven to bake (hard to move resouII g

=3 person to mix ingredients following recipe
(a computational component responsible for
execution of code)

"prepare cake (execute the service)
"where cake Is prepared (site of execution)

The Client-Server Paradigm

B Asha would like to have chocolate cake, but
® she doesn’t know the recipe

® she does not have at home either the required
iIngredients or an oven.

® Fortunately, she knows that her friend Latha
knows how to make a chocolate cake, and that
she has well supplied kitchen at her place. Since
Latha is usually quite happy to prepare cakes on
request,

® Asha phones Latha asking: “Can you make a
chocolate cake please?”.

B | atha makes the chocolate cake and delivers
It back to Asha.

Remote Evaluation

®m Asha wants to prepare a chocolate cake.
m She knows the recipe
m She has at home neither the required ingredients nor an oven.

m Her friend Latha has both at her place, yet she doesn’t know
how to make a chocolate cake.

m She knows that Latha is happy to try new recipes

®m She phones Latha asking, “Can you make me a
chocolate cake? Here is the recipe: Take 3 eggs...".

m | atha prepares the chocolate cake following Louse’s
recipe and delivers it back to her.

Code on Demand

®m Asha wants to prepare a chocolate cake.
® She has at home both the required ingredients and an oven
® She lacks the proper recipe.
= However Asha knows that her friend Latha has the right
recipe and she has already lent it to many friends.
® Asha phones Latha asking, “Can you tell me you
chocolate cake recipe?”.

m | atha tells her the recipe and Asha prepares
chocolate cake at home.

Mobile Agents

® Asha wants to prepare a chocolate cake.
" She has the right recipe and ingredients,
® She does not have the oven at home.
® However she knows that her friend Latha has an oven at her
place, and that she is very happy to lend it.
B So, Asha prepares the chocolate batter and then goes
to Latha’s home, where she bakes the cake

Good Reasons [Dennis Lange]:

® Reduce the network load
® Help in overcoming Network latency
® Encapsulate protocols

® Execute asynchronously and
autonomously

® Adapt dynamically
® Naturally heterogeneous
® They are robust and fault-tolerant

Realizing Step 2

Component Design

® OO principles still apply
® Two aspects that affect design

® Autonomous entities
* What advantage do they bring?

" Mobile Components
* Does it make sense to move the component ?
* What is good mobile component?

B Question 1: To move or not to move?
B Question 2: Passive or Active Mobility?

Classical MA definition:

® “A mobile agent is a program that
represents a user (or user task) and can
autonomously migrate between the
various nodes of a network to perform
computations on her behalt”

® Much powerful paradigm
B Need not be restricted to above definition

B Can/should be extended to include
* MAs which work in background
* MA that provide structuring glue

Mobility Patterns

" [tinerary
® Order

B Static Itinerary Dynamic Order (SIDQO)
B Static ltinerary Static Order (SISO)

® Dynamic ltinerary (D)
" Dynamic ltinerary implies dynamic order

Mobility Patterns

Definitions

B |tinerary the set of sites that an MA has to visit
" static
" dynamic

® Order the order in which an MA visits sites in
its itinerary.
" static
" dynamic

Static |tinerary Static Order

Itinerary Order

l

‘_" " >‘

* Sequential CS

Applicable Implementation Strategies >€duential MA

* Pa | CS
* Payallg| MA

Static |tinerary Dynamic Order

T T

Itinerary Order

<
| —~

o ¢ oo
* Sequential CS

Applicable Implementation Strategies 2€duential MA

* Parallel CS
* Parallel MA

Dynamic |tinerary

i 2 HL— 9

Itinerary Order

[

¢ oo \g
A
* Sequential CS

Applicable Implementation Strategies Seg‘ztial MA

MA Applications

® Electronic Commerce

®m Personal Assistance

m Secure Brokering

m Distributed Information Retrieval

®m Telecommunication networks services
m Workflow Applications and groupware
= Monitoring and notification

B |[nformation Dissemination

® Parallel Processing

Realizing Step 3
Choosing a MA framework

® Understanding what a MAF provides

® Two aspects that affect design

® Autonomous entities
* What advantage do they bring?

" Mobile Components
* Does it make sense to move the component ?
* What is good mobile component?

B Question 1: To move or not to move?
B Question 2: Passive or Active Mobility?

