Mobile Internet Wireless Network Architectures and Applications

Sridhar Iyer

K R School of Information Technology IIT Bombay

sri@it.iitb.ac.in

http://www.it.iitb.ac.in/~sri

Outline

- Introduction and Overview
- Wireless LANs: IEEE 802.11
- Mobile IP routing
- TCP over wireless
- GSM air interface
- GPRS network architecture
- Wireless application protocol
- Mobile agents
- Mobile ad hoc networks

References

- J. Schiller, "Mobile Communications", Addison Wesley, 2000
- 802.11 Wireless LAN, IEEE standards, www.ieee.org
- Mobile IP, RFC 2002, RFC 334, www.ietf.org
- TCP over wireless, RFC 3150, RFC 3155, RFC 3449
- A. Mehrotra, "GSM System Engineering", Artech House, 1997
- Bettstetter, Vogel and Eberspacher, "GPRS: Architecture, Protocols and Air Interface", IEEE Communications Survey 1999, 3(3).
- M.v.d. Heijden, M. Taylor. "Understanding WAP", Artech House, 2000
- Mobile Ad hoc networks, RFC 2501
- Others websites:
 - www.palowireless.com
 - www.gsmworld.com; www.wapforum.org
 - www.etsi.org; www.3gtoday.com

Wireless networks

Access computing/communication services, on the move

Cellular Networks

traditional base station infrastructure systems

Wireless LANs

- infrastructure as well as ad-hoc networks possible
- very flexible within the reception area
- low bandwidth compared to wired networks (1-10 Mbit/s)

Ad hoc Networks

- useful when infrastructure not available, impractical, or expensive
- military applications, rescue, home networking

Some mobile devices

Palm-sized

Tablets

Clamshell handhelds

Laptop computers

Net-enabled mobile phones

Limitations of the mobile environment

- Limitations of the Wireless Network
 - limited communication bandwidth
 - frequent disconnections
 - heterogeneity of fragmented networks
- Limitations Imposed by Mobility
 - route breakages
 - lack of mobility awareness by system/applications
- Limitations of the Mobile Device
 - short battery lifetime
 - limited capacities

Wireless v/s Wired networks

Regulations of frequencies

- Limited availability, coordination is required
- useful frequencies are almost all occupied

Bandwidth and delays

- Low transmission rates
 - few Kbits/s to some Mbit/s.
- Higher delays
 - several hundred milliseconds
- Higher loss rates
 - susceptible to interference, e.g., engines, lightning

Always shared medium

- Lower security, simpler active attacking
- radio interface accessible for everyone
- Fake base stations can attract calls from mobile phones
- secure access mechanisms important

Cellular systems: Basic idea

- Single hop wireless connectivity
 - Space divided into cells
 - A base station is responsible to communicate with hosts in its cell
 - Mobile hosts can change cells while communicating
 - Hand-off occurs when a mobile host starts communicating via a new base station
- Factors for determining cell size
 - No. of users to be supported
 - Multiplexing and transmission technologies

Cellular concept

- Limited number of frequencies => limited channels
- High power antenna => limited number of users
- Smaller cells => frequency reuse possible => more users
- Base stations (BS): implement space division multiplex
 - Cluster: group of nearby BSs that together use all available channels
- Mobile stations communicate only via the base station
 - FDMA, TDMA, CDMA may be used within a cell
- As demand increases (more channels are needed)
 - Number of base stations is increased
 - Transmitter power is decreased correspondingly to avoid interference

Cellular system architecture

- Each cell is served by a base station (BS)
- Each BSS is connected to a mobile switching center (MSC) through fixed links
- Each MSC is connected to other MSCs and PSTN

Outgoing call setup

Outgoing call setup:

- User keys in the number and presses send
- Mobile transmits access request on uplink signaling channel
- If network can process the call, BS sends a channel allocation message
- Network proceeds to setup the connection

Network activity:

- MSC determines current location of target mobile using HLR, VLR and by communicating with other MSCs
- Source MSC initiates a call setup message to MSC covering target area

Incoming call setup

Incoming call setup:

- Target MSC (covering current location of mobile) initiates a paging message
- BSs forward the paging message on downlink channel in coverage area
- If mobile is on (monitoring the signaling channel), it responds to BS
- BS sends a channel allocation message and informs MSC

Network activity:

Network completes the two halves of the connection

Hand-Offs

BS initiated:

- Handoff occurs if signal level of mobile falls below threshold
- Increases load on BS
 - Monitor signal level of each mobile
 - Determine target BS for handoff

Mobile assisted:

- Each BS periodically transmits beacon
- Mobile, on hearing stronger beacon from a new BS, initiates the handoff

Intersystem:

- Mobile moves across areas controlled by different MSC's
- Handled similar to mobile assisted case with additional HLR/VLR effort

Effect of mobility on protocol stack

- Application
 - new applications and adaptations
- Transport
 - congestion and flow control
- Network
 - addressing and routing
- Link
 - media access and handoff
- Physical
 - transmission errors and interference

Mobile applications - 1

Vehicles

- transmission of news, road condition etc
- ad-hoc network with near vehicles to prevent accidents

Emergencies

- early transmission of patient data to the hospital
- ad-hoc network in case of earthquakes, cyclones
- military ...

Mobile applications - 2

- Travelling salesmen
 - direct access to central customer files
 - consistent databases for all agents
- Web access
 - outdoor Internet access
 - intelligent travel guide with up-to-date location dependent information
- Location aware services
 - find services in the local environment

Mobile applications - 3

- Information services
 - push: e.g., stock quotes
 - pull: e.g., weather update
- Disconnected operations
 - mobile agents, e.g., shopping
- Entertainment
 - ad-hoc networks for multi user games
- Messaging

Mobile applications in the Industry

- Wireless access: (phone.com) openwave
- Alerting services: myalert.com
- Location services: (airflash) webraska.com
- Intranet applications: (imedeon) viryanet.com
- Banking services: macalla.com
- Mobile agents: tryllian.com

•

Bandwidth and applications

Evolution of cellular networks

- First-generation: Analog cellular systems (450-900 MHz)
 - Frequency shift keying; FDMA for spectrum sharing
 - NMT (Europe), AMPS (US)
- Second-generation: Digital cellular systems (900, 1800 MHz)
 - TDMA/CDMA for spectrum sharing; Circuit switching
 - GSM (Europe), IS-136 (US), PDC (Japan)
 - <9.6kbps data rates</p>
- 2.5G: Packet switching extensions
 - Digital: GSM to GPRS; Analog: AMPS to CDPD
 - <115kbps data rates</p>
- 3G: Full-fledged data services
 - High speed, data and Internet services
 - IMT-2000, UMTS
 - <2Mbps data rates</p>

GSM to GPRS

- Radio resources are allocated for only one or a few packets at a time, so GPRS enables
 - many users to share radio resources, and allow efficient transport of packets
 - connectivity to external packet data networks
 - volume-based charging
- High data rates (up to 171 kbps in ideal case)
- GPRS carries SMS in data channels rather than signaling channels as in GSM

UMTS: Universal Mobile Telecomm. Standard

- Global seamless operation in multi-cell environment (SAT, macro, micro, pico)
- Global roaming: multi-mode, multi-band, low-cost terminal, portable services & QoS
- High data rates at different mobile speeds: 144kbps at vehicular speed (80km/h), 384 kbps at pedestrian speed, and 2Mbps indoor (office/home)
- Multimedia interface to the internet
- Based on core GSM, conforms to IMT-2000
- W-CDMA as the air-interface

Evolution to 3G Technologies

Wireless Technology Landscape

3G Network Architecture

Wireless LANs

- Infrared (IrDA) or radio links (Wavelan)
- Advantages
 - very flexible within the reception area
 - Ad-hoc networks possible
 - (almost) no wiring difficulties
- Disadvantages
 - low bandwidth compared to wired networks
 - many proprietary solutions
- Infrastructure v/s ad-hoc networks (802.11)

Infrastructure vs. Adhoc Networks

Sridhar Iyer

IIT Bombay

Difference Between Wired and Wireless

- If both A and C sense the channel to be idle at the same time, they send at the same time.
- Collision can be detected at sender in Ethernet.
- Half-duplex radios in wireless cannot detect collision at sender

Hidden Terminal Problem

A B C

- A and C cannot hear each other.
- A sends to B, C cannot receive A.
- C wants to send to B, C senses a "free" medium (CS fails)
- Collision occurs at B.
- A cannot receive the collision (CD fails).
- A is "hidden" for C.