Mobile Agent Frameworks
= Need

® language, execution environment, messaging, resources,migrate,
persist, collaborate, control, trace, protect, create, destroy etc.

= Framework is the mechanism to support these facilities

® Components
= Life Cycle
= Navigation
= Communication
m Security

m Systems

® 60+ frameworks

® Notable: Aglets, Concordia, Voyager, Grasshopper, D’Agents,
Mole

Typical Mobile Agent FrameworK [F. Honi]

System
Resources

User Application] |Legacy Software

e
Execution Environment _

Mobile Agent (&)
Service Agent ()
Application
Agent Migration /"

Local Communication
Global Communication « — —»

Mobile Agent Frameworks

Design Issues

Mobility

= Weak Mobility

= Permits mobility of code and data state

= After the movement, the agent is restarted and the values
of its variables are restored, but its execution restarts from
the beginning of a given procedure (a method in case of
objects).
® Strong Mobility
= Mobility of code, data state and execution state

® Restart the execution exactly from the point where it was
stopped before movement.

Mobility support in Java

® Dynamic class loading, Applets

® Weak mobility could be implemented by
serializing objects and sending them to
another JVM via sockets or RMI.

B Restored at the other end and a method
is called (Ex run(); onArrival())

® JVM from SUN does not support a strong
Kind of agent mobility

Problems with strong mobility in Java

® Java stack and the program counter of the
thread(s) need to be moved

® Each microinstruction in the stack, whose
elements are of a generic type stack_item.

® Since it is written in C language, it is not
assured that the same type has the same
internal representation, in terms both of number
of bytes and order of bytes (little or big endian)

Code fragment for weak mobility

void main(String args]) {

// some instructions
go(“NewNode”, “NewMethod”);
// not reached

! //end of main

void NewMethod() {
// the execution restarts HERE

} //end of NewMethod

Code fragment for strong mobility

void main(String argsl]) {

// some instructions
go(NewNode");

// the execution restarts HERE

} //end of main

Repetitive job using weak mobility

public static void main(String argsl]) {
... // go to the first node
go(ltinerary.nextElement(), “ExecuteOnArrival");

}

public void ExecuteOnArrival() {
// execution restarts HERE after a travel
if (GoHome)
... //execute here when the agent is back home
else {
... //do some repetitive jobs on the current node
if (Itinerary.hasMoreElements())
go(ltinerary.nextElement(), ExecuteOnArrival");
else {
GoHome = true;
go(HomeNode, " ExecuteOnArrival");

Repetitive job using strong mobility

public static void main(String args|[]) {

while (Itinerary.hasMoreElements()) {
go(ltinerary.nextElement())
// execution restarts HERE after a travel
... // do something on the current node

}

go(HomeNode);

... // execute here when the agent is back home

Code Shipping

® Carried by the agent
® Any type agent can run anywhere
B Pre-installed on destination host
B | ess run time transfer overhead
® New types cannot be added at run-time
® When and how would you pre-install ?
® Available on code-base server
® Fasy to maintain
® | ocation of code-base server ?

Naming and Addressing

B | ocation dependent
" e.9. <hostname> + <local id/ port no>
® when agent migrates its name changes

® application task of tracking the agent becomes
cumbersome

® | ocation independent
® system has to keep track of the agent
" Jocal proxies with current location information

® pnaming service which resolves name to
current location

Agent Tracking: locating an agent

® Brute force
® Search in multiple location
B Sequential or parallel search
® | ogging
® Agent located by following trial information
" Tracking
® Redirection

B Registration

® Communicating parties need to agree on a common
Directory Server

" Agent updates information in a Directory Server
® Other agents use this information to locate
® Useful when unknown parties have to communicate

LoQgQing: Tracking and Redirection

A N
N~

Bruteforce(1,2) registration (3)

Message delivery
messaging an agent

B | ocate and transfer
® Two separate phases are used
® More efficient if messages are big
® May not always be accurate

® Forwarding
® Single phase
® More efficient if messages are small

Communication Mechanisms

® Method invocation
B Call method on another object
® Parameters and return values
" Achieved by

 Direct reference to the method (same address space)
* LPC (object on local host)
* RPC (object on remote host)