IEEE 802.11

- Acknowledgements for reliability
- Signaling packets for collision avoidance
 - RTS (request to send)
 - CTS (clear to send)
- Signaling (RTS/CTS) packets contain
 - sender address
 - receiver address
 - duration (packet size + ACK)
- Power-save mode

Spectrum War: Status today

Enterprise 802.11 Network

Wireless Carrier

Public 802.11

Spectrum War: Evolution

Enterprise 802.11 Network

Wireless Carrier Public 802.11

- Market consolidation
- Entry of Wireless Carriers
- Entry of new players
- Footprint growth

Sridhar Iyer

IIT Bombay

Source: Pravin Bhagwat

Spectrum War: Steady State

Enterprise 802.11 Wireless Carrier Public 802.11 Network

- Emergence of virtual carriers
- Roaming agreements

Sridhar Iyer

IIT Bombay

Source: Pravin Bhagwat

Routing and Mobility

- Finding a path from a source to a destination
- Issues
 - Frequent route changes
 - Route changes may be related to host movement
 - Low bandwidth links
- Goal of routing protocols
 - decrease routing-related overhead
 - find short routes
 - find "stable" routes (despite mobility)

Mobile IP: Basic Idea

Sridhar Iyer IIT Bombay 35 Source: Vaidya

Mobile IP: Basic Idea

Sridhar Iyer IIT Bombay 36
Source: Vaidya

TCP over wireless

TCP provides

- reliable ordered delivery (uses retransmissions, if necessary)
- cumulative ACKs (an ACK acknowledges all contiguously received data)
- duplicate ACKs (whenever an out-of-order segment is received)
- end-to-end semantics (receiver sends ACK after data has reached)
- implements congestion avoidance and control using congestion window

TCP over wireless

- Factors affecting TCP over wireless:
 - Wireless transmission errors
 - may cause fast retransmit, which results in reduction in congestion window size
 - reducing congestion window in response to errors is unnecessary
 - Multi-hop routes on shared wireless medium
 - Longer connections are at a disadvantage compared to shorter ones, because they have to contend for wireless access at each hop
 - Route failures due to mobility

Indirect TCP (I-TCP)

- I-TCP splits the TCP connection
 - no changes to the TCP protocol for wired hosts
 - TCP connection is split at the foreign agent
 - hosts in wired network do not notice characteristics of wireless part

Source: Schiller

Mobile TCP (M-TCP)

- Handling of lengthy or frequent disconnections
- M-TCP splits as I-TCP does
 - unmodified TCP for fixed network to foreign agent
 - optimized TCP for FA to MH
- Foreign Agent
 - monitors all packets, if disconnection detected
 - set sender window size to 0
 - sender automatically goes into persistent mode
 - no caching, no retransmission

Application Adaptations for Mobility

- Design Issues
 - System transparent v/s System aware
 - Application transparent v/s Application aware
- Models
 - conventional, "unaware" client/server model
 - client/proxy/server model
 - caching/pre-fetching model
 - mobile agent model

World Wide Web and Mobility

HTTP characteristics

- designed for large bandwidth, low delay
- stateless, client/server, request/response communication
- connection oriented, one connection per request
- TCP 3-way handshake, DNS lookup overheads

HTML characteristics

- designed for computers with "high" performance, color high-resolution display, mouse, hard disk
- typically, web pages optimized for design, not for communication; ignore end-system characteristics

System Support for Mobile WWW

Enhanced browsers

client-aware support for mobility

Proxies

- Client proxy: pre-fetching, caching, off-line use
- Network proxy: adaptive content transformation for connections
- Client and network proxy

Enhanced servers

- server-aware support for mobility
- serve the content in multiple ways, depending on client capabilities
- New protocols/languages

The Client/Proxy/Server Model

- Proxy functions as a client to the fixed network server
- Proxy functions as a mobility-aware server to mobile client

 Proxy may be placed in the mobile host (Coda), or the fixed network, or both (WebExpress)

 Enables thin client design for resource-poor mobile devices

Web Proxy in WebExpress

The WebExpress Intercept Model

Source: Helal

Wireless Application Protocol

- Browser
 - "Micro browser", similar to existing web browsers
- Script language
 - Similar to Javascript, adapted to mobile devices
- Gateway
 - Transition from wireless to wired world
- Server
 - "Wap/Origin server", similar to existing web servers
- Protocol layers
 - Transport layer, security layer, session layer etc.
- Telephony application interface
 - Access to telephony functions

WAP: Network Elements

Binary WML: binary file format for clients

Source: Schiller

WAP: Reference Model

WAE comprises WML (Wireless Markup Language), WML Script, WTAI etc.

Source: Schiller

WAP Stack Overview

WDP

functionality similar to UDP in IP networks

WTLS

functionality similar to SSL/TLS (optimized for wireless)

WTP

- Class 0: analogous to UDP
- Class 1: analogous to TCP (without connection setup overheads)
- Class 2: analogous to RPC (optimized for wireless)
- features of "user acknowledgement", "hold on"

WSP

- WSP/B: analogous to http 1.1 (add features of suspend/resume)
- method: analogous to RPC/RMI
- features of asynchronous invocations, push (confirmed/unconfirmed)

The Mobile Agent Model

- Mobile agent receives client request and
- Mobile agent moves into fixed network
- Mobile agent acts as a client to the server
- Mobile agent performs transformations and filtering
- Mobile agent returns back to mobile platform, when the client is connected

Mobile Agents: Example

Outline

- Introduction and Overview
- Wireless LANs: IEEE 802.11
- Mobile IP routing
- TCP over wireless
- GSM air interface
- GPRS network architecture
- Wireless application protocol
- Mobile agents
- Mobile ad hoc networks

How Wireless LANs are different

- Destination address does not equal destination location
- The media impact the design
 - wireless LANs intended to cover reasonable geographic distances must be built from basic coverage blocks
- Impact of handling mobile (and portable) stations
 - Propagation effects
 - Mobility management
 - power management

Wireless Media

- Physical layers in wireless networks
 - Use a medium that has neither absolute nor readily observable boundaries outside which stations are unable to receive frames
 - Are unprotected from outside signals
 - Communicate over a medium significantly less reliable than wired PHYs
 - Have dynamic topologies
 - Lack full connectivity and therefore the assumption normally made that every station (STA) can hear every other STA in invalid (I.e., STAs may be "hidden" from each other)
 - Have time varying and asymmetric propagation properties

802.11: Motivation

- Can we apply media access methods from fixed networks
- Example CSMA/CD
 - Carrier Sense Multiple Access with Collision Detection
 - send as soon as the medium is free, listen into the medium if a collision occurs (original method in IEEE 802.3)
- Medium access problems in wireless networks
 - signal strength decreases proportional to the square of the distance
 - sender would apply CS and CD, but the collisions happen at the receiver
 - sender may not "hear" the collision, i.e., CD does not work
 - CS might not work, e.g. if a terminal is "hidden"
- Hidden and exposed terminals

Solution for Hidden/Exposed Terminals

- A first sends a Request-to-Send (RTS) to B
- On receiving RTS, B responds Clear-to-Send (CTS)
- Hidden node C overhears CTS and keeps quiet
 - Transfer duration is included in both RTS and CTS
- Exposed node overhears a RTS but not the CTS
 - D's transmission cannot interfere at B

IEEE 802.11

 Wireless LAN standard defined in the unlicensed spectrum (2.4 GHz and 5 GHz U-NII bands)

Region	Allocated Spectrum
US	2.4000 - 2.4835 GHz
Europe	2.4000 - 2.4835 GHz
Japan	2.471 - 2.497 GHz
France	2.4465 - 2.4835 GHz
Spain	2.445 - 2.475 GHz

Table 1 Global Spectrum Allocation at 2.4 GHz

- Standards covers the MAC sublayer and PHY layers
- Three different physical layers in the 2.4 GHz band
 - FHSS, DSSS and IR
- OFDM based PHY layer in the 5 GHz band

Components of IEEE 802.11 architecture

- The basic service set (BSS) is the basic building block of an IEEE 802.11 LAN
- The ovals can be thought of as the coverage area within which member stations can directly communicate
- The Independent BSS (IBSS) is the simplest LAN. It may consist of as few as two stations

802.11 - ad-hoc network (DCF)

- Direct communication within a limited range
 - Station (STA):
 terminal with access
 mechanisms to the
 wireless medium
 - Basic Service Set (BSS):
 group of stations using the
 same radio frequency

Source: Schiller

802.11 - infrastructure network (PCF)

Station (STA)

 terminal with access mechanisms to the wireless medium and radio contact to the access point

Basic Service Set (BSS)

 group of stations using the same radio frequency

Access Point

station integrated into the wireless
 LAN and the distribution system

Portal

bridge to other (wired) networks

Distribution System

 interconnection network to form one logical network (EES: Extended Service Set) based on several BSS

Source: Schiller

Distribution System (DS) concepts

- The Distribution system interconnects multiple BSSs
- 802.11 standard logically separates the wireless medium from the distribution system – it does not preclude, nor demand, that the multiple media be same or different
- An Access Point (AP) is a STA that provides access to the DS by providing DS services in addition to acting as a STA.
- Data moves between BSS and the DS via an AP
- The DS and BSSs allow 802.11 to create a wireless network of arbitrary size and complexity called the Extended Service Set network (ESS)

802.11- in the TCP/IP stack

802.11 - Layers and functions

- MAC
 - access mechanisms, fragmentation, encryption
- MAC Management
 - synchronization, roaming, MIB, power management

DLC	LLC		Management
	MAC	MAC Management	
ЬНХ	PLCP	PHY Management	
	PMD		Station

- PLCP Physical Layer Convergence Protocol
 - clear channel assessment signal (carrier sense)
- PMD Physical Medium Dependent
 - modulation, coding

PHY Management

channel selection, MIB

Station Management

coordination of all management functions

802.11 - Physical layer

- 3 versions: 2 radio (typically 2.4 GHz), 1 IR
 - data rates 1, 2, or 11 Mbit/s
- FHSS (Frequency Hopping Spread Spectrum)
 - spreading, despreading, signal strength, typically 1 Mbit/s
 - min. 2.5 frequency hops/s (USA), two-level GFSK modulation
- DSSS (Direct Sequence Spread Spectrum)
 - DBPSK modulation for 1 Mbit/s (Differential Binary Phase Shift Keying),
 DQPSK for 2 Mbit/s (Differential Quadrature PSK)
 - preamble and header of a frame is always transmitted with 1 Mbit/s
 - chipping sequence: +1, -1, +1, +1, -1, +1, +1, -1, -1, -1 (Barker code)
 - max. radiated power 1 W (USA), 100 mW (EU), min. 1mW
- Infrared
 - 850-950 nm, diffuse light, typ. 10 m range
 - carrier detection, energy detection, synchonization

Spread-spectrum communications

Figure 5a Effect of PN Sequence on Transmit Spectrum

Figure 5b Received Signal is Correlated with PN to Recover Data and Reject Interference

Sridhar Iyer IIT Bombay 65

DSSS Barker Code modulation

Figure 3 Digital Modulation of Data with PRN Sequence

Sridhar Iyer IIT Bombay 66

DSSS properties

FIGURE 2A. LOW POWER DENSITY

FIGURE 2B. INTERFERENCE REJECTION

FIGURE 2C. MULTIPLE ACCESS

FIGURE 2. DIRECT SEQUENCE SPREAD SPECTRUM PROPERTIES

Sridhar Iyer IIT Bombay 67

Source: Intersil

802.11 - MAC layer

Traffic services

- Asynchronous Data Service (mandatory) DCF
- Time-Bounded Service (optional) PCF

Access methods

- DCF CSMA/CA (mandatory)
 - collision avoidance via randomized back-off mechanism
 - ACK packet for acknowledgements (not for broadcasts)
- DCF w/ RTS/CTS (optional)
 - avoids hidden terminal problem
- PCF (optional)
 - access point polls terminals according to a list

802.11 - Carrier Sensing

- In IEEE 802.11, carrier sensing is performed
 - at the air interface (physical carrier sensing), and
 - at the MAC layer (virtual carrier sensing)
- Physical carrier sensing
 - detects presence of other users by analyzing all detected packets
 - Detects activity in the channel via relative signal strength from other sources
- Virtual carrier sensing is done by sending MPDU duration information in the header of RTS/CTS and data frames
- Channel is busy if either mechanisms indicate it to be
 - Duration field indicates the amount of time (in microseconds) required to complete frame transmission
 - Stations in the BSS use the information in the duration field to adjust their network allocation vector (NAV)

802.11 - Reliability

- Use of acknowledgements
 - When B receives DATA from A, B sends an ACK
 - If A fails to receive an ACK, A retransmits the DATA
 - Both C and D remain quiet until ACK (to prevent collision of ACK)
 - Expected duration of transmission+ACK is included in RTS/ CTS packets

802.11 - Priorities

- defined through different inter frame spaces mandatory idle time intervals between the transmission of frames
- SIFS (Short Inter Frame Spacing)
 - highest priority, for ACK, CTS, polling response
 - SIFSTime and SlotTime are fixed per PHY layer
 - (10 μ s and 20 μ s respectively in DSSS)
- PIFS (PCF IFS)
 - medium priority, for time-bounded service using PCF
 - PIFSTime = SIFSTime + SlotTime
- DIFS (DCF IFS)
 - lowest priority, for asynchronous data service
 - DCF-IFS (DIFS): DIFSTime = SIFSTime + 2xSlotTime

802.11 - CSMA/CA

- station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment)
- if the medium is free for the duration of an Inter-Frame Space (IFS),
 the station can start sending (IFS depends on service type)
- if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time)
- if another station occupies the medium during the back-off time of the station, the back-off timer stops (fairness)

802.11 –CSMA/CA example

busy medium not idle (frame, ack etc.)

packet arrival at MAC

bo_e elapsed backoff time

bo_r residual backoff time

802.11 - Collision Avoidance

 Collision avoidance: Once channel becomes idle, the node waits for a randomly chosen duration before attempting to transmit

DCF

- When transmitting a packet, choose a backoff interval in the range [0,cw]; cw is contention window
- Count down the backoff interval when medium is idle
- Count-down is suspended if medium becomes busy
- When backoff interval reaches 0, transmit RTS
- Time spent counting down backoff intervals is part of MAC overhead

DCF Example

cw = 31

B1 and B2 are backoff intervals at nodes 1 and 2

802.11 - Congestion Control

- Contention window (cw) in DCF: Congestion control achieved by dynamically choosing cw
- large cw leads to larger backoff intervals
- small cw leads to larger number of collisions

- Binary Exponential Backoff in DCF:
 - When a node fails to receive CTS in response to its RTS, it increases the contention window
 - cw is doubled (up to a bound CWmax)
 - Upon successful completion data transfer, restore cw to CWmin

802.11 - CSMA/CA II

- station has to wait for DIFS before sending data
- receivers acknowledge at once (after waiting for SIFS) if the packet was received correctly (CRC)
- automatic retransmission of data packets in case of transmission errors

802.11 -RTS/CTS

- station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium)
- acknowledgement via CTS after SIFS by receiver (if ready to receive)
- sender can now send data at once, acknowledgement via ACK
- other stations store medium reservations distributed via RTS and CTS

Fragmentation

802.11 - Point Coordination Function

Figure 4. MAC architecture.

802.11 - PCF I

81

802.11 - PCF II

CFP structure and Timing

CFP/CP Alternation and Beacon Periods

Srid

PCF- Data transmission

■ Figure 9. PC-to-station transmission.

Figure 10. Station-to-station transmissions.

Sridhai 1901 III Domoay

84

Polling Mechanisms

- With DCF, there is no mechanism to guarantee minimum delay for time-bound services
- PCF wastes bandwidth (control overhead) when network load is light, but delays are bounded
- With Round Robin (RR) polling, 11% of time was used for polling
- This values drops to 4 % when optimized polling is used
- Implicit signaling mechanism for STAs to indicate when they have data to send improves performance

Coexistence of PCF and DCF

- PC controls frame transfers during a Contention Free Period (CFP).
 - CF-Poll control frame is used by the PC to invite a station to send data
 - CF-End is used to signal the end of the CFP
- The CFP alternates with a CP, when DCF controls frame transfers
 - The CP must be large enough to send at least one maximum-sized MPDU including RTS/CTS/ACK
- CFPs are generated at the CFP repetition rate and each CFP begins with a beacon frame

802.11 - Frame format

- Types
 - control frames, management frames, data frames
- Sequence numbers
 - important against duplicated frames due to lost ACKs
- Addresses
 - receiver, transmitter (physical), BSS identifier, sender (logical)
- Miscellaneous
 - sending time checksum frame control data

version, type, fragmentation, security, ...

Frame Control Field

Figure 3. Standard IEEE 802.11 frame format.

Types of Frames

Control Frames

- RTS/CTS/ACK
- CF-Poll/CF-End

Management Frames

- Beacons
- Probe Request/Response
- Association Request/Response
- Dissociation/Reassociation
- Authentication/Deauthentication
- ATIM
- Data Frames

MAC address format

scenario	to DS	from DS	address 1	address 2	address 3	address 4
ad-hoc network	0	0	DA	SA	BSSID	-
infrastructure network, from AP	0	1	DA	BSSID	SA	-
infrastructure network, to AP	1	0	BSSID	SA	DA	-
infrastructure network, within DS	1	1	RA	TA	DA	SA

DS: Distribution System

AP: Access Point

DA: Destination Address

SA: Source Address

BSSID: Basic Service Set Identifier

RA: Receiver Address
TA: Transmitter Address

802.11 - MAC management

- Synchronization
 - try to find a LAN, try to stay within a LAN
 - timer etc.
- Power management
 - sleep-mode without missing a message
 - periodic sleep, frame buffering, traffic measurements
- Association/Reassociation
 - integration into a LAN
 - roaming, i.e. change networks by changing access points
 - scanning, i.e. active search for a network
- MIB Management Information Base
 - managing, read, write

802.11 - Synchronization

- All STAs within a BSS are synchronized to a common clock
 - PCF mode: AP is the timing master
 - periodically transmits Beacon frames containing Timing Synchronization function (TSF)
 - Receiving stations accepts the timestamp value in TSF
 - DCF mode: TSF implements a distributed algorithm
 - Each station adopts the timing received from any beacon that has TSF value later than its own TSF timer
- This mechanism keeps the synchronization of the TSF timers in a BSS to within 4 μ s plus the maximum propagation delay of the PHY layer

Synchronization using a Beacon (infrastructure)

Synchronization using a Beacon (adhoc)

802.11 - Power management

- Idea: switch the transceiver off if not needed
 - States of a station: sleep and awake
- Timing Synchronization Function (TSF)
 - stations wake up at the same time
- Infrastructure
 - Traffic Indication Map (TIM)
 - list of unicast receivers transmitted by AP
 - Delivery Traffic Indication Map (DTIM)
 - list of broadcast/multicast receivers transmitted by AP
- Ad-hoc
 - Ad-hoc Traffic Indication Map (ATIM)
 - announcement of receivers by stations buffering frames
 - more complicated no central AP
 - collision of ATIMs possible (scalability?)