® Message passing
® Message encapsulates the protocol
" Parsed and interpreted

Communication Mechanisms

® Black board

® |nteractions via shared-data spaces local to each EE
= Need for common message format/identifier understood by each agent
= Temporal uncoupling
« When you cannot create/predict a agent schedule
® Tuple spaces
m Extension of black-board model
= |nformation stored in tuple-space
m Retrieved by associative pattern-matching
m Useful as MAs have to adaptively deal with
« Heterogeneity, dynamicity, uncertainty
= Mechanism for agent coordination
« Simplifies programming and reduces complexity of application

'_I'%Ee of interactions

ecution Environment
m MA needs services like transport, file, naming
m EE needs to control and track the agent
m Client-server (request-response)
m RPC like mechanism
x MA-MA
Peer-peer patterns
Agent has its own agenda (needs and goals)
Message passing mechanism more suitable
Higher level communications may be used
. KQML / KIF

m MA-User

Act on behalf of user

Report result back to user

Interaction usually through a GUI
Details of Human-Computer Interaction

Communication

Other features

®m Fvent Handling
= Anonymous communications are supported
® Event Handling service
m Suppliers: generators of events
= Consumers: user of events

= Event Channel
« Decouples the system

® Group Communications
® Broadcast, multicast, anycast
® Application need / hierarchy for system administration purpose

Issues

® Message ordering
" When agents move rapidly
® QOut of order messages

" Need for higher level-protocol over simple
message delivery

B Sequence Number overhead

Issues

B Double Identity

® Agents migrating to different host might get different
names / identities

"= Makes certain operations difficult
- E.g. if secure channel is set up between two agents

 If change in place, how do you ensure that new agent is not an
imposter of the previous one

B Agent Tracking
® After being located, the agent can move
® | ost Agents

= Agent might disappear without deregistering
® Provide monitors on agent-handles

Security Issues

Attacked Type of Attack

Host Host compromised by
arriving agent

Host Host compromised by
external third party

Agent Agent is compromised by
another agent or Host

Agent Agent is compromised by
third party

Network Network compromised by

Incoming agent

Security: Agent to Host

B Exploit security weakness of host

B Fxecute programs from potentially untrusted
sources

B Masquerading

® Take identity of another agent
* To get unauthorized access
 To shift blame for actions

® Denial of Service

® Consume excessive amount of computing
resources

® May be caused by bugs in the code

Security: Agent to Host

® Unauthorized Access
B Access control mechanisms

® Resource allocation done according to
platform (host) policy

® Agent is issued privileges based on
authentication

" How to authenticate an agent which has
visited many untrusted hosts?

Security: Host to Agent

® Most difficult to detect and prevent
® Host has full access to agent data and code

® Masquerading
® Posting as another host
® e.g. make a buyer agent believe that others are charging
more
B Denial of Service
® |gnore service requests
® |ntroduce unacceptable delays
® Terminate agent without notification
® Deadlock other agents / platforms
® | jvelock bv aeneratina more work continuouslv

m Eavesdropping
m Classical threat in electronic communication
m More serious in MA systems as agent platform can
. Monitor communications

. Read every instruction executed by agent
. Read all unencrypted data

. May contain proprietary algorithms, trade secrets
. Infer from service requests

. E.g. agent communicating with a travel agent

m Alteration
m Modification of data, state, code
m Cannot be prevented
. only detection possible in some cases
m Typically using digital signature
. Only for code and static data

Security: Agent to Agent

B Exploit security weakness of other agents

® Masquerading
® Harms both the attacked agent and the agent whose
identity is stolen
® Denial of Service

B EF.g. sending repeated messages to another agent
* Cause undue burden on message-handling techniques

* If agent is being charged for resource-utilization
* Monetary loss

® Repudiation
® Unauthorized Access

B (et hold of modifv censitive information

Security: Other

® Masquerading
® collective

B Network Denial of Service
® Copy and Replay

Counter measures

B Convention techniques can be employed
® Public key cryptography
® Digital signatures
® Session keys

® But need adaptation
= cannot be directly employed

B Some difficulties

Protecting
the agent from Host: some efforts

® Computing with encrypted functions
" For computational privacy
® Remote signature without revealing the key

® Environmental key generation

® Partial result encapsulation

® Mutual itinerary recording

B |tinerary recording with Replication and voting
® Obfuscated code

® Cryptographic containers for Data Protection

Protecting the Agent Platform

B Software-Based Fault Isolation
B Safe code interpretation
B Signed code

Mobile Agent Framework
real world examples

B \Voyager
B Aglets
B Concordia

Aglets

® Weak mobility

® Fvent driven programming model
(dispatch, onDispatch ..