802.11 - Energy conservation

- Power Saving in IEEE 802.11 (Infrastructure Mode)
 - An Access Point periodically transmits a beacon indicating which nodes have packets waiting for them
 - Each power saving (PS) node wakes up periodically to receive the beacon
 - If a node has a packet waiting, then it sends a PS-Poll
 - After waiting for a backoff interval in [0,CWmin]
 - Access Point sends the data in response to PS-poll

Power saving with wake-up patterns (infrastructure)

Power saving with wake-up patterns (ad-hoc)

802.11 - Roaming

- No or bad connection in PCF mode? Then perform:
- Scanning
 - scan the environment, i.e., listen into the medium for beacon signals or send probes into the medium and wait for an answer
- Reassociation Request
 - station sends a request to one or several AP(s)
- Reassociation Response
 - success: AP has answered, station can now participate
 - failure: continue scanning
- AP accepts Reassociation Request
 - signal the new station to the distribution system
 - the distribution system updates its data base (i.e., location information)
 - typically, the distribution system now informs the old AP so it can release resources

Hardware

- Original WaveLAN card (NCR)
 - 914 MHz Radio Frequency
 - Transmit power 281.8 mW
 - Transmission Range ~250 m (outdoors) at 2Mbps
 - SNRT 10 dB (capture)
- WaveLAN II (Lucent)
 - 2.4 GHz radio frequency range
 - Transmit Power 30mW
 - Transmission range 376 m (outdoors) at 2 Mbps (60m indoors)
 - Receive Threshold = –81dBm
 - Carrier Sense Threshold = -111dBm

802.11 current status

IEEE 802.11 Summary

- Infrastructure (PCF) and adhoc (DCF) modes
- Signaling packets for collision avoidance
 - Medium is reserved for the duration of the transmission
 - Beacons in PCF
 - RTS-CTS in DCF
- Acknowledgements for reliability
- Binary exponential backoff for congestion control
- Power save mode for energy conservation

Outline

- Introduction and Overview
- Wireless LANs: IEEE 802.11
- Mobile IP routing
- TCP over wireless
- GSM air interface
- GPRS network architecture
- Wireless application protocol
- Mobile agents
- Mobile ad hoc networks

Traditional Routing

A routing protocol sets up a routing table in routers

ROUTING TABLE AT 1

Destination	Next hop
1	_
2	2□
3	3□
4	3□
5	2□
6	2

Destination	Next hop
7	2
8□	2:□
9□	2:□
10□	2:□
11□	3:□
12	3

■ Routing protocol is typically based on Sridhar Distance-Vector on Bink-State algorithms

Routing and Mobility

- Finding a path from a source to a destination
- Issues
 - Frequent route changes
 - amount of data transferred between route changes may be much smaller than traditional networks
 - Route changes may be related to host movement
 - Low bandwidth links
- Goal of routing protocols
 - decrease routing-related overhead
 - find short routes
 - find "stable" routes (despite mobility)

Mobile IP (RFC 3220): Motivation

Traditional routing

- based on IP address; network prefix determines the subnet
- change of physical subnet implies
 - change of IP address (conform to new subnet), or
 - special routing table entries to forward packets to new subnet

Changing of IP address

- DNS updates take to long time
- TCP connections break
- security problems

Changing entries in routing tables

- does not scale with the number of mobile hosts and frequent changes in the location
- security problems

Solution requirements

retain same IP address, use same layer 2 protocols

Mobile IP: Basic Idea

Mobile IP: Basic Idea

Mobile IP: Terminology

- Mobile Node (MN)
 - node that moves across networks without changing its IP address
- Home Agent (HA)
 - host in the home network of the MN, typically a router
 - registers the location of the MN, tunnels IP packets to the COA
- Foreign Agent (FA)
 - host in the current foreign network of the MN, typically a router
 - forwards tunneled packets to the MN, typically the default router for MN
- Care-of Address (COA)
 - address of the current tunnel end-point for the MN (at FA or MN)
 - actual location of the MN from an IP point of view
- Correspondent Node (CN)
 - host with which MN is "corresponding" (TCP connection)

Data transfer to the mobile system

Sridhar Iyer

IIT Bombay

110 Source: Schiller

Data transfer from the mobile system

Sridhar Iyer

IIT Bombay

Mobile IP: Basic Operation

Agent Advertisement

- HA/FA periodically send advertisement messages into their physical subnets
- MN listens to these messages and detects, if it is in home/foreign network
- MN reads a COA from the FA advertisement messages

MN Registration

- MN signals COA to the HA via the FA
- HA acknowledges via FA to MN
- limited lifetime, need to be secured by authentication

HA Proxy

- HA advertises the IP address of the MN (as for fixed systems)
- packets to the MN are sent to the HA
- independent of changes in COA/FA

Packet Tunneling

Agent advertisement

0 7	8 15	16 23	24	31		
type	code	checksum				
#addresses	addr. size	lifetime				
router address 1						
preference level 1						
router address 2						
preference level 2						
·						

type	length		sequence number					number
registration	on lifetime	R	ВН	H	Μ	GV		reserved
COA 1								
COA 2								

. . .

Registration

Registration request

0		7 8	15	16	23 24	31
	type	SBDN	//GVrsv		lifetime	
home address						
home agent						
COA						
identification						
extensions						

IP-in-IP encapsulation

- IP-in-IP-encapsulation (mandatory in RFC 2003)
 - tunnel between HA and COA

ver.	IHL	TOS	length			
	IP identification		flags	fragment offset		
T	ΓL	IP-in-IP	IP checksum			
IP address of HA						
Care-of address COA						
ver.	I	TOS	length			
IP identification			flags fragment offset			
T	ΓL	lay. 4 prot.	IP checksum			
IP address of CN						
IP address of MN						
TCP/UDP/ payload						

Mobile IP: Other Issues

Reverse Tunneling

- firewalls permit only "topological correct" addresses
- a packet from the MN encapsulated by the FA is now topological correct

Optimizations

- Triangular Routing
 - HA informs sender the current location of MN
- Change of FA
 - new FA informs old FA to avoid packet loss, old FA now forwards remaining packets to new FA

Mobile IP Summary

- Mobile node moves to new location
- Agent Advertisement by foreign agent
- Registration of mobile node with home agent
- Proxying by home agent for mobile node
- Encapsulation of packets
- Tunneling by home agent to mobile node via foreign agent

- Reverse tunneling
- Optimizations for triangular routing

Outline

- Introduction and Overview
- Wireless LANs: IEEE 802.11
- Mobile IP routing
- TCP over wireless
- GSM air interface
- GPRS network architecture
- Wireless application protocol
- Mobile agents
- Mobile ad hoc networks

Transmission Control Protocol (TCP)

- Reliable ordered delivery
 - Acknowledgements and Retransmissions
- End-to-end semantics
 - Acknowledgements sent to TCP sender confirm delivery of data received by TCP receiver
 - Ack for data sent only after data has reached receiver
 - Cumulative Ack
- Implements congestion avoidance and control

Window Based Flow Control

- Sliding window protocol
- Window size minimum of
 - receiver's advertised window determined by available buffer space at the receiver
 - congestion window determined by the sender, based on feedback from the network

Basic TCP Behaviour

TCP: Detecting Packet Loss

- Retransmission timeout
 - Initiate Slow Start

- Duplicate acknowledgements
 - Initiate Fast Retransmit

Assumes that ALL packet losses are due to congestion

TCP after Timeout

TCP after Fast Retransmit

After fast retransmit and fast recovery window size

is Sridhar Iyer reduced in half.

IIT Bombay

Impact of Transmission Errors

- Wireless channel may have bursty random errors
- Burst errors may cause timeout
- Random errors may cause fast retransmit
- TCP cannot distinguish between packet losses due to congestion and transmission errors
- Unnecessarily reduces congestion window
- Throughput suffers

Split Connection Approach

 End-to-end TCP connection is broken into one connection on the wired part of route and one over wireless part of the route

- Connection between wireless host MH and fixed host FH goes through base station BS
- FH-MH = FH-BS + BS-MH

I-TCP: Split Connection Approach

Per-TCP connection state

128

Sridhar Iyer

Snoop Protocol

- Buffers data packets at the base station BS
 - to allow link layer retransmission
- When dupacks received by BS from MH
 - retransmit on wireless link, if packet present in buffer
 - drop dupack
- Prevents fast retransmit at TCP sender FH

Snoop Protocol

Per TCP-connection state

Sridhar Iyer

Impact of Handoffs

- Split connection approach
 - hard state at base station must be moved to new base station
- Snoop protocol
 - soft state need not be moved.
 - while the new base station builds new state, packet losses may not be recovered locally
- Frequent handoffs a problem for schemes that rely on significant amount of hard/soft state at base stations
 - hard state should not be lost
 - soft state needs to be recreated to benefit performance

M-TCP

- Similar to the split connection approach, M-TCP splits one TCP connection into two logical parts
 - the two parts have independent flow control as in I-TCP
- The BS does not send an ack to MH, unless BS has received an ack from MH
 - maintains end-to-end semantics
- BS withholds ack for the last byte ack'd by MH

M-TCP

- When a new ack is received with receiver's advertised window = 0, the sender enters persist mode
- Sender does not send any data in persist mode
 - except when persist timer goes off
- When a positive window advertisement is received, sender exits persist mode
- On exiting persist mode, RTO and cwnd are same as before the persist mode

FreezeTCP

- M-TCP needs help from base station
 - Base station withholds ack for one byte
 - The base station uses this ack to send a zero window advertisement when a mobile host moves to another cell

TCP receiver

FreezeTCP requires the receiver to send zero window advertisement (ZWA)
Mobile

FH BS MH

TCP over wireless summary

- Assuming that packet loss implies congestion is invalid in wireless mobile environments
- Invoking congestion control in response to packet loss is in appropriate

- Several proposals to adapt TCP to wireless environments
- Modifications at
 - Fixed Host
 - Base Station
 - Mobile Host

Outline

- Introduction and Overview
- Wireless LANs: IEEE 802.11
- Mobile IP routing
- TCP over wireless
- GSM air interface
- GPRS network architecture
- Wireless application protocol
- Mobile agents
- Mobile ad hoc networks

GSM: System Architecture

Base Transceiver Station (BTS)

- One per cell
- Consists of high speed transmitter and receiver
- Function of BTS
 - Provides two channel
 - Signalling and Data Channel
 - Message scheduling
 - Random access detection
 - Performs error protection coding for the radio channel
 - Rate adaptation
- Identified by BTS Identity Code (BSIC)

Base Station Controller (BSC)

- Controls multiple BTS
- Consists of essential control and protocol intelligence entities
- Functions of BSC
 - Performs radio resource management
 - Assigns and releases frequencies and time slots for all the MSs in its area
 - Reallocation of frequencies among cells
 - Hand over protocol is executed here
 - Time and frequency synchronization signals to BTSs
 - Time Delay Measurement and notification of an MS to BTS
 - Power Management of BTS and MS

Mobile Switching Center (MSC)

- Switching node of a PLMN
- Allocation of radio resource (RR)
 - Handover
- Mobility of subscribers
 - Location registration of subscriber
- There can be several MSC in a PLMN

Gateway MSC (GMSC)

- Connects mobile network to a fixed network
 - Entry point to a PLMN
- Usually one per PLMN
- Request routing information from the HLR and routes the connection to the local MSC

Air Interface: Physical Channel

- Uplink/Downlink of 25MHz
 - 890 -915 MHz for Up link
 - 935 960 MHz for Down link
- Combination of frequency division and time division multiplexing
 - FDMA
 - 124 channels of 200 kHz
 - 200 kHz guard band
 - TDMA
 - Burst
- Modulation used
 - Gaussian Minimum Shift Keying (GMSK)

Bursts

Building unit of physical channel

- Types of bursts
 - Normal
 - Synchronization
 - Frequency Correction
 - Dummy
 - Access

Normal Burst

Normal Burst

2*(3 head bit + 57 data bits + 1 signaling bit) + 26
 training sequence bit + 8.25 guard bit

Used for all except RACH, FSCH & SCH

3	57 data bits	1	26 training sequence	1	57 data bits	3	8.25 gaurd bits	
---	--------------	---	-------------------------	---	--------------	---	--------------------	--

Air Interface: Logical Channel

- Traffic Channel (TCH)
- Signaling Channel
 - Broadcast Channel (BCH)
 - Common Control Channel (CCH)
 - Dedicated/Associated Control Channel (DCCH/ACCH)

Traffic Channel

- Transfer either encoded speech or user data
- Bidirectional
- Full Rate TCH
 - Rate 22.4kbps
 - Bm interface
- Half Rate TCH
 - Rate 11.2 kbps
 - Lm interface

Full Rate Speech Coding

- Speech Coding for 20ms segments
 - 260 bits at the output
 - Effective data rate 13kbps
- Unequal error protection
 - 182 bits are protected
 - 50 + 132 bits = 182 bits
 - 78 bits unprotected
- Channel Encoding
 - Codes 260 bits into (8 x 57 bit blocks) 456 bits
- Interleaving
 - 2 blocks of different set interleaved on a normal burst (save damages by error bursts)

Ou Soidhast 20 ms

150 Out of second 20ms

Traffic Channel Structure for Full Rate Coding

T = Traffic

S = Signal(contains information about the signal strength in neighboring cells)

Traffic Channel Structure for Half Rate Coding

Sridhar Iyer IIT Bombay 152

BCCH

- Broadcast Control Channel (BCCH)
 - BTS to MS
 - Radio channel configuration
 - Current cell + Neighbouring cells
 - Synchronizing information
 - Frequencies + frame numbering
 - Registration Identifiers
 - LA + Cell Identification (CI) + Base Station Identity Code (BSIC)

FCCH & SCH

- Frequency Correction Channel
 - Repeated broadcast of FB
- Synchronization Channel
 - Repeated broadcast of SB
 - Message format of SCH

RACH & SDCCH

- Random Access Channel (RACH)
 - MS to BTS
 - Slotted Aloha
 - Request for dedicated SDCCH
- Standalone Dedicated Control Channel (SDCCH)
 - MS \leftrightarrow BTS
 - Standalone; Independent of TCH

AGCH & PCH

- Access Grant Channel (AGCH)
 - BTS to MS
 - Assign an SDCCH/TCH to MS

- Paging Channel (PCH)
 - BTS to MS
 - Page MS

SACCH & FACCH

- Slow Associated Control Channel (SACCH)
 - MS \leftrightarrow BTS
 - Always associated with either TCH or SDCCH
 - Information
 - Optimal radio operation; Commands for synchronization
 - Transmitter power control; Channel measurement
 - Should always be active; as proof of existence of physical radio connection
- Fast Associated Control Channel (FACCH)
 - MS \leftrightarrow BTS
 - Handover
 - Pre-emptive multiplexing on a TCH, Stealing Flag (SF)

Example: Incoming Call Setup

MS ↓BSS/MSC	 Paging request	(PCH)
MS ↑BSS/MSC	 Channel request	(RACH)
MS ↓BSS/MSC	 Immediate Assignment	(AGCH)
MS ↑BSS/MSC	 Paging Response	(SDCCH)
MS ↓BSS/MSC	 Authentication Request	(SDCCH)
MS ↑BSS/MSC	 Authentication Response	(SDCCH)
MS ↓BSS/MSC	 Cipher Mode Command	(SDCCH)
MS ↑BSS/MSC	 Cipher Mode Compl.	(SDCCH)
MS ↓BSS/MSC	 Setup	(SDCCH)
MS ↑BSS/MSC	 Call Confirmation	(SDCCH)
MS ↓BSS/MSC	 Assignment Command	(SDCCH)
MS ↑BSS/MSC	 Assignment Compl.	(FACCH)
MS ↑BSS/MSC	 Alert	(FACCH)
MS ↑BSS/MSC	 Connect	(FACCH)
MS ↓BSS/MSC	 Connect Acknowledge	(FACCH)
MS ↔BSS/MSC	 Data	(TCH)

Adaptive Frame Synchronization

- Timing Advance
- Advance in Tx time corresponding to propagation delay
- 6 bit number used; hence 63 steps
- 63 bit period = 233 micro seconds (round trip time)
 - 35 Kms

GSM: Channel Mapping Summary

- Logical channels
 - Traffic Channels; Control Channels
- Physical Channel
 - Time Slot Number; TDMA frame; RF Channel Sequence
- Mapping in frequency
 - 124 channels, 200KHz spacing
- Mapping in time
 - TDMA Frame, Multi Frame, Super Frame, Channel
 - Two kinds of multiframe:
 - 26-frame multiframe; usage -Speech and Data
 - 51-frame multiframe; usage -Signalling

Outline

- Introduction and Overview
- Wireless LANs: IEEE 802.11
- Mobile IP routing
- TCP over wireless
- GSM air interface
- GPRS network architecture
- Wireless application protocol
- Mobile agents
- Mobile ad hoc networks

GSM architecture

Source: Bettstetter et. al.

GSM multiple access

GSM call routing

Options for data transfer

- Two enhancements to GSM for data
 - HSCSD High Speed Circuit Switched Data
 - GPRS General Packet Radio Service
- Both have capacity to use new coding schemes and to make multislot allocation
- GPRS, being a packet switched service, is known to be more efficient and flexible for data transfer purposes
- It delivers circuit and packet-switched services in one mobile radio network

GPRS features

- Radio resources are allocated for only one or a few packets at a time, so GPRS enables
 - many users to share radio resources, and allow efficient transport of packets
 - fast setup/access times
 - connectivity to external packet data n/w
 - volume-based charging
- GPRS also carries SMS in data channels rather than signaling channels as in GSM

GPRS Architecture

GPRS Architecture

- Requires addition of a new class of nodes called GSNs (GPRS Support Nodes)
 - SGSN: Serving GPRS Support Node,
 - GGSN: Gateway GPRS Support Node
- BSC requires a PCU (Packet Control Unit) and various other elements of the GSM n/w require software upgrades
- All GSNs are connected via an IP-based backbone. Protocol data units (PDUs) are encapsulated and tunneled between GSNs

GGSN

- Serves as the interface to external IP networks which see the GGSN as an IP router serving all IP addresses of the MSs
- GGSN stores current SGSN address and profile of the user in its location register
- It tunnels protocol data packets to and from the SGSN currently serving the MS
- It also performs authentication and charging
- GGSN can also include firewall and packetfiltering mechanisms