® Proxies for location transperency

IBM

Voyager

® An ORB supporting mobility
® Built on top of Corba

® Weak mobility

B Federated directory service and multicast
support

"‘"/
VOYAGERPRO
ObjectSpace

Concordia

® Weak mobility
® Fvent driven programming mode
® Uses Java RMI for mobility

Eoneoidia

Mitsubishi Electric IT

Communication
mechanisms

" Agelts:

= Java RMI, ATP(Agent Transfer Protocol),
CORBA

® \/oyager
® Java RMI, Corba
® Concordia:

" TCP socket
® Java RMI

Communication

B Aglets
Aglet Aglet
Proxy P?c:-xy
A .
[; A gletContext }

" Event, Message-based communication
" Communication is made through Proxy Object

" Group-oriented communication is not available

" A white board mechanism allowing multiple agents to
collaborate and share information asynchronously

Communication

® Concordia
" Supports group communication

® Group can be formed but it is not possible to
join a group arbitrarily

® Voyager
B Supports scalable group communication
" |s based on Java reflection mechanism

Feature Comparison

Features

Category

Multicast
Publish/Subscribe

Authentication and
security

Agent persistence
Naming service

Remote agent
creation

Garbage collection

Voyager
ORB

Yes
Yes

Strong
implementation

Yes

Federated

Yes

Yes

Aglets

MA based
framework

No
No

Weak
implementation

No

No

No

No

Concordia

MA based
framework

No

No

Strong
implementation

Yes

No

No

No

Writing you own Framework:
RMI 64 example

B Simplistic case
® Uses Java RMI as the base platform

import java.rmi.”;
import java.rmi.server.”;

public interface RMI64Server
extends java.rmi.Remote {
public void runAgent(Agent agent)
throws java.rmi.RemoteException;

}

public class RMI64 extends UnicastRemoteObject
implements RMI64Server {
public RMI64() throws RemoteException {
super();

}

public void runAgent(Agent agent) {
new Thread(agent).start();

}

public static void moveAgent(Agent agent, String dest) {
try {
RMI64Server ds=(RMI64Server)Naming.lookup(dest);
ds.runAgent(agent);
} catch (Exception e) {
System.err.printin("unexpected exception: "+e);
e.printStackTrace();

}
}
public static void main(String[] args) {
try {
Naming.rebind(args[0], new RMI64());

} catch (Exception e) {
System.err.printin("unexpected exception: "+e);
e.printStackTrace();

}

}
}

RMI 64: Agent Class

public interface Agent
extends java.lang.Runnable, java.io.Serializable {
public void run();

}

public class HelloAgent implements Agent {
private Vector places=null;

public HelloAgent() { places=new Vector(); }

public void run() {
System.out.printin("Hello World");
if (places.size()==0) {
System.out.printin("terminating...");
}else {
String dst=(String)places.elementAt(0);
places.removeElementAt(0);
RMI64.moveAgent(this, dst);
}
}

public static void main(String[] args) {
HelloAgent a=new HelloAgent();
a.places.addElement("//localhost/rmi64.1");
a.places.addElement("//localhost/rmi64.2");
a.places.addElement("//localhost/rmi64.3");
a.run();

Standardization efforts

= MASIF
® Mobile Agent System Interoperability Facility
® From the Object Management Group (OMG)
" Relates MAs to CORBA

" FIPA

® Foundation for Intelligent Physical Agents

® Defines extensions that are necessary to
AMS (Agent management system) to support
mobility

MASIF

® |nterfaces between

" Agent systems

" Not between agent applications and agent systems
® Not language interoperability
B Defines

" Agent Management

" Agent Transfer

® Agent and Agent System Names

" Agent System Type and Location Syntax

Realizing Step 4

Detailed Component Design

B Security
® \WWho owns the component ?
® Who will pay ?

® What is the cost of a mobile compoent failure/
malfunction on the overall system reliability ?

B |nteroperability

Realizing Step 5

Implementation and Deployment

® Coding, Debugging and Testing

* as easy / difficult as any other distributed system
development

® Many surprises during the run-time
® Managing run-time entities
" |nfrastructure requirements

* Resource control
* Agent Environment Uptimes

Application Case Studies

E-commerce
Distance Evaluation

Characteristics
E-commerce applications
® Aim

® Determine the availability of products; to place and
confirm orders and to negotiate delivery.