SGSN

- Analog of the MSC in GSM
- Routes incoming and outgoing packets addressed to and from any GPRS subscriber located within the geographical area served by the SGSN
- Location Register of the SGSN stores information (e.g. current cell and VLR) and user profiles (e.g. IMSI, addresses) of all GPRS users registered with this SGSN

BSC and others

- BSC must get a Packet Control Unit to
 - set up, supervise and disconnect packet-switched calls
 - also support cell change, radio resource configuration and channel assignment
- MSC/VLR, HLR and SMS Center must be enhanced for interworking with GPRS
- MS must be equipped with the GPRS protocol stack

HLR - Home Location Register

- Shared database, with GSM
- Is enhanced with GPRS subscriber data and routing information
- For all users registered with the network, HLR keeps user profile, current SGSN and Packet Data Protocol (PDP) address(es) information
- SGSN exchanges information with HLR e.g., informs HLR of the current location of the MS
- When MS registers with a new SGSN, the HLR sends the user profile to the new SGSN

MSC/VLR-Visitor Location Register

- VLR is responsible for a group of location areas. It stores data of only those users in its area of responsibility
- MSC/VLR can be enhanced with functions and register entries that allow efficient coordination between GPRS and GSM services
 - combined location updates
 - combined attachment procedures

GPRS Transmission Plane

Air Interface U_m

- Is one of the central aspects of GPRS
 - Concerned with communication between MS and BSS at the physical, MAC and RLC layers
 - Physical channel dedicated to packet data traffic is called a packet data channel (PDCH)
- Capacity on Demand:
 - Allocation/Deallocation of PDCH to GPRS traffic is dynamic
 - BSC controls resources in both directions
 - No conflicts on downlink
 - Conflicts in uplink are resolved using slotted ALOHA

Data transfer between MS and SGSN

- SNDCP transforms IP/X.25 packets into LLC frames, after optional header/data compression, segmentation and encryption
- Maximum LLC frame size is 1600 bytes
- An LLC frame is segmented into RLC data blocks which are coded into radio blocks
- Each radio block comprises four normal bursts (114 bits) in consecutive TDMA frames
- RLC is responsible for transmission of data across airinterface, including error correction
- MAC layer performs medium allocation to requests, including multi-slot allocation
- PHY layer is identical to GSM

Data transfer between GSNs

- Although the GPRS network consists of several different nodes, it represents only one IP hop
- GTP enables tunneling of PDUs between GSNs, by adding routing information
- Below GTP, TCP/IP and IP are used as the GPRS backbone protocols

MS - state model

- In Idle State MS is not reachable
- With GPRS Attach MS moves into ready state
- With Detach, it returns to Idle state: all PDP contexts are deleted
- Standby state is reached when MS does not send data for a long period and ready timer expires

GPRS – PDP context

- MS gets a packet temporary mobile subscriber identity (p-TMSI) during Attach
- MS requests for one or more addresses used in the packet data network, e.g. IP address
- GGSN creates a PDP context for each session
 - PDP type (IPV4), PDP address (IP) of MS,
 - requested quality of service (QoS) and address of GGSN
- PDP context is stored in MS, SGSN and GGSN
- Mapping between the two addresses, enables GGSN to transfer packets between MS and the PDN

GPRS - Routing

GPRS - Routing

- MS from PLMN-2 is visiting PLMN-1.
- IP address prefix of MS is the same as GGSN-2
- Incoming packets to MS are routed to GGSN-2
- GGSN-2 queries HLR and finds that MS is currently in PLMN-1
- It encapsulates the IP packets and tunnels them through the GPRS backbone to the appropriate SGSN of PLMN-1
- SGSN decapsulates and delivers to the MS

GPRS Summary

- Enables many users to share radio resources by dynamic, on-demand, multi-slot allocation
- Provides connectivity to external packet data networks
- Modification to the GSM air-interface
- Addition of new GPRS Support Nodes
- Assignment of PDP context to MS
- Enables volume-based charging as well as duration based charging

Outline

- Introduction and Overview
- Wireless LANs: IEEE 802.11
- Mobile IP routing
- TCP over wireless
- GSM air interface
- GPRS network architecture
- Wireless application protocol
- Mobile agents
- Mobile ad hoc networks

Variability of the mobile environment

Wireless Application Protocol (WAP)

 HTTP/HTML have not been designed for mobile devices and applications

 WAP empowers mobile users with wireless devices to easily access and interact with information and services.

 A "standard" created by wireless and Internet companies to enable Internet access from a cellular phone

Why is HTTP/HTML not enough?

Big pipe - small pipe syndrome

Internet

```
HTTP/HTML
<HTML>
<HEAD>
<TITLE>NNN Interactive</TITLE>
<META HTTP-EQUIV="Refresh" CONTENT="1800,
URL=/index.html">
</HEAD>
<BODY BGCOLOR="#FFFFFF"
BACKGROUND="/images/9607/bgbar5.gif" LINK="#0A3990"
ALINK="#FF0000" VLINK="#FF0000" TEXT="000000"
ONLOAD="if(parent.frames.length!
=0)top.location='http://nnn.com';">
<A NAME="#top"></A>
<TABLE WIDTH=599 BORDER="0">
<TR ALIGN=LEFT>
<TD WIDTH=117 VALIGN=TOP ALIGN=LEFT>
                      <HTML>
                      <HEAD>
                      <TITLE
                      >NNN
                      Intera
                      ctive<
                      /TITLE
                      <META
                      HTTP-
                      EOUIV=
                      "Refre
                      sh"
                      CONTEN
                      T="180
                      URL=/i
                      ndex.h
                                        IIT Bombay
                      tml">
```

Wireless network

IIT Bombay 189
Source: WAP Forum

WHY WAP?

- Wireless networks and phones
 - have specific needs and requirements
 - not addressed by existing Internet technologies

WAP

- Enables any data transport
 - TCP/IP, UDP/IP, GUTS (IS-135/6), SMS, or USSD.
- Optimizes the content and air-link protocols
- Utilizes plain Web HTTP 1.1 servers
 - utilizes standard Internet markup language technology (XML)
 - all WML content is accessed via HTTP 1.1 requests
- WML UI components map well onto existing mobile phone UI
 - no re-education of the end-users
 - leveraging market penetration of mobile devices

WAP: main features

- Browser
 - "Micro browser", similar to existing web browsers
- Markup language
 - Similar to HTML, adapted to mobile devices
- Script language
 - Similar to Javascript, adapted to mobile devices
- Gateway
 - Transition from wireless to wired world
- Server
 - "Wap/Origin server", similar to existing web servers
- Protocol layers
 - Transport layer, security layer, session layer etc.
- Telephony application interface
 - Access to telephony functions

Internet model

WAP architecture

193 Sridhar Iyer **IIT Bombay**

WAP application server

Sridhar Iyer **IIT Bombay** 194 Source: WAP Forum

WAP specifies

Wireless Application Environment

- WML Microbrowser
- WMLScript Virtual Machine
- WMLScript Standard Library
- Wireless Telephony Application Interface (WTAI)
- WAP content types

Wireless Protocol Stack

- Wireless Session Protocol (WSP)
- Wireless Transport Layer Security (WTLS)
- Wireless Transaction Protocol (WTP)
- Wireless Datagram Protocol (WDP)
- Wireless network interface definitions

WAP stack

WAE (Wireless Application Environment):

- Architecture: application model, browser, gateway, server
- WML: XML-Syntax, based on card stacks, variables, ...
- WTA: telephone services, such as call control, phone book etc.

WSP (Wireless Session Protocol):

- Provides HTTP 1.1 functionality
- Supports session management, security, etc.

WAP stack (contd.)

- WTP (Wireless Transaction Protocol):
 - Provides reliable message transfer mechanisms
 - Based on ideas from TCP/RPC
- WTLS (Wireless Transport Layer Security):
 - Provides data integrity, privacy, authentication functions
 - Based on ideas from TLS/SSL
- WDP (Wireless Datagram Protocol):
 - Provides transport layer functions
 - Based on ideas from UDP

Content encoding, optimized for low-bandwidth channels, simple devices

197

WDP: Wireless Datagram Protocol

Goals

- create a worldwide interoperable transport system by adapting WDP to the different underlying technologies
- transmission services, such as SMS in GSM might change, new services can replace the old ones

WDP

- Transport layer protocol within the WAP architecture
- uses the Service Primitive
 - T-UnitData.req .ind
- uses transport mechanisms of different bearer technologies
- offers a common interface for higher layer protocols
- allows for transparent communication despite different technologies
- addressing uses port numbers
- WDP over IP is UDP/IP

WDP: service primitives

199

EC: Error Code

Service, Protocol, Bearer: Example

WAP Over GSM Circuit-Switched

RAS - Remote Access Server IWF - InterWorking Function

Source: WAP Forum

200

Service, Protocol, Bearer: Example

WAP Over GSM Short Message Service

Sridhar Iyer **IIT Bombay** 201

WTLS:Wireless Transport Layer Security

Goals

 Provide mechanisms for secure transfer of content, for applications needing privacy, identification, message integrity and non-repudiation