® | arge amount of data exchange over the
network in fetching information(catalog)

® Client specific request of products
® To reduce delays that hamper tight interaction
® Disconnected (low B/W) shopping

Mobile agents in E-commerce
® Shopping Agent

® Customer-driven market place

" Elimination of large amount of information exchange
over the network

B Salesman Agent
® Supplier-driven market place
® For products with short shelf-life, advertising a product,

= Network delays in servicing orders is reduced
® Auction Agent

" Supports disconnected operations and quicker
response

Architecture e-comm Prototype

Buyer
Buyer's agent j‘_. """"" v,
R 4 Buyers ‘ :
GUI :
”’ \Pa : = X :,
’ roduc : K
. ‘ Request List qf _tshogs to »
b Template as visitan
’ ML dockyards SHOP

-
a®
a®
““““
al
u®

3 SHOP
'\ Shopkeepers
-, @D GUI

s
Sales
Transaction Log

.....

Y : X
Local Product M
services

Component
Interactions

E%Machine Yision
‘wlachine Vigion

Owner: |rahul@itiith.ermetin| Authors Hame : ‘Ramesh /.\

Year of Publiation: {1989

Launch

Implementation Stratedy :

\

w | Level: intermediate

Mohile Agents

E\%‘}Pruducts at Shop =10l x|
@[3 BOOK 2 TITLE ¢ Artificial Intelligence, 2/e
&] BOOK AUTHORAST
& [BOOK
& 7 BO0K e .
¢ ClBooK NGRS

[y BookID 211
D TITLE Addificial Intelligence,
© [AUTHORLIST ‘
@ I AUTHOR
[y FIRSTNAWE Elaine
D Efy) DIEER].
[YACMELRL M ivenew Elaine.
& T diTHOR
e [CF HEFS o

e [FRICE
{7 CATEGORNComputed Scisnce

'@ LEVEL ex ‘ ‘
M REVIEWS

BRI P e S| | ¥ |
[1

4

[y Lasm Rich
‘ o O o O

[4

| Lpfrave Reh

2011 Rich@Dea net.in
(Dsue o oo ()
[hittp: wanew E12INE NOMERAQE.COM
¢ AUTHOR

PESTHAME - KEvin

_ THAME Knight

1EMAL - knight@usa net in

PLZSHER

g§ pu E : Tata McGraw -Hill Edition
Aeoition ;1

| PUBURL : http: iy Tata McGraw -Hil
Edition .cam

A PuBDATE

Apate 02

S HOMRURL © httpedfuey HeEwvin homepage . cam

0Oy ‘n —450081— ‘ .

IS 141

il

Client Server

Filtered Result

_ioix]

=7 ProductResult

T shophame
e JB00K|
@] BOOK
& [BOOK

@ [shopMame
& O] BOOK
& O] BOOK

& 7 BOOK

|Machine Vision

by
® FRamesh lain [Jzin@usa.netin J Authors Home page
® Rangachar Kasturi [Kasturn@usa.netn | Authors Home page
® Brian G.5chunck [G Schunck@usz.netin] Authors Home page

McGraw -Hill International Editions | 7 Publishers Home page on 02 - 12 - 1999
ISBM :0-07-113407-
Price : USD 0.50
Category : Certificatlpn Central Level : intermediate
Reviews :

AvaNability : Ugfially ship=\with in 8 days

16 = 10.1651080663006 « 1.40979801511158

Customers who bought this book also bought:

® Hard times by - Bahu!
- R.David - Tam Mayers

® simflar books by - Babul
- R.David - Tam Mayers

Why MAs?

® Helps user with tedious repetitive job and
time consuming activities.

B Faster and real time interaction at shops
® Reduce network load
® Support disconnected operation.

® [ntroduce
® concurrency of operations
" client specific functionalities at the shops

Implementation strategies

O Server

® Mobile Agent

(a) Sequential Client Server (b) Sequential Mobile Agent < Message exchange

123456 Numbers along the
arrows indicate the
sequence of
messages./ MA
movement.

(c) Parallel Client Server (d) Parallel Mobile Agent

Implementation

different mobllity patterns

= SISO

m Sequential CS
® Sequential MA

m S|IDO
m Sequential CS
® Sequential MA
m Parallel CS
m Parallel MA

m D
m Sequential CS
m Sequential MA

Experimentation

® Experimental setup

" Voyager™ Framework for MA
Implementations

" Java™ socket based implementation for
client server interaction

® On Pentium-lIl, 450 MHz workstations
connected through a 10 Mbps LAN with
typical student load

Parameters

Parameters Range

number of stores

1 to 26

size of catalog

20 KBto 1 MB

size of client-server
messages

~ catalog size

processing time for
servicing each request

10 msto 1000 ms

network latencies on
different links

assumed constant

(all workstations on
the same LAN)

Performance metric
User Turnaround Time

® Time elapsed between

® 3 user initiating a request and receiving the
results.

B Fquals time taken for
* agent creation +
* visit / collect catalogs +
* processing time to extract information.

Turnaround time
Effect of catalog size

14

—
N
!

—
o
!

\

Turnaround time (sec)

—— —
= — —
— - —

— - —

—_——
= —

p——

—MA

———-CS of catalog size 100K
------- CS of catalog size 200k
—-—--CS of catalog size 500K
—--—- GS of catalog size 1MB

0 2 4 6 8 10 12 14 16 18 20 22 24 26

No. of shops visited

Turnaround time
for processing time of 20ms

16

— — —
o N ~
| | |

Turn around time (sec)
(00]
\
\

0 2 4 6 8 10 12 14 16 18 20 22

No. of shops visited

— Sequential MA
- ——-Parallel MA

....... Sequential CS

—-—--Parallel CS

Turnaround time
for processing time of 500ms

30

25 -
3
» 20
;E; Sequential MA
E 15 - ———Parallel MA
§ | Sequential CS
S 10 - .
= —-—--Parallel CS
-

0 2 4 6 8 10 12 14 16 18 20 22 24 26

No. of shops visited

Code shipment cost
for different framework

Code shipment cost for different mobile agent

framework

2500

2000 -
£ :
c 1500 - —— Concordia
() — Aglets
E 1000 - — Voyager
=

500
0

O 2 4 6 8 10 12 14 16 18 20 22 24 26
No of shops

Observations

® Mobility patterns determine the implementation
strategies
B Sequential CS most suitable where

® g small amount of information has to be retrieved
from few remote information sources.

® Parallel implementations effective when

" processing information contributes significantly to
the turnaround time.

Observations

® Mobile agents out perform traditional
approaches when

" When the cost of shipping MAs < message
exchange size.

® MAs scale effectively across the parameters of
E-commerce application

MADE

Mobile"Agents-for-Distance Evaluation

Design + Implementation

How Mobile Agents Help

® Map directly to real life situations
® Need a generic execution environment

® Can work in both modes
= push
= pull

m Can work off-line
® Provide local interactions
® Provide multi-hop solutions

Paper Setting

I'Q'I = Paper Setter Nodes
Comprehensive Question Paper ¢ © _nstall Agent
) = Fetch Agent

®

®

Partial Question
v Paper

To Distribution Center

Paper Setting: Details

/NS
Launcher

| controller GUI
Fetch g { } " NS = Name Server

Agent g N = Paper Setter Node
4

Install
Agent

Cloning

n

L]

n

|]

L]
[]
n
n
n
-
a

3 GUI
.

e

03
IS
Ya
au,
........
...

Eg’,g Create Questions

\

4

Enter Your Cuwi
HTTP portis usually one oft

Enter Option 1
20

Enter Option 2
40

Enter Option 3
50

Enter Option 4
20

Correct Optior
Four

E\Eﬁ Create Questions

123‘4 ’ @@@QHDB

Eg’,g Create Questions - O
3 4| P [ox [oEC QNo|f
Enter Your Question
hat the name ofthe weightliter from India whowonthe ° me

dal in Sydney alympics?

Enter Your Question

Fumber of Indians who have won Maobel Prize is:

Enter Option 1

Enter Option 2

Dynamic Upgrade QTrrTTE

Enter Option 4

Correct Option

Enter Option 1
F.T.Usha
Enter Option 2
Shiny Ahraham
Enter Option 3
Mallesthwari
Enter Option 4
Shakti Sinoh
Correct Option
Three -

Agent Messages

Should | wait?