WTLS

- is based on the TLS/SSL (Transport Layer Security) protocol
- optimized for low-bandwidth communication channels
- provides
 - privacy (encryption)
 - data integrity (MACs)
 - authentication (public-key and symmetric)
- Employs special adapted mechanisms for wireless usage
 - Long lived secure sessions
 - Optimised handshake procedures
 - Provides simple data reliability for operation over datagram bearers

WTLS: secure session, full handshake

IIT Bombay 203 Source: Schiller

WTP: Wireless Transaction Protocol

Goals

- different transaction services that enable applications to select reliability, efficiency levels
- low memory requirements, suited to simple devices (< 10kbyte)
- efficiency for wireless transmission

WTP

- supports peer-to-peer, client/server and multicast applications
- efficient for wireless transmission
- support for different communication scenarios

WTP transactions

- class 0: unreliable message transfer
 - unconfirmed Invoke message with no Result message
 - a datagram that can be sent within the context of an existing Session
- class 1: reliable message transfer without result message
 - confirmed Invoke message with no Result message
 - used for data push, where no response from the destination is expected
- class 2: reliable message transfer with exactly one reliable result message
 - confirmed Invoke message with one confirmed Result message
 - a single request produces a single reply

WTP: services and protocols

- WTP (Transaction)
 - provides reliable data transfer based on request/reply paradigm
 - no explicit connection setup or tear down
 - optimized setup (data carried in first packet of protocol exchange)
 - seeks to reduce 3-way handshake on initial request
 - supports
 - header compression
 - segmentation /re-assembly
 - retransmission of lost packets
 - selective-retransmission
 - port number addressing (UDP ports numbers)
 - flow control

WTP services

- message oriented (not stream)
- supports an Abort function for outstanding requests
- supports concatenation of PDUs
- supports two acknowledgement options
 - User acknowledgement
 - acks may be forced from the WTP user (upper layer)
 - Stack acknowledgement: default

WTP Class 0 Transaction

A: Acknowledgement Type

(WTP/User)

C: Class (0,1,2)

H: Handle (socket alias)

Sridhar Iyer IIT Bombay 208

WTP Class 1 Transaction, no user ack & user ack

Source: Schiller

WTP Class 2 Transaction, no user ack, no hold on

Sridhar Iyer IIT Bombay

WTP Class 2 Transaction, user ack

Sridhar Iyer IIT Bombay 211

WSP - Wireless Session Protocol

Goals

- HTTP 1.1 functionality
 - Request/reply, content type negotiation, ...
- support of client/server transactions, push technology
- key management, authentication, Internet security services

WSP Services

- provides shared state between client and server, optimizes content transfer
- session management (establish, release, suspend, resume)
- efficient capability negotiation
- content encoding
- Push

WSP overview

Header Encoding

- compact binary encoding of headers, content type identifiers and other well-known textual or structured values
- reduces the data actually sent over the network
- Capabilities (are defined for):
 - message size, client and server
 - protocol options: Confirmed Push Facility, Push Facility,
 Session Suspend Facility, Acknowledgement headers
 - maximum outstanding requests
 - extended methods

Suspend and Resume

- server knows when client can accept a push
- multi-bearer devices
- dynamic addressing
- allows the release of underlying bearer resources

WSP/B session establishment

Sridhar Iyer IIT Bombay 214

WSP/B session suspend/resume

Sridhar Iyer IIT Bombay 215

Source: Schiller

WSP/B session termination

Sridhar Iyer IIT Bombay 216

Source: Schiller

confirmed/non-confirmed push

Sridhar Iyer

IIT Bombay

Source: Schiller

WAP Stack Summary

WDP

functionality similar to UDP in IP networks

WTLS

functionality similar to SSL/TLS (optimized for wireless)

WTP

- Class 0: analogous to UDP
- Class 1: analogous to TCP (without connection setup overheads)
- Class 2: analogous to RPC (optimized for wireless)
- features of "user acknowledgement", "hold on"

WSP

- WSP/B: analogous to http 1.1 (add features of suspend/resume)
- method: analogous to RPC/RMI
- features of asynchronous invocations, push (confirmed/unconfirmed)

Wireless Application Environment (WAE)

Goals

- device and network independent application environment
- for low-bandwidth, wireless devices
- considerations of slow links, limited memory, low computing power, small display, simple user interface (compared to desktops)
- integrated Internet/WWW programming model
- high interoperability

WAE components

Architecture

Application model, Microbrowser, Gateway, Server

User Agents

- WML/WTA/Others
- content formats: vCard, vCalendar, Wireless Bitmap, WML...

WML

XML-Syntax, based on card stacks, variables, ...

WMLScript

procedural, loops, conditions, ... (similar to JavaScript)

WTA

 telephone services, such as call control, text messages, phone book, ... (accessible from WML/WMLScript)

Proxy (Method/Push)

Sridhar Iyer IIT Bombay 220

WAE: logical model

WAP microbrowser

- Optimized for wireless devices
- Minimal RAM, ROM, Display, CPU and keys
- Provides consistent service UI across devices
- Provides Internet compatibility
- Enables wide array of available content and applications

WML: Wireless Markup Language

- Tag-based browsing language:
 - Screen management (text, images)
 - Data input (text, selection lists, etc.)
 - Hyperlinks & navigation support
- Takes into account limited display, navigation capabilities of devices

WML

- XML-based language
 - describes only intent of interaction in an abstract manner
 - presentation depends upon device capabilities
- Cards and Decks
 - document consists of many cards
 - User interactions are split into cards
 - Explicit navigation between cards
 - cards are grouped to decks
 - deck is similar to HTML page, unit of content transmission
- Events, variables and state mgmt

WML

- The basic unit is a card. Cards are grouped together into Decks Document ~ Deck (unit of transfer)
- All decks must contain
 - Document prologue
 - XML & document type declaration
 - <WML> element
 - . Must contain one or more cards

WML File Structure

WML cards

```
<WML>
               <CARD>
                 <DO TYPE="ACCEPT">
Navigation
                   <GO URL="#eCard"/>
                                                        Card
                 </D0
                 Welcome!
               </CARD>
               <CARD NAME="eCard">
                 <DO TYPE="ACCEPT">
 Variables
                    <GO URL="/submit?N=$(N)&S=$(S)"/
                                                           Deck
                 </D0>
                 Enter name: <INPUT KEY="N"/>
                 Choose speed:
   Input
                 <SELECT KEY="S">
Elements
                   <OPTION VALUE="0">Fast
                   <OPTION VALUE="1">Slow</OPTION>
                 <SELECT>
               </CARD>
 Sridhar Iyer
             </WML>
```

Wireless Telephony Application (WTA)

- Collection of telephony specific extensions
 - designed primarily for network operators

Example

- calling a number (WML) wtai://wp/mc;07216086415
- calling a number (WMLScript)
 WTAPublic.makeCall("07216086415");

Implementation

- Extension of basic WAE application model
- Extensions added to standard WML/WMLScript browser
- Exposes additional API (WTAI)

WTA features

- Extension of basic WAE application model
 - network model for interaction
 - client requests to server
 - event signaling: server can push content to the client
 - event handling
 - table indicating how to react on certain events from the network
 - client may now be able to handle unknown events
 - telephony functions
 - some application on the client may access telephony functions

WTA Interface

- generic, high-level interface to mobile's telephony functions
 - setting up calls, reading and writing entries in phonebook
- WTA API includes
 - Call control
 - Network text messaging
 - Phone book interface
 - Event processing
- Security model: segregation
 - Separate WTA browser
 - Separate WTA port

WTA Example (WML)

Placing an outgoing call with WTAI:

```
<WML>
               <CARD>
                 <DO TYPE="ACCEPT">
   WTAI Call
                   <GO URL="wtai:cc/mc;$(N)"/>
                 </D0>
                    Enter phone number:
Input Element
                    <INPUT TYPE="TEXT" KEY="N"/>
               </CARD>
               </WML>
```

230 Sridhar Iyer **IIT Bombay**

WTA Logical Architecture

Sridhar Iyer IIT Bombay 231

WTA Framework Components

Sridhar Iyer IIT Bombay 232

Source: Heijden

WTA User Agent

WTA User Agent

- WML User agent with extended functionality
- can access mobile device's telephony functions through WTAI
- can store WTA service content persistently in a repository
- handles events originating in the mobile network

WTA User Agent Context

- Abstraction of execution space
- Holds current parameters, navigation history, state of user agent
- Similar to activation record in a process address space
- Uses connection-mode and connectionless services offered by WSP
- Specific, secure WDP ports on the WAP gateway

WTA Events

- Network notifies device of event (such as incoming call)
- WTA events map to device's native events
- WTA services are aware of and able to act on these events

 example: incoming call indication, call cleared, call connected

WTA Repository

- local store for content related to WTA services (minimize network traffic)
- Channels: define the service
 - content format defining a WTA service stored in repository
 - XML document specifying eventid, title, abstract, and resources that implement a service
- Resources: execution scripts for a service
 - could be WML decks, WML Scripts, WBMP images...
 - downloaded from WTA server and stored in repository before service is referenced
- Server can also initiate download of a channel

WTA Channels and Resources

Repository

Sridhar Iyer

IIT Bombay

WTA Interface (public)

- for third party WML content providers
- restricted set of telephony functions available to any WAE User Agent
 - library functions
 - make call: allows application to setup call to a valid tel number
 - send DTMF tones: send DTMF tones through the setup call
- user notified to grant permission for service execution
 - cannot be triggered by network events
 - example: Yellow pages service with "make call" feature

WTA Interface (network)

Network Common WTAI

- WTA service provider is in operator's domain
- all WTAI features are accessible, including the interface to WTA events
- library functions
 - Voice-call control: setup call, accept, release, send DTMF tones
 - Network text: send text, read text, remove text (SMS)
 - Phonebook: write, read, remove phonebook entry
 - Call logs: last dialed numbers, missed calls, received calls
 - Miscellaneous: terminate WTA user agent, protect context
- user can give blanket permission to invoke a function
- example: Voice mail service

WTAI (network)

- Network Specific WTAI
 - specific to type of bearer network
 - example: GSM: call reject, call hold, call transfer, join multiparty, send USSD

WTA: event handling

Event occurrence

- WTA user agent could be executing and expecting the event
- WTA user agent could be executing and a different event occurs
- No service is executing

Event handling

 channel for each event defines the content to be processed upon reception of that event

WTA: event binding

- association of an event with the corresponding handler (channel)
- Global binding:
 - channel corresponding to the event is stored in the repository
 - event causes execution of resources defined by the channel
 - example: voice mail service
- Temporary binding:
 - resources to be executed are defined by the already executing service
 - example: yellow pages lookup and call establishment

Event Handling (no service in execution)

Sridhar Iyer **IIT Bombay** 243

Event Handling (service already execution)

- 1: Temporary binding exists
- 2. No temporary binding and context is protected
- 3: No temporary binding and context is not protected

244 Source: Heijden

WAP Push Services

Web push

- Scheduled pull by client (browser)
 - example: Active Channels
- no real-time alerting/response
 - example: stock quotes

Wireless push

- accomplished by using the network itself
 - example: SMS
- limited to simple text, cannot be used as starting point for service
 - example: if SMS contains news, user cannot request specific news item

WAP push

- Network supported push of WML content
 - example: Alerts or service indications
- Pre-caching of data (channels/resources)

WAP push framework

Sridhar Iyer IIT Bombay 246

Push Access Protocol

- Based on request/response model
- Push initiator is the client
- Push proxy is the server
- Initiator uses HTTP POST to send push message to proxy

247

- Initiator sends control information as an XML document, and content for mobile (as WML)
- Proxy sends XML entity in response indicating submission status
- Initiator can
 - cancel previous push
 - query status of push
 - query status/capabilities of device

Push Proxy Gateway

- WAP stack (communication with mobile device)
- TCP/IP stack (communication with Internet push initiator)
- Proxy layer does
 - control information parsing
 - content transformation
 - session management
 - client capabilities
 - store and forward
 - prioritization
 - address resolution
 - management function

Over the Air (OTA) Protocol

- Extends WSP with push-specific functionality
- Application ID uniquely identifies a particular application in the client (referenced as a URI)
- Connection-oriented mode
 - client informs proxy of application IDs in a session
- Connectionless mode
 - well known ports, one for secure and other for non-secure push
- Session Initiation Application (SIA)
 - unconfirmed push from proxy to client
 - request to create a session for a specific user agent and bearer

WAE Summary

WML and WML Script

- analogous to HTML and JavaScript (optimized for wireless)
- microbrowser user agent; compiler in the network

WTA

- WTAI: different access rights for different applications/agents
- WTA User Agent (analogy with operating systems)
 - Context Activation Record
 - Channel Interrupt Handler
 - Resource Shared routines invoked by interrupt handlers
 - Repository Library of interrupt handlers
- feature of dynamically pushing the interrupt handler before the event

Push

no analogy in Internet

Outline

- Introduction and Overview
- Wireless LANs: IEEE 802.11
- Mobile IP routing
- TCP over wireless
- GSM air interface
- GPRS network architecture
- Wireless application protocol
- Mobile agents
- Mobile ad hoc networks

Structuring Distributed Applications

Client Server

Remote Evaluation

Mobile Agents

Interaction Model

Client/server communication

Mobile agent communication

A generic Mobile Agent Framework

- Event notification
- Agent collaboration support

- Execution environment
- Communication (agent dispatching)
- Agent life cycle (creation, destruction)

Agent Manager Event
Manager
Mobile Agent

- Agent state
- Agent checkpoint (fault tolerance)

- User identification
- Protection (agent, server)
- Authentication

Security Manage

Persistent

Example: Student Examination Scenario

Example: Distribution and Testing

Example: Evaluation and Results

Mobile Agents Summary

- Appears to be a useful mechanism for applications on mobile and wireless devices
 - Reduce the network load
 - Help in overcoming latency
 - Execute asynchronously and autonomously
- Several issues yet to be addressed
 - Heavy frameworks
 - Interoperability
 - Security concerns

Outline

- Introduction and Overview
- Wireless LANs: IEEE 802.11
- Mobile IP routing
- TCP over wireless
- GSM air interface
- GPRS network architecture
- Wireless application protocol
- Mobile agents
- Mobile ad hoc networks

Multi-Hop Wireless

May need to traverse multiple links to reach destination

Mobility causes route changes

Mobile Ad Hoc Networks (MANET)

- Host movement frequent
- Topology change frequent

- No cellular infrastructure. Multi-hop wireless links.
- Data must be routed via intermediate nodes.

Many Applications

Ad hoc networks:

- Do not need backbone infrastructure support
- Are easy to deploy
- Useful when infrastructure is absent, destroyed or impractical
- Infrastructure may not be present in a disaster area or war zone

Applications:

- Military environments
- Emergency operations
- Civilian environments
 - taxi cab network
 - meeting rooms
 - sports stadiums

MAC in Ad hoc Networks

- IEEE 802.11 DCF is most popular
 - Easy availability
- 802.11 DCF:
 - Uses RTS-CTS to avoid hidden terminal problem
 - Uses ACK to achieve reliability
- 802.11 was designed for single-hop wireless
 - Does not do well for multi-hop ad hoc scenarios
 - Reduced throughput
 - Exposed terminal problem

Exposed Terminal Problem

- A starts sending to B.
- C senses carrier, finds medium in use and has to wait for A->B to end.
- D is outside the range of A, therefore waiting is not necessary.
- A and C are "exposed" terminals

Routing Protocols

Proactive protocols

- Traditional distributed shortest-path protocols
- Maintain routes between every host pair at all times
- Based on periodic updates; High routing overhead
- Example: DSDV (destination sequenced distance vector)

Reactive protocols

- Determine route if and when needed
- Source initiates route discovery
- Example: DSR (dynamic source routing)

Hybrid protocols

- Adaptive; Combination of proactive and reactive
- Example : ZRP (zone routing protocol)

Dynamic Source Routing (DSR)

Route Discovery Phase:

- Initiated by source node S that wants to send packet to destination node D
- Route Request (RREQ) floods through the network
- Each node appends own identifier when forwarding RREQ

Route Reply Phase:

- D on receiving the first RREQ, sends a Route Reply (RREP)
- RREP is sent on a route obtained by reversing the route appended to received RREQ
- RREP includes the route from S to D on which RREQ was received by node D

Data Forwarding Phase:

S sends data to D by source routing through intermediate nodes

Represents a node that has received RREQ for D from S

Represents transmission of RREQ

 Node H receives packet RREQ from two neighbors: potential for collision

 Node C receives RREQ from G and H, but does not forward it again, because node C has already forwarded RREQ once

- Nodes J and K both broadcast RREQ to node D
- Since nodes J and K are hidden from each other, their

 Node D does not forward RREQ, because node D is the intended target of the route discovery

Route Reply in DSR

Sridhar Iyer IIT Bombay 275

Data Delivery in DSR

Packet header size grows with route length

TCP in MANET

Several factors affect TCP in MANET:

- Wireless transmission errors
 - reducing congestion window in response to errors is unnecessary
- Multi-hop routes on shared wireless medium
 - Longer connections are at a disadvantage compared to shorter connections, because they have to contend for wireless access at each hop
- Route failures due to mobility

MANET Summary

- Routing is the most studied problem
- Interplay of layers is being researched
- Large number of simulation based expts
- Small number of field trials
- Very few reported deployments
- Fertile area for imaginative applications
 - Standardizing protocols does not seem to be a very good idea
 - Scope for proprietary solutions with limited interop

References

- J. Schiller, "Mobile Communications", Addison Wesley, 2000
- 802.11 Wireless LAN, IEEE standards, www.ieee.org
- Mobile IP, RFC 2002, RFC 334, www.ietf.org
- TCP over wireless, RFC 3150, RFC 3155, RFC 3449
- A. Mehrotra, "GSM system engineering", Artech House, 1997
- Bettstetter, Vogel and Eberspacher, "GPRS: Architecture, Protocols and Air Interface", IEEE Communications Survey 1999, 3(3).
- M.v.d. Heijden, M. Taylor. "Understanding WAP", Artech House, 2000
- Mobile Ad hoc networks, RFC 2501
- Others websites:
 - www.palowireless.com
 - www.gsmworld.com; www.wapforum.org
 - www.etsi.org; www.3gtoday.com

Thank You

Other Tutorials at: www.it.iitb.ac.in/~sri

Contact Details:

Sridhar Iyer

School of Information Technology

IIT Bombay, Powai, Mumbai 400 076

Phone: +91-22-2576-7901

Email: sri@it.iitb.ac.in