Fress <WWAIT=

Should | come little later?
Fress <LATER=

Ifyou are done with questions,
Fress <FIMNISHED=

WAIT

LATER

Status Messages here
Paper Collected from......1ocalhost:5000
¥ Paper Collected from...../localhost:6000

Dynamic Upgradation

FetchAgent RemoteSetterGUI

InstallAgent

new RemoteSetterGUI()

getGUIName()

getGUIReference()

register()

NamingService

B
I new EnhancePanel()
« =
addEnhancePanel()

removeEnhancePanel()

Distribution and Testing

Single copy of paper

0 o e

Each copy returned

@

Answered and Returned

Y
S

Exam Center
Distribution

Server
~_

= -
Separate Copy per user

©

Each Candidate get a Copy

Evaluation and Result Compilation

c9611060

el

e

Results

 —

=
(Objective Questions Evaluator)

= |
/L ‘L‘%i Examiner B
Distribution Serve» |ﬁ I ‘ |ﬁ |

Axaminer C

Examiner A

[ﬁ |
i / Examiner D

J.-' . ——:.I L ’-
i

Agents collaborate to produce the final result

Salient Features

B (Generic execution environments on each machine
® Remote code installation

B After distribution and before collection
® The students work off-line

® Agent creation by distribution servers
= Not student machines

® \Workflow between examiners
® Automated compilation of results

Voyager: implementation Platform

B Generalized distributed object computing platform
® Compatibility with latest java version
® Fasy creation of remote objects
® Moving objects
" relative and absolute
= Other
m Federated directory service
= Different kinds of messaging (sync, one-way, future)
= Object and agent persistence support

m Distributed event handling

m Security manager
B C.omnatihle with CORRA and DC.OOM

Measuring Response Times

E%%Pefmmance Comparizon O] x|
StudentlDinirite 1D 0 Mo|15
s ‘ ’
Answer this Question <--R€Sp0ﬂse T]IHE: MOBILE AGENT REMOTE Question
DMS iswhich layer protocaol? DME is which layer protocol’y
—1600.0
—400.0
—200.0
=0.0
1 {A) Application Resp@nse Time REMOTE 1 {A) Application
J (B) Tranport) (B) Tranport
40.0
{1 {C) Link () {C) Link
20.0
(D) Internet) (D) Internet
on 0.0 on

Respose in millisecond

500
450

400

300

—e— Mobile Agent

250
200

—m— Client-Server

*
\\
350 \
\
\

\

1

2

50 \
) LSS s S i 1

3 4 5 6 7 8 9 10 11
Request Number

/\MA Interactions

.

Student Paper
Interface Client

d
X

4—»

Client —Server Interactions

Incorporating Dynamic gp

-

ew Level

Old Level

* MQPs can be organized into various skKill levels

* Once a person has finished one level, a new level
2 can be sent

Characteristics of application

® | arge-scale
® Number of nodes
® Geographical spread
" Complexity of relationships

B Experience extendible to similar large
scale applications
® e.g. workflow B2B in global environment

Structuring GAINS

B Scalable applications

B Flexible structuring of applications
® Dynamic extensibility

® Push-pull modes

B Adapting to varying communication
channels

® Application layer multicasting
® Variety of delivered content

MADE Experience: Summary

® Mobile Agents provide effective and flexible mechanisms for structuring
distributed systems like distance evaluation

®m Advantages
m Fast response times
= Handling objective and subjective contents
m Application level multicasting
® Dynamic upgradation of applications
m Centralized control and management of logistics

® Some Issues
= Reliability
m Persistence

m Security
m Infractriictiirec

Current trends lead to mobile agents [kotz]

Increased need
Information | for personalization rrerecfale
overload 7
(. / .\A Mobile code
Customization Too many unique, ; :
\ﬁpersed clients to handle| O S€rve
Diversified 7| Or proxy
population b, /
Proxy-based Multiple
2D sites to visitv
/ Mobile
Bandwidth > Avoid large Agents
gap , transfers N _
Mobile code :
: Avoid
to client . ,
= - star
Mobile usersZ_Disconnected— itinerary
and devices Operation
High

latency

Conclusions

® New Paradigm

" To design and implement
® Powerful Structuring mechanism

" Flexible, scalable and extensible systems
B At present ready for closed systems

® Need for

" Application centric development
® Judicious mix of elements

Thank You ©

updated version of the tutorial

www.it.iitb.ac.in/~sri/talks/hipc01tut.ppt

	Designing Distributed Applications using Mobile Agents
	Outline
	Distributed Computing Outlook
	Required …
	Distance Evaluation
	PowerPoint Presentation
	Design Goals
	Types of e-testing mechanisms
	Computer Based Testing (CBT)
	Internet Based Testing Existing Schemes
	Important Points
	Client-Server Solution : Paper Setting Stage
	C S Design: Paper Setting
	CS Design
	 Drawbacks
	Client Server Solution: Paper Distribution and Testing
	CS-Design: Distribution and Testing
	Drawbacks:
	Client – Server Solution: Paper Evaluation and Result Publication
	Slide 20
	Observations
	Can Mobile Agents Help ?
	Agents: An Introduction
	What Software Agents are and aren't
	Experts say: Agent should display
	Slide 26
	Part-View of Agent Topology [Nwana 96]
	Agent – Non Agent: according to above classification
	Classification of Agents:
	Classification of Agents:
	Slide 31
	Classification of Agents: reactive school of thought
	Different types of agents
	Collaborative Agents
	Interface (Personal) Agents
	Information / Internet Agents
	Why Software Agents?
	Example domain: E-commerce
	Enabling Technologies
	Trends: OMG Agent Technology Green Paper
	Slide 41
	Mobile Code
	Process Migration
	Object Migration
	Mobile Code Systems
	Slide 46
	Slide 47
	Remote Evaluation v/s MA
	Process migration v/s MA
	Mobile Agents: Example
	Interaction Model
	A generic Mobile Agent Server
	Java based Agent server
	Agent Transfer
	Bag of a traveling agent
	MA based Structuring
	Who is affected? and look for:
	5 Steps to MA based structuring
	Realizing Step 1: Application Evaluation
	 metaphor [G.Picco]
	The Client-Server Paradigm
	Remote Evaluation
	Code on Demand
	Mobile Agents
	Good Reasons [Dennis Lange]:
	Realizing Step 2 Component Design
	Classical MA definition:
	Mobility Patterns
	Slide 69
	Static Itinerary Static Order
	Static Itinerary Dynamic Order
	Dynamic Itinerary
	MA Applications
	Realizing Step 3 Choosing a MA framework
	Mobile Agent Frameworks
	Slide 76
	Mobile Agent Frameworks Design Issues
	Mobility
	Mobility support in Java
	Problems with strong mobility in Java
	Code fragment for weak mobility
	Code fragment for strong mobility
	Slide 83
	Repetitive job using strong mobility
	Code Shipping
	Naming and Addressing
	Agent Tracking: locating an agent
	Logging: Tracking and Redirection
	Bruteforce(1,2) registration (3)
	Message delivery messaging an agent
	Communication Mechanisms
	Slide 92
	Type of interactions
	Communication Other features
	Issues
	Slide 96
	Security Issues
	Security: Agent to Host
	Security: Agent to Host
	Security: Host to Agent
	Slide 101
	Security: Agent to Agent
	Security: Other
	Counter measures
	Protecting the agent from Host: some efforts
	Protecting the Agent Platform
	Mobile Agent Framework real world examples
	Aglets
	Voyager
	Concordia
	Communication mechanisms
	Communication
	Communication
	Slide 114
	Writing you own Framework: RMI 64 example
	Slide 116
	RMI 64: Agent Class
	Standardization efforts
	MASIF
	Realizing Step 4 Detailed Component Design
	Realizing Step 5 Implementation and Deployment
	Application Case Studies E-commerce Distance Evaluation
	Characteristics E-commerce applications
	Mobile agents in E-commerce
	Slide 125
	Slide 126
	Slide 127
	Why MAs?
	Implementation strategies
	Implementation different mobility patterns
	Experimentation
	Parameters
	Performance metric User Turnaround Time
	Turnaround time Effect of catalog size
	Turnaround time for processing time of 20ms
	Turnaround time for processing time of 500ms
	Code shipment cost for different framework
	Slide 138
	Slide 139
	MADE Mobile Agents for Distance Evaluation Design + Implementation
	How Mobile Agents Help
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Salient Features
	Voyager: Implementation Platform
	Slide 150
	Slide 151
	Incorporating Dynamic qp
	Characteristics of application
	Structuring GAINS
	MADE Experience: Summary
	Current trends lead to mobile agents [Kotz]
	Conclusions
	 Thank You  updated version of the tutorial www.it.iitb.ac.in/~sri/talks/hipc01tut.ppt

